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Disorders of sensory systems, as with most disorders of the nervous system, usually

involve the interaction of multiple variables to cause some change, and yet often basic

sensory neuroscience data are analyzed using univariate statistical analyses only. The

exclusive use of univariate statistical procedures, analyzing one variable at a time,

may limit the potential of studies to determine how interactions between variables

may, as a network, determine a particular result. The use of multivariate statistical and

data mining methods provides the opportunity to analyse many variables together, in

order to appreciate how they may function as a system of interacting variables, and

how this system or network may change as a result of sensory disorders such as

sensorineural hearing loss, tinnitus or different types of vestibular dysfunction. Here we

provide an overview of the potential applications of multivariate statistical and data mining

techniques, such as principal component and factor analysis, cluster analysis, multiple

linear regression, random forest regression, linear discriminant analysis, support vector

machines, random forest classification, Bayesian classification, and orthogonal partial

least squares discriminant analysis, to the study of auditory and vestibular dysfunction,

with an emphasis on classification analytic methods that may be used in the search for

biomarkers of disease.

Keywords: multivariate statistical analysis, data mining, orthogonal partial least squares discriminant analysis,

hearing loss, tinnitus, vestibular dysfunction

INTRODUCTION

Experimental phenomena in neuroscience often involve the complex, sometimes non-linear
interaction, of multiple variables. In the context of sensorineural hearing loss (SNHL), tinnitus
or vestibular disorders, a number of independent variables may interact with one another, such
as age, sex, drug use, and genetic predispositions; similarly, many biochemical systems may
interact with one another to cause such disorders (see Figure 1 for an example in the context of
age-related neurochemical changes in the brainstem vestibular nucleus and cerebellum). Despite
this, the majority of statistical analyses in basic auditory and vestibular neuroscience have tended
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FIGURE 1 | Schematic diagram of the L-arginine metabolic pathways in the

vestibular nucleus and cerebellum, which change during the brain aging

process. NO, nitric oxide; GABA, γ-aminobutyric acid. From Liu et al. (4) with

permission.

to focus on comparisons between treatment groups, analyzing
one variable at a time. In many areas of sensory neuroscience
in general, univariate statistical analyses have been used almost
exclusively. This approach neglects the fact that changes may
occur at the level of the interaction within a network or
system of variables, that cannot be detected in any individual
variable alone (1–6) (see Figure 1 for an example). In addition,
the use of multiple univariate statistical analyses may inflate
the type 1 error rate, or the probability of rejecting the null
hypothesis when it is true, as a result of a large number
of individual analyses (1, 2, 7) (Figure 2). In situations in
which there are a large number of variables, for example, gene
microarray, proteomic andmetabolomic data, andmore recently,
medical diagnostics, multivariate statistical analyses and data
mining approaches have been increasingly employed in order
to understand the complex interactions that can occur between
systems of variables, as well as to avoid increasing the type I error
rate [e.g., (6, 8–30)].

Multivariate statistical analyses (MVAs) and data mining
analyses can be broadly divided into those that are “supervised”
and those that are “unsupervised”. A “supervised” method of
analysis is directed at a specific dependent variable, in order

Abbreviations: GC/MS, gas chromatography/mass spectrometry; MVA,
multivariate statistical analysis; OLPSDA, orthogonal partial least squares
discriminant analysis; SNHL, sensorineural hearing loss.

to determine the relationship between a set of independent
variables and one or more dependent variables, (e.g., to make
a prediction; e.g., multiple linear regression). By contrast,
in “unsupervised” methods, there is no specific dependent
variable; instead, the objective is to explore associations between
variables (e.g., cluster analyses) (see Table 1). Furthermore, some
MVAs and data mining methods are concerned with predicting
categorical variables (“classification,” e.g., linear discriminant
analysis), and some concerned with predicting continuous
variables (“regression,” e.g., multiple linear regression). Some of
these methods involve only one dependent variable, e.g., multiple
linear regression, while others may involve multiple dependent
variables, e.g., canonical correlation analysis; however, for the
purposes of this paper, MVAs will be defined as a collection
of methods that involve multiple variables, either independent
or dependent, or both. Clearly, regression methods such as
multiple linear regression can be extended to include more than
one dependent variable [e.g., multivariate multiple regression;
(1, 2)].

Some unsupervised MVAs are not focussed on a specific
dependent variable or the implication of causality, but more
the degree of co-variation amongst multiple variables, as an
indicator of association. For example, cluster analyses could
be used to investigate the degree to which different variables
related to SNHL co-vary with one another. Cluster analyses
have been used extensively in genomics and proteomics
research as a means of exploring the association between
variables. Still other MVAs are concerned with investigating
the way that groups of variables with different weightings,
explain most of the variation in a system of variables (e.g.,
Figure 1; e.g., principal component analysis). Data mining
analyses are related to MVAs; however, some have arisen
out of computer science rather than conventional statistics.
Data mining analyses include procedures such as random
forest regression, random forest classification and support
vector machines.

The aim of this paper is to provide a succinct guide to
some MVAs and data mining analytic methods that can be
applied to auditory and vestibular neuroscience data related
to SNHL, tinnitus, and vestibular dysfunction, at both the
basic experimental and clinical levels. Particular emphasis
will be placed on “classification methods” that are relevant
to the search for biomarkers of auditory and vestibular
dysfunction, i.e., linear discriminant analysis, support vector
machines, random forest classification, Bayesian classification,
and orthogonal partial least squares discriminant analysis.
However, classification and regression methods are related
statistically, and for this reason, regression methods, in which
there is no categorical dependent variable, will also be addressed.
The review is intended to exemplify the application of MVA
and data mining methods to problems in vestibular and
auditory neuroscience, and is not meant to be exhaustive in
terms of the specific methods described; procedures such as
artificial neural network modeling (ANN), structural equation
modeling, multivariate regression, canonical correlation analysis
and many others, are also important, but are outside the scope of
this review.
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FIGURE 2 | The Type I error rate (False Alarm rate) strongly depends on the number of comparisons. For example, with 12 comparisons (red dashed lines), the

probability of making at least one False Alarm is 0.46, i.e., much increased compared to 0.05 with only 1 comparison. From Herzog et al. (7) with permission.

UNSUPERVISED METHODS

Principal Component Analysis and Factor
Analysis
Principal Component Analysis (PCA) attempts to explain
variation in data using linear combinations of variables. It is
a “dimension reduction” procedure, often used to reduce the
number of variables to a smaller number of “components,”
which account for most of the variation in the data. In contexts
such as metabolomics, where hundreds of metabolites may be
investigated for their relationship to some disease state, it can
be difficult to conceptualize their role just because of their
sheer number. PCA looks for underlying latent components or
factors, which represent linear combinations of variables, but
without predicting a dependent variable. The objective is to
find linear combinations of variables that explain most of the
variation in the data, in the process reducing the number of
separate variables in the data (“reducing dimensionality”) (1, 32–
34). These components or factors are expressed as “eigenvalues,”
which in PCA are represented as linear combinations of the
original variables, each with a coefficient or “eigenvector” that
indicates the “direction” of that particular variable for each
component. An important attribute is that the different PCs are
uncorrelated or “orthogonal” (32–34), and this property means
that they can be used in other statistical techniques such as
discriminant analysis, where correlation between independent
variables can be a problem (see orthogonal partial least squares
discriminant analysis below in Orthogonal Partial-Least Squares
Discriminant Analysis).

For each PC, each of the original independent variables is
expressed in a linear equation with specific coefficients that
represent the “weighting” of the variable in that component.
The number of PCs, which can be large, is usually displayed
in decreasing order of importance in explaining the variability
in the data matrix, often shown graphically as a “Scree plot.”

PCA is often performed using the correlation matrix for the
data, in which case the data have to be standardized, i.e., each
value subtracted from the mean for that variable and divided by
the standard deviation (i.e., “z scores”). This prevents extreme
differences in variance, e.g., due to different measurement
scales, disproportionately affecting the analysis. While PCA
is an exploratory method that does not make very many
assumptions, the related method, Factor Analysis, has a formal
statistical model, and assumptions such as multivariate
normality (see below in Linear Discriminant Analysis)
become important.

The interpretation of the PCs relies on the magnitude of the
eigenvalues, and the contrasts between the eigenvectors for the
variables relating to that eigenvalue. There is no specific criterion
for how many PCs should be used; however, ideally, there should
be a small number of PCs that explain most of the variation of the
data. Loading plots, which represent the variance or magnitude
of the variables within a PC, are often used to compare the
different variables in the first two or three components. Because
the interpretation of the PCs relies on the loadings, sometimes
“rotations” are used to maximize the contrasts between them
while maintaining the relationship between the variables in
the components. Examples include “varimax” and “quartimax”
rotations (1, 32–34).

Whether PCA is of any use in the analysis of multiple
variables, depends on whether considering the different variables
together, as a component, makes sense in the context of the
research question, and also on what meaning can be attributed
to the differences between the loadings. For example, if changes
in free radicals are related to SNHL, does it make sense to
reduce chemicals related to free radical generation to single
components that combine the individual variables, or does
this lose information? This problem of interpretability, which
undermines many MVAs, will be addressed in a later section
(see section Data pre-processing and imputation, overfitting
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TABLE 1 | Different types of MVA and Data Mining Methods categorized

according to whether they involve a categorical or continuous (quantitative)

dependent variable and whether they specify a dependent variable (i.e.,

Supervised) or not (i.e., Unsupervised).

Supervised

Qualitative or categorical variables

Linear discriminant analysis

Logistic regression

Partial least squares discriminant analysis

Structural equation modeling

Support vector machines (DM)

Random forest classification (DM)

Neural networks (DM)

K nearest neighbors

Quantitative variables

Multiple linear regression

Canonical correlation analysis

Multivariate multiple regression

Structural equation modeling

Random forest regression (DM)

Gradient boosted decision trees (DM)

Neural networks (DM)

K nearest neighbors

Unsupervised

Qualitative or categorical variables

Correspondence analysis

Quantitative variables

Principal component analysis

Factor analysis

Cluster analysis

Multidimensional scaling

Ordination

“DM” denotes those methods that emerged out of dating mining research in computer

science. From Smith (31) with permission.

and the problem of interpretability). PCA is often useful in a
context where there are hundreds of variables, e.g., genomics,
metabolomics, where it is useful to determine whether there is
a change in the overall pattern of genes or metabolites [e.g., (35)].

Cluster Analysis
Another MVA method that has not been used extensively in
the context of auditory or vestibular neuroscience, is cluster
analysis. Cluster analyses are a type of non-parametric statistical
analysis that is used to explore the natural groupings of variables
in a data set (1). Therefore, assumptions such as multivariate
normality and equality of the variance-covariance matrices (see
below in Linear Discriminant Analysis) are not required (1, 36).
Different measurements of the distance between the variables,
such as squared Euclidean or Mahalanobis distance, are used to
relate them to one another, and specific algorithms (e.g., Ward
Minimal Variance Linkage) are used to determine the clusters
(36). As with PCA, the standardized data (i.e., z scores) are
usually used in order to prevent bias introduced by differences in
scales of measurement. The results are usually displayed using a
“dendrogram.” Some cluster analysis algorithms, such as single
linkage, are susceptible to producing long strings of clusters
(“chaining”) (1, 36). Ward’s Minimal Variance Linkage method,

based on the objective of obtaining the smallest within-cluster
sum of squares (the “minimal variance principle”), is often a
good option (1, 36). The results of PCA and cluster analysis
are often related, and it can be observed that many of the
original independent variables that co-vary closely together in
the dendrogram, also appear to have similar eigenvectors in the
dominant PCs. In this way, PCA and cluster analysis provide
similar information regarding which variables “work together,”
but in different ways.

K-Nearest Neighbors Algorithm
The K-Nearest Neighbors (“k-NN”) Algorithm can be used
for regression or classification purposes. It is a non-parametric
procedure in which either a category (in the case of classification)
or a continuous variable value (in the case of regression)
is estimated on the basis of its “nearest neighbours,” where
“k” is usually a small positive integer (2, 37). The data are
usually standardized (see above) before the analysis is performed.
The main challenges of this method include determining the
appropriate value for k (i.e., how many neighbors?) and how
the distance between neighbors should be quantified [see (37)
for a discussion]. It is possible to use the k-NN algorithm in
unsupervised or supervised forms.

SUPERVISED METHODS

Regression
Multiple Linear Regression
Another statistical method that has been under-employed in
auditory and vestibular neuroscience is multiple linear regression
(MLR). MLR is a part of the general linear model (GLM), that is
useful for determining whether one continuous variable can be
predicted from a combination of other variables. Simple linear
regression can be expanded to include more than one predictor
variable to become MLR, which has the general form: Y = β0

+ β1X1 + β2X2 +... βpXp + ε, where Y = the continuous
dependent variable; X1, X2,...Xp are independent variables; β1,
β2... βp are coefficients; β0 is the intercept and ε is the error term
(2, 36–41).

Canonical correlation analysis is an extension of MLR in
which multiple Y variables are related to multiple X variables (1).

Formal statistical hypothesis tests for MLR, like those
for simple linear regression, make assumptions regarding the
distribution of the data, which cannot always be fulfilled (see
section Data pre-processing and imputation, overfitting and the
problem of interpretability). These assumptions are the same as
those for other methods that are part of the GLM, such as analysis
of variance (ANOVA): that the residuals are normally distributed,
with homogeneity of variance, and that they are independent of
one another (e.g., not autocorrelated) (31, 36–43). Furthermore,
the predictor variables should be numerical, although indicator
variables can be used in order to include nominal variables
(e.g., binary coding to represent male and female). The violation
of the assumption of normality can sometimes be redressed
using data transformation, which may also correct heterogeneity
of variance, but other issues such as autocorrelation, are not
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easily dealt with and may require methods such as time series
regression (31, 36–43).

Unlike simple linear regression, MLR is more complicated in
terms of avoiding potential artifacts. Because the coefficient of
determination, theR2, which indicates as a percentage or fraction,
how much of the variation in the dependent variable is explained
by the independent variables, will increase as more independent
variables are incorporated into the regressionmodel, an “adjusted
R2” must be used in order to compensate for the number of
variables included. The adjusted R2 = [R2-(k/n−1)][(n−1)(n–
(k + 1))]. For k = 1 variables, the R2 and adjusted R2 are
approximately equal.

There are various forms of MLR: forward regression,
backward regression, stepwise regression and best subsets
regression. In forward regression, predictors are added into the
model one at a time (if α is set to 1.0, then all of them will
be included, in ascending order of significance). In backward
regression, predictors are taken out one at a time (if α is
set to 0, all of them will be taken out, in descending order
of significance). Backward regression tends to be preferred
over forward regression because it allows examination of the
interaction between variables (31, 36–43). In stepwise regression,
the program stops at each step and checks whether the variables,
either in the model or not, are the best combination for that
step. The adjusted R2 will change as different variables are
included in a model and an ANOVA can be done at each
step to determine whether it has made a significant difference.
Best subsets regression, however, computes all possible MLR
models from which the researcher must choose the best, based
on the adjusted R2 and various diagnostic information regarding
the validity of the regression model (31, 36–43). One of the
greatest problems inMLR is “over-fitting” and “multicollinearity”
(31, 36–39, 44–46). If the regression variables are highly inter-
correlated, multicollinearity occurs. This inflates the variance of
the least square estimates and therefore the coefficients will be
inaccurate, which can lead to the situation in which the ANOVA
for the regression is significant without any single t-test for an
individual variable being significant. In this case, one or more
of the highly correlated variables needs to be removed from the
regression model. One way of controlling for multicollinearity
is using an index such as the Mallow’s Cp index. The adjusted
R2 should be high but the Mallow’s Cp index [= (the sum of
squares for the error at the current step/mean square error for the
full regression)–(n−2p), where n= total number of observations
and p = number of estimated coefficients], should be as small
as possible. Ideally, it should be one more than the number of
parameters in the current step. Other indices of multicollinearity
include the variance inflation factor and tolerance (1/variance
inflation factor) (36–39, 45, 46). Different software packages (e.g.,
SPSS and Minitab) offer different options. Autocorrelation in
the data can be tested using the Durban-Watson statistic (36–
39, 45, 46). Like most other multivariate statistical procedures,
MLR is prone to artifacts and researchers need to be cautious
when using it [see (44) for a rigorous discussion of this issue].

Random Forest Regression
Although modeling using regression trees has been used for over
25 years, its use in auditory and vestibular neuroscience has been

very limited. In regression tree modeling, a flow-like series of
questions is asked about each variable (“recursive partitioning”),
subdividing a sample into groups that are as homogeneous as
possible by minimizing the within-group variance, in order to
determine a numerical response variable (47, 48). The predictor
variables can be continuous variables also, or they can be
categorical. By contrast with MLR, which makes assumptions
about the distribution of the data, regression trees make no
distributional assumptions. The data are sometimes split into
training and test data sets (e.g., 70:30) and the mean square
error between the model based on the training data and the
test data, is calculated as a measure of the model’s success.
Variables are chosen to split the data based on the reduction in
the mean square error achieved after a split (i.e., the information
gained). Unlike MLR, interactions between different predictor
variables are automatically incorporated into the regression tree
model and variable selection is unnecessary because irrelevant
predictors are excluded from the model. This makes complex,
non-linear interactions between variables easier to accommodate
than in linear regression modeling (47, 48). Breiman et al.
(48) extended the concept of regression trees by exploiting the
power of computers to simultaneously generate hundreds of trees
(“bagging”), known as “random forests,” which were based on
a random selection of a subset of data from the training set.
The various regression tree solutions are averaged in order to
predict the target variable with the smallest mean square error
(47–52). An alternative form of cross-validation of the random
forest model, which does not require splitting the data set and
therefore is particularly useful in the context of small sample
sizes, is the leave-one-out (“LOO”) procedure. Here, each subject
is removed from the sample, in turn, and the model based on the
remaining data is used to predict for that subject; then, another
subject is removed, and the procedure repeated, until the entire
data set has been cross-validated (47–51).

Gradient boosted decision trees (GBDTs) are an alternative
to the random forest procedure in which learning algorithms
are combined (“boosting”) so that each decision tree tries to
minimize the error of the previous tree (37, 52).

Classification
Logistic Regression
Logistic regression is similar to linear regression but applied
to the prediction of a binary outcome (37, 39). Rather than
fitting a linear function to the prediction of a continuous
dependent variable, logistic regression employs the logistic
function, logistic(η) = 1/(1 + exp(-η)), to generate an outcome
between 0 and 1. The logistic function is then incorporated into

the probability function, P(y(i) = 1) = 1/(1 + exp (–(β0 + β1 x
(i)
1

+ . . . . βp x
(i)
p ))), where P is a probability, x are predictor variables,

the β ’s represent coefficients and β0 is the intercept (37). The
output of this function is then a probability of classification to one
of two groups, although logistic regression can also be extended
to multinomial regression (39).

Linear Discriminant Analysis
Linear discriminant analysis is a statistical method that is often
used to predict the membership of two or more groups from
a linear combination of independent variables (1, 2). A linear
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discriminant function (LDF) has the general form: Z = a1X1

+ a2X2 +...apXp, where Z refers to the group, X, X2,...Xp are
independent variables, and a1, a2,...ap are coefficients (1). Linear
discriminant analysis is similar in aim, but different in approach,
to logistic regression, in which the dependent variable is binary
(0/1) and consists of positive (a “success”) and negative responses
(a “failure”) only (1). An example in the context of auditory
neuroscience might be the prediction of SNHL by a linear
combination of neurochemical variables in the peripheral or
central auditory systems [e.g., (35)]. The statistical significance
of the LDF can be assessed using statistics such as Wilk’s λ

and its success in separating the groups can be evaluated using
cross-validation (e.g., a LOO procedure), in which the linear
equation is used to classify the data, one observation at a time,
without knowledge of the actual group membership. It is possible
to use a stepwise linear discriminant analysis. However, some
authors [e.g., (1, 45, 46)] suggest that stepwise methods can result
in suppressor effects and an increase in type II error. Linear
discriminant analysis is readily available in programs such as
SPSS and Minitab. It is part of the GLM, and therefore makes
similar assumptions to MLR, but other forms of discriminant
analysis, which do not make all of these assumptions, include
quadratic discriminant analysis, where the data are assumed to be
normally distributed but the variance-covariance matrices need
not be identical. Orthogonal partial least squares discriminant
analysis is another type of discriminant analysis in which the
discriminant function consists of PCs from a PCA (see below in
Orthogonal Partial-Least Squares Discriminant Analysis).

As mentioned, MVA methods that are part of the GLM,
such as linear discriminant analysis, do make assumptions.
The first is that, for formal tests of statistical significance to
be valid, the data within groups should have a multivariate
normal distribution (1). Unlike univariate statistical analyses
such as ANOVA, linear discriminant analysis is quite sensitive
to the violation of the assumption of multivariate normality
(1, 2, 36, 53). It is difficult to test for multivariate normality,
because most programs such as SPSS do not offer such an
assumption test (1). Because univariate normality, i.e., the
normality of the individual variables, is necessary but not
sufficient for multivariate normality, it is possible for each
individual variable to be normally distributed without the
multivariate distribution being normally distributed. Stevens
(2) points out that because a multivariate normal distribution
entails that all subsets of variables have normal distributions,
one way to assess multivariate normality is to determine whether
all pairs of variables are bivariate normal. Box’s test for the
homogeneity of the covariancematrices (see below) is sensitive to
violation of multivariate normality; therefore, in order to obtain
results from that test that are valid, whether the assumption
of multivariate normality is fulfilled, must be of concern (2).
However, there is a multivariate formulation of the central
limit theorem and sample sizes of 10–20 per group appear to
be sufficient to afford protection against the consequences of
violating multivariate normality (2, 45, 46). It should be noted
that linear discriminant analysis may still discriminate between
groups even if the assumption of multivariate normality does
not hold. On the other hand, multivariate normality does not

necessarily mean that it will effectively discriminate between
the groups.

A second assumption of linear discriminant analysis, but not
quadratic discriminant analysis, is that the population covariance
matrices are equal for all groups, usually tested using Box’sM-test
(1, 36). If this assumption is violated, a quadratic discriminant
analysis, can be used instead. In a review of several Monte Carlo
studies, Stevens (2) concluded that, provided that the sample
sizes are equal, even moderate heterogeneity of the covariances
does not substantially affect type I error. Unequal sample sizes,
on the other hand, are potentially very problematic if the
covariances are unequal (2). While Box’s M-test is often used,
its null hypothesis may be rejected only because the multivariate
normality assumption is violated (2). Therefore, it is important
to determine whether this is the reason for a significant Box’s
M-test. Box’s M-test is also very sensitive to departure from
homogeneity of the covariances (45, 46). Both Stevens (2), Field
(45), and Field et al. (46) suggest that even if Box’s M-test is
significant, the type I error rate will be only slightly affected
provided that there are equal sample sizes, although the power
may be somewhat reduced.

One of the common problems in many MVAs is the sample
size for each variable, n, relative to the number of variables, p.
While unequal sample sizes can be problematic, as described
above, when p is greater than n, statistical analyses such as linear
discriminant analysis can become invalid. Stevens (2), Field (45),
and Field et al. (46) suggest that, unless the n is large, p ≤ 10.
Monte Carlo studies have shown that if the sample size is not
large compared to the number of variables, the standardized
discriminant function coefficients and correlations obtained in a
linear discriminant analysis, are unstable (2). By “large,” Stevens
(2) suggests a ratio of n (total sample size):p (number of variables)
of 20:1. He further cautions that a small n:p ratio (i.e., ≤5)
can be problematic for stepwise linear discriminant analysis in
particular, because the significance tests are used to determine
which variables are included in the solution (2).

These methods, and others related to them such as orthogonal
partial least squares discriminant analysis, should be applicable to
many situations in auditory and vestibular neuroscience in which
multiple variables interact to determine a categorical dependent
variable, e.g., SNHL, tinnitus, Meniere’s Disease, vestibular
neuritis, and benign paroxysmal positional vertigo, provided
that the sample sizes are sufficient and the cross-validations
demonstrate the predictive accuracy of the LDFs. Given that
Box’s M-test of the equality of the covariance matrices assumes
multivariate normality, one way to proceed is to determine
whether all pairs of variables appear to be bivariate normal. If so,
Box’sM-test can be used as a guide to whether the assumption of
the equality of the covariance matrices is fulfilled. However, the
cross-validation procedure can be used as the ultimate arbiter of
the effectiveness of the LDF (31).

Random Forest Classification
The random forest method that is used for regression, can also
be used for classification purposes, in which case the solution
is based on the number of “votes” from the different trees for
a particular category (48, 49). The effect of variable removal on
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FIGURE 3 | Loading plots for the first 2 principal components for the mean normalized density of expression of NR1, NR2B, GluR1, GluR2, GluR3, CaMKII, and

pCaMKII in the CA1, CA2/3, and dentate gyrus (DG) regions of the hippocampus at 6 months following sham (A) or BVD (B) surgery. Note the inverted pattern of

loadings for the BVD group compared to the sham group. From Smith and Zheng (6) with permission.

the mean decrease in accuracy, the “out of bag” (“OOB”) error,
and the overall classification matrix error (“confusion matrix
error”), are used to evaluate the success of the classification.
The OOB error is the error based on the observations that were
excluded from the subset of the training data (the “bag”) used
to generate the decision tree (47, 48). Unlike linear discriminant
analysis, random forest classification makes no distributional
assumptions and therefore can be applied to situations in which
the sample sizes are small relative to the number of variables
(47, 48). Random forest classification, along with support vector

machines, can be carried out using specific packages in the
statistics program, R (47, 54–57). For those who do not wish
to use code in R, there is a data mining graphics user interface
available, called “Rattle,” which is menu-driven and easy to
use (55).

Support Vector Machines
Support vector machines are an alternative method for
classification, which employ “support vectors,” observations that
form the spatial boundary between different classes (47–49, 54).
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FIGURE 4 | Ward’s minimal variance cluster analysis on the correlation coefficient distance for the mean normalized density of expression of NR1, NR2B, GluR1,

GluR2, GluR3, CaMKII, and pCaMKII in the CA1, CA2/3, and dentate gyrus (DG) regions of the hippocampus at 6 months following BVD or sham surgery (i.e., both

groups shown together). The y axis shows degrees of similarity, where 100.00 is the highest similarity and 17.88 is the lowest. Note that the NMDA receptor subunits

vary together, as do the AMPA receptor subunits, as well as the CaMKII isoforms. From Smith and Zheng (6) with permission.

TABLE 2 | Results of the multiple linear regression analysis of the data from Smith et al. (51), showing the adjusted R2-values, the residual standard errors (RSEs) and the

significant input variables.

GABA put spd spm arg glut agm orn cit

R2 0.811 0.675 0.861 0.938 0.936 0.698 0.796 0.623 0.958

MSE 846.57 0.23 203.29 34.89 225.48 50064.54 0.12 189.54 119.52

Significant predictor variables cit*** ag*** spm*** spd*** cit*** GABA*** put*** age*** arg***

glut*** orn* age*** cit*** orn* spm*** cit*** cit*** GABA**

spd* orn** glut*** orn** age*** glut** age**

glut* spd** spm**

enrich* orn**

***P ≤ 0.0001, ** P ≤ 0.001, * P ≤ 0.05. From Smith et al. (51) with permission.

These support vectors are then used to determine a hyperplane
that defines the boundary between the classes (46–54). Support
vector machines can employ a variety of functions, such as radial
kernel and Laplace functions, to remap the data and generate
new variables that can separate the different categories (47–54).
The data are usually split into training and test data sets (e.g.,
70:30) and the difference between themodel based on the support
vectors in the training data set, and the test data set, is calculated
as a measure of the model’s success. As with linear discriminant
analysis, classification error matrices can be used to evaluate
the success of the classification, as well as receiver operating
characteristic (“ROC”) curves, that quantify the relationship
between the true positive rate of classification (“sensitivity”) and
the false positive rate of classification (“1—the specificity”) (47).

One of the major advantages of support vector machines
is that they do not make distributional assumptions like

linear discriminant analysis, other than that the data are
independent and identically distributed. Wilson (54) suggests
that for this reason, even small sample sizes can provide accurate
estimates of prediction error when there are a large number
of variables.

Bayesian Classifiers
Bayesian classification methods are based on Bayes’ Theorem,
which relates a posterior probability of an event to a prior
probability: P(H/X) = P(X/H)(P(H)/P(X), where X represents
the data and H represents the hypothesis; P(H/X) = the
probability of H given X (the posterior probability), P(X/H)= the
probability of X given H, P(H) = the probability of H (the
prior probability), and P(X) = the probability of X, which
cannot = zero. P(H/X) and P(X/H) are known as “conditional
probabilities” and P(X) and P(H) as “marginal probabilities”
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TABLE 3 | Results of the random forest regression models of the data from Smith et al. (51), showing the proportion of variance explained values, the residual standard

errors (RSEs) and the input variables chosen using the stepwise process.

GABA put spd spm arg glut agm orn cit

R2 0.939 0.868 0.947 0.989 0.986 0.914 0.910 0.861 0.983

MSE 271.63 0.09 77.38 6.14 47.96 14,285.84 0.05 69.75 48.63

Most important predictor variables cit agm spm arg cit spm arg age arg

glut arg arg cit spm GABA put glut spm

arg agm agm cit spm cit agm

cit GABA GABA

arg spd

From Smith et al. (51) with permission.

FIGURE 5 | Variables in order of importance for the random forest regression analysis for spermine, which had the highest proportion of variance explained (0.94).

From Smith et al. (51) with permission.

(58–61). In simple terms, Bayes’ Theorem relates the degree
of belief in an hypothesis before accounting for the data,
to that after accounting for the data, so that the probability
of the hypothesis being true given the data, equals (the
probability of obtaining the data given that the hypothesis
is true, multiplied by the probability that the hypothesis
is true), divided by the probability of obtaining the data
(58–61). The calculation of the conditional and marginal
probabilities can be used to generate a Bayesian Network, which
can be displayed in graphical form such as directed acyclic
graphs (61).

Orthogonal Partial-Least Squares Discriminant

Analysis
Also known as orthogonal projection to latent structures
discriminant analysis, orthogonal partial-least squares
discriminant analysis (OPLS-DA) is a method of discriminant
analysis that cleverly combines PCA with discriminant analysis
and partial least squares regression, in order to classify
subjects (62). Therefore, it can be seen as an alternative
to methods such as linear discriminant analysis, support
vector machines and random forest classification. OPLS-
DA is an ideal method to use in the search for biomarkers

Frontiers in Neurology | www.frontiersin.org 9 March 2021 | Volume 12 | Article 627294

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Smith and Zheng Multivariate Statistical Analysis

FIGURE 6 | Decrease in error as a function of the number of trees for the

random forest regression model for spermine, which had the highest

proportion of variance explained (0.94). From Smith et al. (51) with permission.

of SNHL, tinnitus or vestibular disorders, for e.g., using
metabolomic data from animals or humans with those
conditions. In partial least squares regression, which is an
extension of MLR, factors are extracted from the Y′XX′Y
matrix in order to generate prediction functions, only in
the case of partial least squares discriminant analysis, the
dependent variable is categorical. One major advantage of
partial least squares discriminant analysis is that it is minimally
restrictive because it allows for fewer observations than
variables (i.e., less n than p), a problem that is significant for
linear discriminant analysis (62). As with PCA and cluster
analysis, the data would normally be standardized to z scores
before proceeding.

In OPLS-DA, the X variables are latent variables that
maximize the separation between the groups, ranked according
to howmuch variation in Y that they explain. OPLS-DA separates
the systematic variation in X into 2 parts: (1) that which is linearly
related to Y; and (2) that which is unrelated or “orthogonal”
to Y (62). The OPLS method uses a modification of the non-
linear iterative partial least squares algorithm (62). An orthogonal
signal correction procedure, developed by Trygg and Wold (62),
employs an iterative process to find orthogonal components in
the X matrix. For this it depends on a starting vector, which
can use PCs from a PCA. The main problem with discriminant
analysis is over-fitting, particularly where the p > the n, so that
the model works well on the training data but not on new data,
and where there is multicollinearity. However, this possibility
can be addressed using permutation testing (63). In permutation
testing, variables are assigned randomly to the different samples,
and new models are generated many times, e.g., 2,000. A null
distribution of classifications is created, which is expected to
be non-significant. The results obtained from the original data

should be outside the 95 or 99% confidence intervals for the null
distribution, in order to be statistically significant, i.e., not part of
the null distribution (63).

Biplots can be used to show some of the results of an OPLS-
DA, where the x axis is labeled “t[1],” which are the X scores
predictive of Y, and the y axis is labeled “to[2],” which are the X
scores that are not predictive of Y. Therefore, the x axis represents
the between group variation and the y axis represents the within
group variation. OPLS-DA calculates various indices of the
success of the model. R2X (cum) is the sum of the predictive and
orthogonal variation in X that is explained by the model, which
can be split into the predictive and orthogonal components. R2Y
(cum) is the total sum of variation in Y explained by the model.
Q2 is the effectiveness of the prediction, based on the OPLS-DA
equation, using cross-validation, e.g., using a LOO procedure,
where 0.9 would be excellent.

S plots are often used to help interpret the OPLS-DA results.
In the S plot, the x axis “p[1]” is the magnitude of each variable in
the x axis. The y axis “p(corr)[1]” is the reliability (obtained with
confidence intervals using jack-knifing and cross-validation).
Values close to zero on both axes are close to noise, i.e., they have
almost zero magnitude and reliability. OPLS-DA can be carried
out in R, or using the programs Metaboanalyst and Metscape 3.1
(35, 64).

Pathway impact analyses can also be carried out on the OPLS-
DA. Using the prior knowledge of pathways, these methods look
for over-representation of specific pathways in the data. They
calculate the sum of the importance measures of the matched
metabolites normalized by the sum of the importance measures
of all metabolites in each pathway. Over-representation analysis,
quantitative enrichment analysis, and single sample profiling are
three different types of pathway analysis that can be used in the
program Cytoscape 3.30 (35, 64, 65).

DATA PRE-PROCESSING AND
IMPUTATION, OVERFITTING, AND THE
PROBLEM OF INTERPRETABILITY

When using MVA and data mining methods to analyse data,
some pre-processing of the data is often necessary. In the
case of MVA, methods that are part of the General Linear
Model (GLM), such as multiple linear regression, multivariate
multiple linear regression, linear discriminant analysis, structural
equation modeling, and canonical correlation analysis, require
that the assumption of multivariate normality be met (see
section Linear Discriminant Analysis). Therefore, data need to
be checked to determine whether they are normally distributed
or even whether they have a multivariate normal distribution
(see Linear Discriminant Analysis). Normality (Q–Q) plots
and plots of residuals vs. fitted values usually need to be
obtained and formal assumption tests conducted, such as the
Anderson-Darling, Shapiro-Wilk or Kolmogorov-Smirnov tests
for univariate normality, and Bartlett’s or Levene’s tests for
homogeneity of variance. If these tests are statistically significant
(i.e., P ≤ 0.05), a decision may be made to transform variables in
order to achieve fulfillment of the normality and homogeneity of
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FIGURE 7 | Order of variable importance for the random forest classification for day 3 following BVD, showing the decrease in the accuracy of the prediction as the

variables are removed. The mean decrease in Gini coefficient is an indication of the extent to which each variable contributes to the homogeneity of the nodes and

leaves in the random forest. dm, distance moved nose-point; dm1, distance moved center-point; e, contracted; e1, elongation normal; e2, elongation stretched; iz, in

zone outer zone, nose-point; iz1, in zone inner zone, nose-point; iz2, in zone mid zone, nose-point; iz3, in zone outer zone center-point; iz4, in zone inner zone

center-point; iz5, in zone mid zone center-point; m, meander center-point; cit, center inter-transition center-point; mo, mobility immobile; mo1, mobility mobile; mo2,

mobility highly mobile; mov, movement center-point/moving; mov1, movement center-point/not moving; rCCW, rotation counter-clockwise center-nose; rCW, rotation

clockwise center-nose; ta, turn angle center-point; vel, velocity nose-point; vel1, velocity center-point; aav, absolute angular velocity center-point; oit, outer

inter-transition center-point; rav, relative angular velocity; tr, total rotations. From Aitken et al. (72) with permission.

variance assumptions; however, great care needs to be taken in
transforming non-linear dependent variables into linear ones, as
in Scatchard plots, because of the way that it can distort the error
around the line of best fit (66). For receptor binding data, non-
linear regression is now considered preferable to linear regression
following transformation (66). In the case of other methods
such as PCA, OPLS-DA and cluster analysis, pre-processing
may involve standardizing the data (see Principal Component
Analysis and Factor Analysis), in order to ensure that differences
in measurement scales do not bias the analysis.

Even for univariate statistical analyses, many statistical
programs delete experimental subjects if they have missing data
for procedures such as repeated measures ANOVAs (43, 45).
Many animal studies in auditory and vestibular neuroscience
already have small and unequal sample sizes; therefore, simply
deleting data in the case of missing values will result in lower

statistical power and may bias the results (67). For alternatives to
repeated measures ANOVAs such as linear mixedmodel analysis,
“imputation” procedures are employed in order to estimate the
missing values (“Missing Values Analysis orMVA”) (43, 67, 68). A
maximum likelihood (ML) and expectation-maximization (EM)
approach (a combination of imputation and ML) can be used
(68). However, only some programs (e.g., SPSS) offer the EM
algorithm and for the ML and EM methods to be used, the
missing data must be “missing at random” (MAR, i.e., the
probability that an observation is missing must not depend on
the unobserved missing value but may depend on the group
to which it would have belonged) or “missing completely at
random” (MCAR, i.e., the probability that an observation is
missing must not depend on the observed or missing values)
(67, 68). In other words, there can be no bias to the way that data
are missing, a condition that is sometimes difficult to satisfy. The
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FIGURE 8 | Typical GC/MS chromatograms of extracts from brain tissue of a sham animal. The compounds were identified as: 1. Lactic Acid, 2. Alanine, 3. Oxalic

acid, 4. Valine, 5. Urea, 6. Phosphoric acid, 7. Proline, 8. Glycine, 9. Serine, 10. Threonine, 11. Malic acid, 12. Aspartic acid, 13. γ-Aminobutanoic acid, 14. Creatinine,

15. Glutamic acid, 16. Phenylalanine, 17. N-Acetylaspartic acid, 18. Hypoxanthine, 19. Citric acid, 20. Lysine, 21. Tyrosine, 22. Palmitic acid, 23. Myo-Inositol, 24.

Oleic acid, 25. Stearic acid, 26. Arachidonic acid, 27. Docosahexaenoic acid, 28. Inosine, 29. Glycerol monostearate, 30. Cholesterol. From He et al. (35) with

permission.

K-NN algorithm discussed in K-Nearest Neighbors Algorithm
can be used for imputation and there is a variety of multivariate
imputation procedures [see (69) for a review].

“Overfitting” is an enormous problem in MVA and data
mining methods which involve regression modeling. Overfitting
occurs when a model for prediction is based so closely on a
particular data set that it has little predictive value for other,
similar data sets, often a result of including too many parameters
in the model (44). As a result, a regression model based on
a training data set may have no predictive value for the test
data set. Although the problem is well-recognized in MLR (44),
Breiman et al. (48) have suggested that random forest methods
do not overfit, a view that has been challenged (70). Solutions to
overfitting include collecting more data so that there is a larger
n for each predictor variable, p, combining predictors in order
to reduce correlation between them and the use of “shrinkage
and penalization” procedures (44). The adjusted R2 in MLR is
one type of shrinkage estimator because it takes into account the
number of predictor variables. “Lasso” regression (“least absolute
shrinkage and selection operator”) is a method that generates
a linear regression model with greater “sparsity” [see (37) for
a review].

One of the advantages of univariate statistical methods is that
they are relatively easy to understand and this is partly why
they are so popular. Researchers turn to multivariate statistical
and data mining (or machine learning) methods because they
have to deal with many variables, sometimes hundreds or
thousands, but in the process of using such procedures, they
sacrifice simplicity and interpretability. Molnar (37) has written
extensively about the problem of “interpretability” with MVA
and data mining methods, which involve complex modeling.
Even if they provide good predictive value, they may be difficult
to understand. Simpler models, by definition, such as shorter
decision trees, are more easily interpreted than longer ones.
Molnar (37) has suggested that “model agnostic interpretation
methods” be used for machine learning in preference to

“model-specific ones.” These are methods that can be applied to
any machine learning model, are not restricted to a certain form
of explanation (e.g., a linear formula vs. a graphic representation)
and should have flexibility in the way that the explanation is
represented. Examples include partial dependence plots (PDP),
feature importance and Shapley values [see (37) for a review].

EXAMPLES OF APPLICATIONS OF
MULTIVARIATE STATISTICAL AND DATA
MINING METHODS TO THE ANALYSIS OF
OTOLOGICAL DATA

Principal Component Analysis and Cluster
Analysis
One of our research interests has been the role of neurochemical
changes in the hippocampus in the cognitive deficits that occur
following peripheral bilateral vestibular damage. In this process
we have used western blotting to analyse the expression of various
glutamate receptor subtypes in the rat hippocampus, given the
importance of glutamate receptors to memory processes such
as long-term potentiation [see (71) for a review]. Due to the
fact that we quantified 5 different glutamate receptor subunit
subtypes (GluR1, GluR2, GluR3, NR1, and NR2) and 2 forms
of calmodulin kinase II (CaMII and phosphorylated CaMII),
related to glutamate receptor activation, we decided to use PCA
and cluster analysis to analyse the results, particularly so that
we could understand the co-variation and interactions of any
changes in the expression of the proteins. Using univariate
statistical analysis, there were no significant differences in
the expression of any individual protein between the bilateral
vestibular deafferentation (BVD) group and the sham controls
(15); however, PCA suggested that when the 1st and 2nd
components were plotted against one another using a loading
plot, the relationship between the expression of the different
proteins had changed [see Figure 3; (6)]. Although the meaning

Frontiers in Neurology | www.frontiersin.org 12 March 2021 | Volume 12 | Article 627294

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Smith and Zheng Multivariate Statistical Analysis

FIGURE 9 | PLS-DA score plot of different brain regions from sham (A) and acoustic trauma (B) groups. (A) sham [PC1: R2X = 0.344, R2Y = 0.0842, Q2
=0.0726;

PC2: R2X = 0.249, R2Y = 0.0525, Q2
= 0.0373; All 6 PCs: R2X (cum) = 0.84, R2Y (cum) = 0.381, Q2 (cum) = 0.286]; (B) acoustic trauma [PC1: R2X = 0.336,

R2Y = 0.0759, Q2
= 0.0683; PC2: R2X = 0.307, R2Y = 0.0513, Q2

= 0.0407; All 6 PCs: R2X (cum) = 0.875, R2Y (cum) = 0. 384, Q2 (cum) = 0.325]. AC, auditory

cortex; CB, cerebellum; IC, inferior colliculus; CN, cochlear nucleus; VNC, vestibular nucleus complex; SC, superior colliculus; CA1 and CA2 of the hippocampus; DG,

dentate gyrus; FC, frontal cortex; PC, perirhinal cortex; EC, entorhinal cortex. From He et al. (35) with permission.

of this shift is not easy to interpret—one of the perennial
problems of PCA—this MVA revealed a change in the pattern of
interaction between the different proteins which the univariate
analysis could not. Note that all of the data were transformed to
z scores.

Cluster analysis of the individual protein variables showed that
they co-varied in a predictable way [see Figure 4; (15)]. Note
again the use of z scores and the fact that the AMPA (GluR1,
2, and 3) and NMDA (NR1 and 2) receptor subunits tended to
co-vary closely with one another.

Multiple Linear Regression
Another area of interest for us has been the L-arginine cycle
and its role in producing nitric oxide synthase, polyamines and
glutamate in the brainstem vestibular nucleus and cerebellum

(Figure 1). This complex pathway is involved in brain aging in
the central vestibular system and has been the target for drug
treatments aimed at interfering with neurodegenerative diseases
such as Alzheimer’s Disease (3, 4). Because these neurochemicals
interact in a network, it is important to understand how
each part of the system affects the other parts. We have
used MLR in an attempt to predict different neurochemicals
in this pathway from one another, with adjusted R2 values
ranging from 0.50 (ornithine) to 0.95 (citrulline) (51). The
best predictions were for citrulline (0.95), spermine (0.93)
and arginine (0.92) (see Table 2). Assumptions were tested
using normal Q–Q plots and residuals vs. fitted values plots,
and were fulfilled. In this study, MLR was compared directly
with random forest regression on the same data set (51)
(see below).
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FIGURE 10 | OPLS-DA and S-plot analysis comparing the OPLSDA scores between sham and acoustic trauma animals in different brain regions. Left panel,

OPLSDA scores plots, red dots: Sham, purple dots: Acoustic trauma; Right panel, S-plots. (A,B) AC [Predictive component: R2X = 0.194, R2Y = 0.76, Q2
= 0.45;

(Continued)
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FIGURE 10 | Orthogonal component 1: R2X = 0.446; All components: R2X (cum) = 0.64]; (C,D) CB [Predictive component: R2X = 0.152, R2Y = 0.973, Q2
= 0.68;

Orthogonal component 1: R2X = 0.364; All components: R2X (cum) = 0.927]; (E,F) IC [Predictive component: R2X = 0.293, R2Y = 0.978, Q2
= 0.702; Orthogonal

component 1: R2X = 0.417; All components: R2X (cum) = 0.905]; (G,H) SC [Predictive component: R2X = 0.238, R2Y = 0.791, Q2
= 0.691; Orthogonal

component: R2X = 0.562; All components: R2X (cum) = 0.8]; (I,J) VNC [Predictive component: R2X = 0.403, R2Y = 0.779, Q2
= 0.445; Orthogonal component:

R2X = 0.389; All components: R2X (cum) = 0.792]. In the right panel, the blue dots show variables with high negative magnitude and reliability scores (everything is

scaled and relative) or high positive magnitude and reliability scores, i.e., potential biomarkers. AC, auditory cortex; CB, cerebellum; IC, inferior colliculus; CN, cochlear

nucleus; VCN, vestibular nucleus complex. From He et al. (35) with permission.

FIGURE 11 | Overview of the impact of acoustic trauma on brain metabolites. (A) The pathway impact of acoustic trauma on metabolites. The y axis shows the

p-values and the x axis, the pathway impact values; the node color is based on its p-value and the node size reflects the pathway impact values. (B) The enrichment

overview of the pathway-associated metabolite sets perturbed by acoustic trauma. From He et al. (35) with permission.

Random Forest Regression
Using the same data set, we found that random forest
regression was also successful in predicting the neurochemical
concentrations in the L-arginine pathway, with the best values
for the proportion of variance explained, 0.94 (spermine), 0.92
(arginine), and 0.90 (citrulline) [see Table 3; (51)]. However,
for this data set, random forest regression was somewhat less
successful than MLR in predicting some of the variables (e.g.,
0.27 for ornithine; see Table 3). Variable importance plots (VIPs)
were obtained and Figure 5 shows the variables in order of
importance for the prediction of spermine, where arginine
and citrulline were clearly the most important variables (51).
Figure 6 shows the degree of error in the prediction of spermine
as a function of the number of trees generated. It can be
seen that the error decreases rapidly after the first 150–200
trees (51).

Linear Discriminant Analysis
We have also used linear discriminant analysis to predict the
age of animals based on the concentrations of neurochemicals

in the L-arginine pathway (Figure 1). This research is directly
applicable to the identification of biomarkers that might be used
to predict pathological changes that occur in brain aging in
vestibular areas of the brain. In Liu et al. (3), we identified an LDF
that could predict whether rats were young (4 months old) or
aged (24 months old). The LDF based on putrescine, spermidine,
spermine, citrulline, glutamate and GABA in the vestibular
nucleus (note the z transformation), could predict age with 100%
accuracy using cross-validation (P = 0.000, Wilks’λ). Using the
cerebellum, age could be predicted with 93% accuracy (P= 0.000,
Wilks’λ), using only spermine and spermidine. Similar results
were reported by Liu et al. (4), who found 90% accuracy in
classifying animals to the aged group based on neurochemicals
in the vestibular nucleus and 80% accuracy in classifying them
based on neurochemicals in the cerebellum.We have also applied
linear discriminant analysis to the prediction of whether rats have
had a BVD or a sham procedure based on a combination of their
behavioral symptoms, such as unsupported rearing, locomotor
activity in the inner vs. outer zones of the open field maze and
performance in the spatial alternation in a T maze task, and
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found that whether the animals had received a BVD could be
predicted with 100% accuracy (P = 0.000, Wilks’λ) (5). These
kinds of methods may be applicable to the differential diagnosis
of vestibular and auditory disorders.

Random Forest Classification
With a similar aim to the use of linear discriminant analysis
to predict whether animals have BVD on the basis of their
behavioral symptoms, we have also employed random forest
classification using a range of symptoms measured using the
Ethovision tracking system (72). For days 3 and 23 post-
BVD, we found that random forest classification could predict
which rats had received BVD and which were sham animals
with 100% accuracy. Figure 7 shows the variables in order of
importance for day 3 and indicates that the most important
variables were the animals’ locomotor velocity (hyperactivity
is a common symptom of BVD in rats), distance moved and
rotation (72).

Ahmadi et al. (26, 27) have recently used logistic
regression and random forest classification, as well as
artificial neural networks, to support differential diagnosis
of peripheral and central vestibular disorders in humans.
In general, they observed that machine learning methods
outperformed univariate scores. Karmali et al. (28) also
used logistic regression to predict the probability of falling
based on age and thresholds for the perception of 0.2Hz roll
head tilt.

OPLS-DA
In the context of auditory neuroscience, we have used OPLS-
DA on metabolomics data from brain samples to successfully
predict whether rats have been exposed to acoustic trauma
or a sham procedure (35, 65). The ultimate aim here is to
use metabolomic analysis of blood samples to predict whether
humans might develop tinnitus or whether they might respond
to particular tinnitus treatments (65). In what we believe to
be the first study of its kind, we analyzed brain samples from
12 different brain regions in rats that had been exposed to
either acoustic trauma or a sham procedure, and used GC-MS
to isolate a total of 107 distinct peaks in the chromatogram,
with 88 authentically identified as amino acids, small organic
acids, carbohydrates, fatty acids, lipids and amines (see Figure 8).
PCA and OPLS-DA were performed on the data. In Figure 9,
each dot represents the summarized information from the
88 authentically identified molecules for a particular brain
region. The distance between the dots indicates the similarity
of the metabolic composition of the samples. Brain regions
with similar functions appeared to have a similar metabolic
composition in both sham and acoustic-trauma exposed animals.
However, OPLS-DA in specific brain regions such as the auditory
cortex, cerebellum, inferior colliculus, superior colliculus and
vestibular nucleus, showed that the metabolic profile was
separated for the sham and acoustic-trauma-exposed animals
(35). This suggested that a shift in the metabolic pattern had
occurred in these brain regions in the animals exposed to
acoustic trauma. The associated S plots (Figure 10) indicated
that potential biomarkers of acoustic trauma in these brain

regions included urea, amino acids, fatty acids, sugar acids,
nucleosides and organic acids, in a region-specific fashion.
For example, GABA was significantly increased only in the
auditory cortex. The overall impact of the acoustic trauma
on brain metabolites is summarized in a pathway analysis in
Figure 11 (35).

SUMMARY

Phenomena in vestibular and auditory neuroscience, as in
other areas of neuroscience, almost always involve the complex
interaction of multiple variables, and yet many areas of basic
vestibular and auditory neuroscience, in particular, employ
univariate statistical analyses almost exclusively. This may limit
the ability of studies to reveal how the interactions between
different variables may determine a particular outcome. We
have used MVAs and data mining methods to explore the way
that combinations of variables can account for neurochemical
and behavioral changes following the loss of vestibular function
(3–6, 15, 72, 73) and auditory function [e.g., (35, 65)]. In
clinical neuroscience research, MVAs and data mining methods
have been used to predict the progression of patients from
one neurological disorder to another [e.g., (9, 12)] and the
probability that the early adolescent use of Cannabis can lead to
the development of psychotic symptoms in later life [e.g., (74)].
These methods are now in routine use in areas such as genomics,
proteomics, metabolomics (10, 11), and the analysis of fMRI
data [e.g., (75)]. Electrophysiological research in neuroscience is
increasingly moving to the use of multi-electrode arrays using
dozens or more micro-electrodes simultaneously, and in this
situation one of the main objectives is to determine how different
brain regions change in relation to one another, which requires
MVA [e.g., (76, 77)].

MVAs and data mining methods can be applied to every
aspect of vestibular and auditory neuroscience in order to gain a
better understanding of the way in which networks or systems of
variables affect otological function. In the search for biomarkers
of SNHL, tinnitus and vestibular dysfunction, classification
methods such as linear discriminant analysis, support vector
machines, random forest classification, Bayesian classifiers and
OPLS-DA, can be applied to behavioral, neurophysiological
and neurochemical data to predict the probability of a disease
or disorder developing, in order to intervene and provide
treatments that will prevent or impede the pathological changes.
In the context of metabolomics, MVAs and data mining methods
have already been proven to be useful in the prediction of disease
[e.g., (8, 9, 11–13, 78–80)]. OPLS-DA is an example of an MVA
that has successfully been applied tometabolomic data in order to
predict hearing loss in rats (35, 65) andmay be particularly useful
in the search for biomarkers of SNHL, tinnitus, and vestibular
dysfunction [e.g., (81)].
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