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Abstract: Traditional evaluation of user experience is subjective by nature, for what is sought is to use
data from physiological and behavioral sensors to interpret the relationship that the user’s cognitive
states have with the elements of a graphical interface and interaction mechanisms. This study
presents the systematic review that was developed to determine the cognitive states that are being
investigated in the context of Quality of Experience (QoE)/User Experience (UX) evaluation, as well
as the signals and characteristics obtained, machine learning models used, evaluation architectures
proposed, and the results achieved. Twenty-nine papers published in 2014–2019 were selected from
eight online sources of information, of which 24% were related to the classification of cognitive
states, 17% described evaluation architectures, and 41% presented correlations between different
signals, cognitive states, and QoE/UX metrics, among others. The amount of identified studies
was low in comparison with cognitive state research in other contexts, such as driving or other
critical activities; however, this provides a starting point to analyze and interpret states such as
mental workload, confusion, and mental stress from various human signals and propose more robust
QoE/UX evaluation architectures.

Keywords: QoE; UX; cognitive states; physiological data; behavioral data; biometric sensors

1. Introduction

User experience and quality of experience refer to a user and his/her experience
with an application, product, or service, UX from the perspective of understanding and
interpreting user’s perceptions and answers [1] and QoE based on the degree of the
user’s delight or annoyance, which turns out to be a quality evaluation [2]. Wechsung
and De Moor [3] carried out an analysis of the differences and similarities between both
concepts. UX comes from human–computer interaction and is considered more human-
centered because of the way observations are captured and interpreted, for example
with standardized questionnaires such as the System Usability Scale (SUS) [4] or the Self-
Evaluation Manikin (SAM) [5], and non-functional aspects’ analysis such as emotions
and other affective states; however, QoE comes from the telecommunications area and is
considered more technical because it depends more on technology partly due to its relation
to Quality of Service (QoS). Actually, both concepts retain theoretical differences, but in
practice, they are converging on some similar evaluation mechanisms. This even suggests
consolidating QoE and UX into a broader concept called Quality of User Experience
(QUX) [6], which also includes eudaimonic aspects such as the meaningfulness and purpose
of use. It was for this reason that this review included papers as QoE/UX regardless of
whether their context was one or the other. QUX was not used because it is a construct still
under research and definition.

Traditional QoE/UX evaluation mechanisms are subjective by nature because they
are based on techniques that depend on users’ reports and evaluators’ analysis influenced
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by their perception, criteria, and experience, among other personal factors [7–10]. Several
evaluation approaches have been proposed for complementing subjective techniques with
quality ratings or mental states inferred from user’s physiological and behavioral data
(e.g., [11–14]). Even though research has been done to interpret the mental states of users
when performing certain activities—even critical ones, such as driving, piloting, and air
traffic control (e.g., [15–17])—the relations between these states and elements of an interface
or interaction mechanisms have yet to be identified and adequately represented.

This paper presents a Systematic Literature Review (SLR) carried out to identify and
analyze research related to QoE/UX evaluation where cognitive states are interpreted from
features of Electroencephalogram (EEG), Galvanic Skin Response (GSR), Electrocardiogram
(ECG), and Eye Tracking (ET) (without pupillometry); this includes the machine learning
models used, the best results, and the proposed evaluation architectures. Works that
analyzed human signal data for searching for correlations between cognitive states and
QoE/UX metrics were also considered.

The rest of the paper is structured as follows: The next section presents a background of
cognitive states and physiological and behavioral data. Section 3 presents the characteristics
of the systematic review protocol. Section 4 describes the final set of articles according to
the related topics. Section 5 gives the discussion and findings, and the last section provides
the conclusions obtained.

2. Background
2.1. Mental and Cognitive States

A mental state includes every aspect of the internal state of an organism that could
contribute to its behavior or other responses [18]; this includes variables that are present at
a given moment such as: thoughts, perceptions, emotions—characterized by valence and
arousal—or others that describe cognitive processes.

In particular, the relationship between cognition and emotion has been discussed by
other authors [19], finding that their interaction is so complex that it needs to be studied in
nuanced terms and with a detailed analysis of the context. Specifically, cognition refers to
processes such as memory, attention, language, problem solving, and planning [20], and
based on these processes, several states are identified: mental workload, mental stress, and
mental fatigue, among others.

The presence of cognitive states can manifest in various ways. For example, it has been
found that mental workload can be expressed as a subjective experience, with variations
in the task performance and with physiological manifestations [21], or that there are
relationships between numerous physical responses with the presence of mental stress,
such as agitation, anxiety, sweating, etc. [22].

2.2. Physiological and Behavioral Data

Emotions and cognitive states have similarities in terms of the data used for their
estimation. These data can be grouped into three categories according to the technologies
used to acquire them [23]:

1. based on perception or behavior, including all data from elements of human expres-
sion, such as: facial expressions, intonation and voice modulation, body movements,
contextual information, etc.;

2. physiological, coming from the subconscious responses of the human body, such as
heartbeat, blood pressure, brain activity, etc., related to the central nervous system,
the neuroendocrine system, and the autonomous nervous system;

3. subjective, self-reports by individuals about how they perceive their state, being less
dependent on technology than the previous two.

This review considered research related to physiological data of the following signals:

• Electroencephalogram, a signal related to electrical activity in the brain, is registered by
electrodes attached to the scalp commonly distributed under the 10–20 standard [24].
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The power of the signal is due to five rhythms according to the frequency ranges:
delta (δ), below 4 Hz; theta (θ), around 5 Hz; alpha (α), around 10 Hz; beta (β), around
20 Hz; and gamma (γ), usually above 30 Hz.

• Electrocardiogram, a signal related to electrical activity generated by the heart muscle,
is recorded by placing a set of electrodes on the chest and occasionally on the extremi-
ties, depending on the application [24]. A beat has five different waves (P, Q, R, S, and
T) that allow determining the heart rate and rhythm.

• Galvanic skin response, also known as Electrodermal Activity (EDA), provides a
measurement of the electrical resistance of the skin when placing two electrodes on
the distal phalanges of the middle and index fingers, which can increase or decrease
according to the variation of sweating of the human body [25].

In the case of behavioral data, research that included eye tracking data was contem-
plated. Eye tracking is a methodology that, among other features, makes it possible to
detect where the user is looking and for how long and the path his/her eyes follow. Eye
features can be obtained using electrooculography, video-based analysis, or from specific
eye-tracker technology (e.g., [26–28]). QoE/UX researchers have widely employed eye-
tracking devices that work through cameras and methods to illuminate the eye, identify
reflection in the cornea and pupil, and establish the related gaze point [29]. This process
allows obtaining features such as fixations and saccades. A fixation is a brief pause of eye
movement in a specific area of the visual field. Saccades are quick eye movements between
one fixation and another.

Pupil dilation data are considered physiological and directly related to the autonomous
nervous system [30]. Due to the restrictions of the research, articles that only used pupil-
lometry were excluded.

3. Materials and Methods

A systematic literature review is a methodology to identify, evaluate, and interpret
relevant research on a particular topic and responding to specific research questions using
a replicable and verifiable process [31].

In this review, recommendations for individual researchers proposed by Kitchenham
and Charters [31] were followed, and the SLR protocol and the results were submitted to
the supervisors of the research work for criticism and revision. Furthermore, this article
was structured according to the guidelines of the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) Statement [32].

3.1. Eligibility Criteria

For the purposes of the review, papers had to be written in English and published
between 2014 and 2019. Additionally, the following exclusion criteria were defined:

1. papers outside the QoE/UX context;
2. papers recognizing only emotions of the traditional circumplex model of affect [33];
3. papers involving only signal data outside the research scope (fNIRS, fMRI, pupillom-

etry, facial expressions, etc.);
4. papers involving experiments only with disorder-diagnosed participants, for example:

autism spectrum disorder.

This review represents an initial effort to develop a QoE/UX evaluation architec-
ture based on the interpretation of users’ cognitive states. The exclusion criteria were
mainly constrained by the research scope–context, mental states, signals, and potential
users—considering the equipment and current conditions of our laboratory and the time
constraints of the review, among others.

The inclusion criteria considered that the papers had to recognize one or more cog-
nitive states with at least one physiological or behavioral signal, including papers on the
correlations between those data with QoE/UX metrics or related to evaluation architectures.
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3.2. Search Strategy

The information sources were: Web of Science, ScienceDirect, SpringerLink, IEEEx-
plore, ACM_DL, arXiv, PubMed, and Semantic Scholar. The execution of the queries was
carried out in November 2019.

Four search queries were built with different combinations of keywords taken from
four main groups: cognitive states, data from various signals, machine learning, and user
experience (Table 1).

Table 1. Groups of search keywords.

Groups Keywords

Cognitive states cognitive states, cognitive state

Data physiological, EEG, GSR, ECG, eye tracking, sensor,
multimodal

Machine learning machine learning, deep learning
User experience user experience, UX, QoE

The keywords within each group were connected using the OR operator and the
groups with the AND operator; the four group combinations for the search queries were:

1. cognitive states AND data AND machine learning AND user experience;
2. cognitive states AND data AND user experience;
3. cognitive states AND user experience;
4. cognitive states AND data AND machine learning.

The last query was not performed in Web of Science due to problems with institutional
access to the repository. In Semantic Scholar, issues with exact phrase filters were observed,
and consequently, only the first query was carried out. ScienceDirect restricts a maximum
of eight connectors in each query, so the most representative keywords of each group
were chosen.

3.3. Study Selection

The papers resulting from each query were analyzed through the process: (1) duplicate
check; (2) evaluation of exclusion criteria based on the title, abstract, and keywords; and
(3) evaluation of the eligibility criteria based on the full text. This process was carried out
individually and not peer-reviewed; only the results were reviewed by the supervisors of
the research work.

The papers that did not meet the eligibility criteria were recorded and labeled as
discarded. The papers that passed Stage (3) were tagged as considered and stored using
the Mendeley Desktop reference management software.

As shown in Figure 1, a total of 858 records were initially identified. Later, two-
hundred seventy-six duplicates were removed, and five-hundred fifty-three records were
discarded because they did not meet the eligibility criteria, leaving 29 papers for detailed
analysis and data extraction.

3.4. Data Extraction

Different data were extracted from the final selection of papers: general data (e.g., au-
thors and institutions of origin, name of the journal or conference), experiment data
(e.g., number and characteristics of participants, stimulus, cognitive states, equipment, sig-
nals), data related to classification models (e.g., types of machine learning models, features
extracted from signals, performance), data related to QoE/UX evaluation architectures
(e.g., modules, proposed layers, representation of results), and data related to the obtained
results (e.g., findings, conclusions). The registration was initially done on a spreadsheet
and later using the Notion software.
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Figure 1. Flow diagram showing the process for papers’ selection.

4. Results

The full-text analysis included 98 papers, of which 56% were discarded because they
were outside the QoE/UX context; this gives the insight that related research has been
performed, but a lack of research remains in the specific context of this review. Figure 2
presents the chronological distribution of the 29 selected papers; a maximum of seven
papers published in 2016 and an average of five papers per year in the period 2015–2019
were observed.

The papers were organized by: (1) research with approaches that refer directly to
the QoE/UX evaluation from the classification of cognitive states with machine learning
models, (2) papers that contemplate cognitive states, but that present or are part of QoE/UX
evaluation architectures, (3) papers that identify correlations between physiological and
behavior data with cognitive states and QoE/UX metrics, and (4) other related research.
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Figure 2. Selected papers by year.

4.1. Classification of Cognitive States

This section considers seven papers related to the classification of cognitive states with
machine learning models. They are presented describing independently the classification
models and the stimulus used for data capture in the experiments. Table 2 summarizes the
characteristics of the described studies in this section, including the model and the best
metric reported.

4.1.1. Classification Models

Jimenez-Molina et al. [34] tested models to recognize mental workload with com-
binations of physiological data and individual ones, having their best results with the
Multilayer Perceptron (MLP) that included EEG data; they labeled the physiological data
with four classes resulting from a clustering that considered the relationship between the
pupil diameter and the mental workload.

In [35], the objective was the classification of engagement, and three studies with
various data were carried out: (1) cell phone usage logs in predefined applications and
subjective evaluations, (2) daily usage logs and EEG data, and (3) daily usage session
logs, context, and demographic data; concluding in the final long-term study that Support
Vector Machine (SVM) is the most suitable model in this application compared to others
like Random Forest (RF) or AdaBoost.

Frey et al. [36] induced mental workload and assessed attention and performance
differences in the task when using a keyboard or touch as the interaction mechanism,
extracted EEG data characteristics using spatial filters to reduce from thirty-two chan-
nels to six virtual channels, and performed classification tests using Linear Discriminant
Analysis (LDA). They found that the performance when using the keyboard was better
compared to the use of touch, in addition to the fact that users reported a lower index of
mental workload.

Salminen et al. [37] tried the confusion’s prediction using an RF model with eye-
tracking data, age, and gender. They used two techniques for data augmentation and
found that with the Synthetic Minority Over-sampling Technique (SMOTE) [38], there was
better performance, with age as the most influential characteristic. In [39], SMOTE was also
used with eye-tracking features, pupil, head position, and clicks; using RF, pupillometry
features were determined as the most important in confusion prediction.

On the other hand, in [22], they proposed to infer mental stress based on the pattern
of clicks and the gaze. They extracted characteristics from the video from a conventional
webcam and mouse, using them with user-dependent and -independent models, using RF
at click windows and the logistic classifier at the session level.
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Libert and Van Hulle [40] evaluated interest in videos using kNN with EEG charac-
teristics based on entropy and indices of engagement, valence, and activation calculated
considering the power of different frequency bands.

Table 2. Summary of papers with the classification of cognitive states.

Ref. Year Cognitive States Best Performing Models No. of Subjects (Female/
Male) Stimulus Data

[39] 2016 Confusion RF, sensitivity 0.61, specificity
0.926 136 (75F/61M) Data visualization software Self-report, ET (with pupillometry),

clicks

[36] 2016 Mental workload, atten-
tion

LDA, accuracy: 92% mental
workload and 86% attention 12 (3F/9M) Virtual maze game Self-report, EEG, keyboard, and touch

behavior

[22] 2016 Mental stress

RF, click-level user-dependent
f1-score 0.66; logistic classifier,
session-level user-independent
f1-score 0.79

20 (7F/13M) Arithmetic questions soft-
ware ET (from video), clicks

[35] 2016 Engagement SVM, f1-score 0.82 10 (3F/7M), 10 (3F/7M),
130 (34F/96M) Cell phone usage

1st and 2nd studies: EEG and usage
logs; 3rd study: usage logs, context,
and demographic data

[34] 2018 Mental workload MLP, accuracy 93.7% 61 (19F/42M) Website browsing
EDA, Photoplethysmography (PPG),
temperature, ECG, EEG, ET (with
pupillometry)

[37] 2019 Confusion RF, accuracy range 72.6–99.1% 29 (14F/15M) Personal data sheets ET, age, gender

[40] 2019 Engagement (as a basis
for interest detection)

kNN (k-Nearest Neighbors),
average accuracy 80.3% 4 (2F/2M) Videos Self-report, EEG

4.1.2. Stimulus

One of the investigations [34] presented an experiment with free browsing of a ficti-
tious website, detecting active or transition windows based on gaze fixations at predefined
areas of interest.

Mathur et al. [35] conducted their research by recording daily usage data from a cell
phone or in predefined applications. This latest study was developed in three months and
included participants from various countries due to the feasibility of registering usage logs
and obtaining demographics data from the users and context.

Frey et al. [36] performed their pilot study with N-back tasks to induce mental work-
load and to calibrate the initial models. In their main experiment, participants interacted
with a keyboard and touch in a virtual maze game with four difficulty levels.

In [37], modified personal data sheets were used to induce confusion in a journalistic
writing assignment. Related to confusion as well, Lalle et al. [39] conducted an experiment
with repetitive tasks in an interactive data visualization application where users clicked a
button to report confusion at any time.

Huang et al. [22] performed an experiment to induce stress with a software of arith-
metic questions that randomly arranged options, adding difficulty levels while displaying
a time bar for responses.

In [40], the experiment was carried out with few participants, and it consisted of
evaluating interest or omission in observing a set of 45 videos presented one-by-one in
three blocks to avoid fatigue.

4.2. QoE/UX Evaluation Architectures

Five papers that presented or were part of research that contemplated cognitive states,
but with an emphasis on the proposed evaluation architectures were found.

The lean UX-based platform proposed by Hussain et al. [41] aims to support evaluators
interpreting observational, physiological, and traditional measures. Its architecture is
composed of several layers and includes modules for the recognition of emotions and
stress through EEG data analysis and eye tracking, as well as for emotion recognition by
analyzing facial expressions, body language, and voice from videos and sounds captured
with a webcam and microphone; for these tasks, it used individual classifiers, mostly
SVM, with a final merger approach by decision. In addition, it presented modules for the
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generation of self-report questions and text analysis of responses to detect emotions using
an ensemble learning model.

A set of related papers described an approach to assess user experience whose main
tool was the physiological heat map [42], which extends the traditional heat gaze map to
represent the mental state of the user when interacting with the interface. These maps were
validated in an experiment with web pages [43], and although, they were related to visual
complexity, it was determined that to maximize its utility, traditional analysis must be
integrated (questionnaires, interviews, etc.). On the other hand, they evaluated with expert
participants the acceptance and usefulness of UX reports partially completed with images
of physiological heat maps, finding that its use is feasible in practice, receiving positive
feedback and suggestions for improvement [44]. Furthermore, in [45], they determined the
requirements that a UX evaluation tool that considers physiological data and self-reports
must meet, highlighting the need to automate data processing and deliver useful results in a
timely manner for software development teams that follow agile methodologies, explaining
that their proposal is at Technology Readiness Level 6 (TRL 6) and is compatible with
commercial devices of data acquisition.

4.3. Correlations with Cognitive States and QoE/UX Metrics

This section describes twelve research works where correlations of the different physi-
ological and behavioral signals with cognitive states and diverse QoE/UX metrics were
sought. Table 3 summarizes the characteristics of the described studies in this section.

Chai et al. [46] investigated the relationship of frontal alpha EEG asymmetry with
experience and difficulty in the task when interacting with a set of mobile applications,
not finding meaningful correlations. In [47], the relationship between eye-tracking metrics
with self-efficacy, risk, ease-of-use, and usefulness perception in tasks with a software
assistant was sought. Various correlations were found, the strongest one being between
the perceived ease-of-use and the number of fixations that turn into clicks, providing a
guideline for considering the interaction mechanisms with the analysis of inherent signals
to humans. In another article [48], the relationship of GSR characteristics with performance
metrics was analyzed, identifying that the tasks with a lower rate of completion have a
non-significant tendency to cause higher GSR values and a significant correlation between
attractiveness, efficiency, dependability, and novelty with GSR data. On the other hand, the
usability of a web application was evaluated looking for correlations between subjective
questionnaires, EEG, and emotions through facial expressions [49], concluding that EEG
measurements are necessary since it was observed that the decrease in motivation was not
reflected in the self-reports, but in the increase of brain activity.

Table 3. Summary of research of correlations with cognitive states and QoE/UX metrics.

Ref. Year Objective No. of Subjects (Female/
Male) Stimulus Data

[46] 2014 Correlations between frontal alpha EEG asymme-
try, experience and task difficulty 20 (10F/10M) Mobile application tasks Self-report; EEG

[48] 2014 Correlations between GSR and task performance
metrics 20 (10F/10M) Mobile application tasks Self-report; GSR, blood volume pulse,

hear rate, EEG, and respiration

[50] 2014 Correlations between quality perception, brain ac-
tivity, and ET metrics 19 (11F/8M) Videos EEG and ET (with pupillometry)

[51] 2015 QoE evaluation 32 (5F/27M) Online game Self-report; EEG

[52] 2015 EEG power analysis during tasks with cognitive
differences 30 (20F/10M) Two-Picture cognitive task

and video game EEG, screen, and frontal videos

[53] 2015 Flow state analysis based on engagement and arousal
indices 30 (20F/10M) Video game EEG, screen and frontal videos

[54] 2016 Sleepiness analysis 12 (3F/9M), 24 (8F/16M) Videos

1st study: self-report, EEG, electroocu-
logram (EOG); 2nd study: self-report,
EEG, GSR, ECG, and electromyogram
(EMG)
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Table 3. Cont.

Ref. Year Objective No. of Subjects (Female/
Male) Stimulus Data

[55] 2017 Cognitive load, product sorting, and users’ goal
analysis 21 (10F/11M) Online shopping tasks EEG

[47] 2017 Correlations between ET, acceptance and perception 10 (7F/3M) Database creation assistant Self-report; ET (with pupillometry),
clicks, and screen video

[56] 2018 Visual attention and task performance analysis 38 (not indicated) Online shopping tasks ET

[57] 2019
Analysis of the attitude towards a website consid-
ering visual attention, cognitive load, product type,
and arithmetic complexity

38 (17F/21M) Online shopping tasks Self-report; ET (with pupillometry)

[49] 2019 Usability evaluation 30 (15F/15M) Website tasks Self-report; screen and frontal videos,
mouse and keyboard usage logs, EEG

Arndt et al. [50] analyzed the perception of quality in video fragments using EEG
and eye-tracking data, including pupillometry. They observed that pupil dilatation had a
great influence due to the use of a visual stimulus, as well as that the alpha EEG activity
decreased as the quality’s level decreased, contrary to other studies with a longer stimulus
where the participant only had to observe and not evaluate. In another work [51], the QoE
evaluation of an online game using standardized questionnaires and EEG measurement
was performed, and they found that visual quality was reflected in all the questionnaires
applied. Although fatigue’s effect was observable in the physiological data, it was less
pronounced as the game time passed. In another investigation [54], tests were performed
to analyze sleepiness caused by poor video quality, finding that what was reported by the
participants was represented in the EEG data, in particular by alpha waves, inferring that
low quality leads to a higher cognitive load and fatigue and a decrease in attention during
long-time stimulus.

In [52], significant increases in beta and gamma EEG power were found during
relevant events in a platform game compared to normal game events and with another
cognitive task. McMahan et al. [53] also evaluated task engagement and arousal using
calculated indices from the bands of EEG power and established thresholds and a set of
rules to define a flow or immersion model in the platform game.

Desrochers et al. [57] evaluated consumers’ attitudes towards an online site for grocery
shopping considering two types of products and tasks of different arithmetic complexity.
They obtained visual attention and cognitive load through the analysis of the fixations and
pupil’s diameter, respectively, finding that attention toward the product images influenced
the attitude towards the site differently depending on the characteristics of the task and on
the related cognitive load. In other research work, Juanéda et al. [56] also used fixations to
measure attention on a focal product and on similar or dissimilar distractors in close or far
away positions. They found that individuals pay less attention to the focal product when
distractors are close, becoming more accentuated when distractors are not similar; however,
similar distractors had a positive impact on the precision in the attention’s evaluation
responses. In other related research, Mirhoseini et al. [55] hypothesized that the user
experiences less cognitive load when the method of product sorting is in accordance with
the search goal. The cognitive load measurement was interpreted from EEG data with
Event-Related Potentials (ERPs), particularly from the P300 component.

4.4. Other Related Research

Engelke et al. [58] found that although there is a consensus that multimodal ap-
proaches are necessary to fully understand QoE, there is still a shortage of more and better
datasets and mechanisms to make them compatible and to integrate them, in addition to
the need to standardize the methodologies for capturing and interpreting physiological
measurements. In the specific case of eye tracking, Asan and Yang [59] found that despite
the devices providing promising information, their use should be integrated with other
evaluation techniques, such as most physiological measurements.
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In an investigation [60], two paradigms were highlighted for the analysis of EEG data
in the context of QoE: ERP and spectral analysis. ERP, in particular P300, was analyzed
with stimuli of different characteristics of quality, observing that it was higher and had
earlier occurrence when there were distortions in the stimulus, also finding signs of higher
levels of fatigue or drowsiness when there was a reduction in the quality of the stimulus. In
the case of video games, they observed that the video quality influences quality perception,
player experience, subjective measurements, and EEG alpha band frequency.

On the other hand, Salgado et al. [61] presented the demonstration of a prototype
where data from various physiological signals in a wheel chair training task in a virtual
reality environment were acquired. The last goal of the research was to start from the
recognition of various mental states such as stress, drowsiness, and attention, for the future
models’ development to be able to determine the QoE.

In [62], Baig and Kavakli performed a review of the use of physiological signals
in multimodal systems. Among other findings, they discovered that poorly designed
web pages increase the stress level of the user, that simulations can be used to study the
relationship between brain responses and stress levels, or that physiological measurements
showed a strong correlation with self-reported data and had the ability to extract underlying
facts that cannot be found with traditional methods.

5. Discussion

In this review, we identified 29 papers within the context of QoE/UX evaluation
related to the recognition of cognitive states and published between 2014 and 2019.

Experiments with different signals and number of participants were identified: EEG
data from 4 participants [40], ET data from up to 136 participants [39], or acquiring data
from various signals from up to 61 participants [34]. Figure 3 shows the distribution of the
number of participants in experiments that collected EEG, ECG, or GSR data and of ET
with medians of 20, 42.5, 24, and 33.5, respectively. If more than two signals were used in
the experiment, this was considered in an independent way per signal. Atypical values
were observed in EEG and ET, denoting that a high number of participants with these
signals is not common.
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Figure 3. Number of subjects in experiments by signal.

None of the QoE/UX approaches that address the recognition of cognitive states
from physiological and behavioral data use deep learning models in some part of the
process. Good results have been observed in other contexts with architectures of the
autoencoder type (e.g., [63,64]) and of the convolutional type (e.g., [65,66]); however, this
can be complicated if the number of participants in the experiments is reduced since
the deep learning models require a significant amount of data to take advantage of their
potential [67]. Only two of the investigations [37,39] considered techniques such as SMOTE
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or the Adaptive Synthetic Sampling Approach for Imbalanced Learning (ADASYN) [68] for
data augmentation and class balancing. The use of other techniques or models to generate
synthetic data was not identified, such as those based on Generative Adversarial Nets
(GANs) [69], which are being studied and evaluated in other contexts (e.g., [70,71]).

In general, research does not report the preparation time spent dedicated to each par-
ticipant. The number of participants may be limited by the type and number of measuring
devices that must be configured. On non-invasive EEG devices, in the form of a headband
or cap, a greater number of electrodes can imply more time for placement and calibration
for each participant. On ET devices, the calibration time is usually shorter, although the
lighting conditions in the environment should be considered to a greater extent. In the case
of cardiac activity monitoring, a large amount of information and precision are obtained
with ECG, whose electrodes are usually placed on the chest or arms, with the disadvantage
that these sensors are more intrusive and that their installation requires a stricter protocol
compared to those of devices that take heart rate measurements based on PPG. In the case
of GSR, sensors are usually placed on the arms, fingers, or forehead, spending little time
on its preparation.

To properly select the type and quantity of metering devices used in QoE/UX evalua-
tions, Zeagler’s [72] recommendations can be taken into account for wearable devices and
those of Erins et al. [73] in the context of fatigue detection, as the intrusiveness and interfer-
ence with the task must be minimal, and for this, it is necessary to consider aspects such as
the perception of weight, user movement, acceptability, the mobility and availability of the
sensor, and susceptibility to the environment, among others. Even before determining the
sensors to use, it is necessary to evaluate the convenience of measuring the set of cognitive
states proposed in a certain application, and for this, we can initially consider the attributes
contributed by Charlton [74] related to sensitivity, intrusion, diagnosis, convenience of
measurement, relevance, transferability, and acceptance.

In the experiments, the age and sex of the participants were reported, but conclusions
related to these aspects were not presented. It has been observed that individual differences
given by various factors, such as demographics or experience in the task, can influence
physiological and behavioral signals [75]; however, few studies consider these factors
(e.g., [76]). Figure 4 shows the proportion of the sex of the participants considering all
the experiments related to each signal, and a majority of male participants was observed
in EEG, ECG, and GSR, being more equitable in ET; in EEG, the average difference of
participants of each sex was 29%, in ECG 36%, in GSR 24%, and in ET 21%. This reaffirms
what was found in [62]: standardized experiments are not performed, and the lack of
uniformity makes it difficult to establish comparisons between the results.

On the other hand, we identified that the generated datasets are not available for later
tests or validations; in this sense, the requirements presented by Mahesh et al. [77] can be
generalized to build reference datasets.

The research related to the classification of cognitive states included the following
states: mental workload [34,36], engagement [35,40], confusion [37,39], attention [36], and
mental stress [22]. Table 2 shows the machine learning models with the best performance.
Despite that results with accuracies above 90% (e.g., [34,37]) have been obtained, the
classification is based on the interpretation of the user’s cognitive state when responding to
the stimulus in general, without studying its relation with specific elements of the interface
or the interaction when using an application, adding the difficulties of understanding the
relationship of these states with the user’s perception of quality based on the characteristics
and changes in the stimulus.

Several papers identified correlations between different physiological and behavioral
signals with aspects such as experience and difficulty in the task [46], performance [48,56],
and perception of quality [50], among others, and with cognitive processes [50,52] and
states such as engagement [53], mental workload [55,57], and attention [56]; however, the
usefulness of self-report questionnaires persists and is highlighted, supporting the idea
that QoE/UX evaluation mechanisms should be complemented with mixed approaches
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such as the use of standardized questionnaires and the interpretation of physiological and
behavioral signals.

The analyzed evaluation architectures considered several types of sensors and the
detection of various mental states: Hussain et al. [41] emphasized the features and inde-
pendent performance of the models used in each detection module; Courtemanche [42–44]
highlighted the importance of tools to represent users’ mental states and their usefulness
with respect to the evaluators who interpret them and considering the requirements that the
industry demands [45]. In general, architectures define modules or layers for data capture
and their processing, for the analysis and calculation of metrics, and for the generation and
presentation of results, where the process starts with the user performing a task and ends
with an expert evaluator interpreting the results and generating or complementing a final
report with the findings detected in the test.

The presented review has some limitations. The planning and execution of the search
and the selection and analysis of the results were not carried out in a scheme of peer
validation, with review and criticism from supervisors, but keeping the intrinsic bias of an
individual researcher. The number of analyzed papers was modest given the restrictions to
the QoE and UX contexts; the aim was to cover both topics given their similarities in the
way of evaluation with physiological and behavioral signals, finding generalized results
and not independently detailed.

Female
39%

Male
61%

EEG

Female
32%

Male
68%

ECG

Female
35%

Male
65%

GSR

Female 48% Male52%

ET

Figure 4. Subject sex ratio in experiments by signal.

6. Conclusions

This review presented research in the context of QoE/UX evaluation that considered
the recognition of cognitive states from EEG, ECG, GSR, and ET data, as well as corre-
lations with QoE/UX metrics, either in individual experiments or as part of evaluation
architectures. It showed that cognitive states such as mental workload, stress, and attention,
among others, have been analyzed; however, the relation of these states with the elements
that build the user experience still need to be studied. The main findings were related to
the physiological and behavioral response to the stimulus in general and not to individual
components of the interface or interaction. Furthermore, the number and proportion of
participants in the experiments and the type and number of measurement devices were
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varied, and the datasets were not available, limiting the comparability of the results. This
review reaffirmed the importance of complementing the evaluations with self-reports and
the interpretation of signals from different modalities.

Despite the limitations, this review confirmed the feasibility of these approaches
and the need for future studies in order to develop more robust QoE/UX evaluation
architectures that allow obtaining results with less subjectivity.
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