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The worldwide outbreak of SARS-CoV-2 infection has necessitated manda-
tory use of face masks, personal protective equipment and intake of a
healthy diet for immunity boosting. As per WHO’s recommendation, continu-
ous use of masks has been proven effective in decreasing the SARS-CoV-2
infection rate. The present study reports on the bacterial filtration efficacy
(BFE) of a novel 4-ply functionalized non-woven face mask. We synthesized
a polypropylene-based fabric with inner layers of melt-blown fine fibres
coated with polylactic acid and immune-boosting herbal phytochemicals.
Experimental studies on the synthesized face mask demonstrated a BFE of
greater than 99% against Staphylococcus aureus (a bacterium species frequently
found in mammalian respiratory tract). A thorough computational analysis
using LibDock algorithm demonstrated an effective docking performance of
herbal phytochemicals against harmful virus structures. More importantly,
the face mask also showed sufficient and stable breathability as per regulatory
standards. A breathing resistance of 30 Pa at an aerosol flow rate of 30 l h−1

was reported under standard temperature and pressure conditions, indicating
a high potential for real-world applications.
1. Introduction
An outburst of contagious SARS-CoV-2 pandemic resulted in spread of infec-
tion waves, radically affecting health conditions of people across the world
and leaving behind long-term respiratory health effects [1]. As per WHO
recommendations, the spread of viral infections can be restricted with continu-
ous use of protective masks and personal protective equipment suits [2], since
the viral infections mainly occur through aerosol droplets in air which directly
attack the human respiratory system [3,4]. Non-woven face masks are widely
used due to tailorable fibre diameters for various layers, filtration of aerosol
particles, sterility, low production costs, shorter production cycles, leverage to
incorporate antibacterial materials and higher flexibility [5–9]. Considering var-
ious non-woven fabric manufacturing techniques, a combination of melt-blown
and spun-bonded non-woven fabrics shows stable air filtration properties for
biomedical applications [10].

Tellier et al. [11] reported that the spread of virus occurs rapidly through
respiratory tract due to the presence of aerosol particles in the air. However,
the transport of these infections aerosols can be mitigated by applying a barrier
prior to their entry to the respiratory tract [12]. Hence, continuous use of face
masks became an important precautionary measure for protection against
deadly infectious viruses [13]. This necessitated modifications in the morpho-
logy of the protective masks to achieve a bacterial filtration efficacy (BFE) of
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Figure 1. Marketed product image of Aushadatara face mask.
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99% (or higher), leading to development of the multiple-
layered structure exhibiting ameliorated filtration perform-
ance [14]. In a recent study [15], we demonstrated that the
incorporation of polylactic acid (PLA) and traditional Indian
phytochemical-based filtration layers in cotton-based face
masks renders an immuno-boosting effect to the mask
wearer and enhances BFE of the protective mask [16]. It has
been identified that factors such as the surface area of aerosol
particles and surface wettability of non-woven surfaces play a
key role in the transmission of virus from the environment
into human body [17]. It has also been established that
hydrophobic surfaces restrict the passage of aerosol particles
through the non-woven surfaces, whereas hydrophilic
surfaces permit absorption of aerosol particles [18].

Based on the investigations ofAyurveda, phytochemicals or
oil extracts of spices demonstrate inflammatory response to
counter the biological harmful viral infections [19–21]. In a
recent study, Xiong et al. [22] reported the effectiveness of Chi-
nese herbal-based extracts against the harmful SARS-CoV-2
viral infection. It was also observed that glucocorticoids-based
drug treatments for SARS-CoV-2 infections showed decline in
the mechanical ventilation and mortality ratio among the
affected patients when compared with standard care protocols
[23]. Bartonkova et al. [24] reported the effective performance
of herbal extracts on glucocorticoid based receptors, which
exhibited anti-hypertensive, anti-fungal, anti-microbial and
anti-inflammatory properties, boosting the immune response
against the harmful viral infections. Similarly, Kumar et al. [25]
demonstrated non-mutagenic, non-toxic, non-irritant and
biodegradable performance of organic compounds at a lower
concentration for plant-based herbal phytochemical oils.

The present study reports on the BFE of a functionalized
4-ply non-woven face mask and its immune-boosting charac-
teristics. The functionalization of non-woven substrates was
achieved by spray coating of polymeric layer over the melt-
spun non-woven filtermedia. Thiswas followed by performing
a thorough computational analysis using LibDock algorithm to
analyse the docking performance of herbal phytochemicals
against infectious virus structures. Field-emission scanning
electron microscopy (FE-SEM) was performed on the func-
tionalized fibres to examine the compact microstructure and
to identify the impact of fibre augmentation on aerosol pen-
etration efficacy. Subsequently, the surface wetting analysis of
the spray-coated non-woven layer was investigated using a
contact angle goniometer. Finally, the developed face mask
was tested against Staphylococcus aureus (ATCC 6538, an
international standard testing strain for disinfectants) to exam-
ine the BFE of the augmented 4-ply mask. The results of this
study are therefore expected to be of high value for the scientific
and engineering community.
2. Fabrication of the mask material and surface
morphology

A four-ply non-woven breathable face mask is shown in
figure 1a,b. The hydrophobic outer layer consists of non-
woven spun-bonded polypropylene fibres exhibiting a uni-
formly distributed diameter of 15.87 ± 0.5 µm figure 2b, which
renders acompact close-packedstructure, and improvedsurface
area for restricting the transmission of aerosol droplets
(figure 2a–f ) [26,27] . Finely distributed non-woven fibres (less
than 17 µm), and thickness of 0.57 mm, further support in
obstructing the entry of aerosol particles (50–500 nm) for
improved filtration efficacy [28]. The second layer consists of
non-woven melt-blown fine fibres exhibiting a diameter of
613.3 nm (figure 2d), which was used as filter media in the
face mask. As depicted in figure 2d, a dense structure of uni-
formly distributed melt-blown fibres could potentially aid in
enhancing the bacterial and viral filtration performance of the
face mask [29,30]. Third layer of the mask was fabricated
using spray coating of herbal phytochemical encapsulated
PLA. This was performed to enhance the immune-boosting
characteristics via inhalation to the mask wearer [31–33].
Mean thicknesses of the outer to inner layer (four layers) of
the mask were found to be 0.28 ± 0.01 mm, 0.13 ± 0.01 mm,
0.13 ± 0.01 mm and 0.21 ± 0.01 mm, respectively. The thickness
of entire face mask was found to be 1.25 ± 0.01 mm.
3. Bacterial filtration efficiency and breathing
resistance

It is established that spun-bonded polypropylene fabric
layers facilitate the removal of large aerosol particles and par-
ticulate matter (PM), whereas the lower sized molecules get
trapped in compact melt-blown polyester-based filter media
and PLA/herbal-extract spray-coated layer [34]. FE-SEM
micrographs (figure 2a–f ) demonstrate densely packed fibre
morphology of the non-woven filter layer, with uniform
fibre diameter distribution. It has been established that a uni-
formly distributed fibre diameter facilitates narrow pore sites
for trapping the aerosol and PM particles and enhances the
active surface area [35,36]. Thus, the high BFE of the mask’s
filter media can be linked to the fibre diameters. The stable
air filtration ability of the filter layer was attributed to the
adsorption phenomena of the small sized impurities as per
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Figure 2. FE-SEM micrographs of the face mask sample. (a) Washed sample of spun-bonded outermost layer of face mask, (b) unwashed sample of outermost layer
of face mask, (c) washed sample of melt-blown filter media, (d ) unwashed sample of melt-blown filter media, (e) washed sample of PLA spray-coated layer and
( f ) unwashed sample of PLA spray-coated layer.
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the following five mechanisms: (i) gravity effect, (ii) inertial
impaction, (iii) electrostatic effect, (iv) interception and
(v) Brownian diffusion [37]. These mechanisms might show
variations in filtration capabilities of fibre layers, whereas
the overall filtration performance of protective mask was
determined by the collective performance of several mechan-
isms considering the particle size of particulate impurities in
atmosphere [38,39]. The addition of herbal-extract phyto-
chemicals in layered structure of protective mask facilitated
enhanced filtration efficiency and also it did not affect
the differential pressure, thereby improving the overall
bacterial protection against viral infections and harmful
pathogens [40]. In the present investigation, four-layered
non-woven protective mask with herbal phytochemicals
demonstrated BFE of 99.65% against Staphylococcus aureus
bacteria (as per AATCC 6538 standard), with an average
bacterial count as 10 and average bacterial count for positive
control as 2900. Note that the BFE of the mask without herbal
phytochemicals was found to be 95% as per the above-
mentioned test standards. Thus, it was observed that the
inclusion of herbal phytochemicals helped in enhancing
the BFE of the face mask. This advancement was further
acknowledged by the regulatory agencies. The developed
non-woven protective mask passed European Commission’s
regulatory certification (Certificate No. 17020). The face mask
is currently registered with a trademark name of Aushadatara
Trademark No. 4595855.

The fibre diameter distribution analysis is presented in
figure 3a–f, and its main results are tabulated in table 1. As
depicted, it was found that the outer layer, and spray-
coated layers (both washed and unwashed) exhibited con-
stant fibre diameter in the range of 17–18 µm, whereas the
inner melt-blown layer (washed and unwashed) revealed
fine fibre diameter ranging from 0.731 µm to 1.1 µm. Fibre
distribution analysis showed that all layers possess uniform
fibre diameters, thereby confirming the consistency of face
mask fabrication process.
As per Indian IS 9734:2002 standard, the protective
mask demonstrated low differential pressure and
breathing resistance across layers of protective mask. Details
on the breathing resistance of the face mask are reported in
table 2.
4. Computational analysis and immune-boosting
characteristics

The utilization of herbal phytochemicals was beneficial for
imparting antibacterial characteristics in the developed mask.
An investigation byAli et al. [41] demonstrated the antibacterial
performance of Azadirachta indica (A. indica) against bacteria by
developing an inhibition zone of 14.5 mm,whichwas attributed
to the presence of nearly 140 biologically active constituents.
They argued that the existence of several bioactive compounds
like triterpinoids, alkaloids, asteroids, reducing sugars, flavo-
noids, tannins, phenolic compounds and sesquiterpene
lactones collectively imparted antibacterial activity [41]. Conse-
quently, A. indica has been used in treating various
skin infections, dental problems and skin inflammations [41].
Similarly, Subramani et al. [42] reported cotton fabric func-
tionalized with A. indica nanoparticles which demonstrated
antibacterial activity with zones of inhibition of 34 mm and
31.58 mm against S. aureus and E. coli, respectively. They
claimed that A. indica-coated cotton fabric showed nearly
47% and 45% bacterial reduction efficacy towards E. coli and
S. aureus, respectively. Yadav & Kandasubramanian [9]
showed that A. india engineered polyvinyl alcohol membrane
exhibiting rough texture and cross-linked with egg albumin
demonstrated zones of inhibition of 2.6 cm and 2.8 cm towards
S. aureus and E. coli, respectively. In similar study Yadav &
Kandasubramanian [21] reported antibacterial nanocomposite
prepared using Syzygium aromaticum and electrospun polyacry-
lonitrile (PAN) nanofibres, which revealed antibacterial
performance with zones of inhibition of 1.8 cm and 2.8 cm
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Figure 3. Fibre diameter distribution of (a) washed spray-coated layers, (b) washed melt-blown layers, (c) washed outer layers, (d ) unwashed melt-blown layer,
(e) unwashed outer layer and ( f ) unwashed spray-coated layer at a standard room temperature of 25 ± 2°C.
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against S. aureus and E. coli, respectively, and cell viability
of 100% as per standard NIH/3T3 test. In another study,
Govindaraj et al. [43] reported Curcuma longa (C. longa) oil
embedded PAN membrane films which exhibited anti-
microbial activity against S. aureus and E. coliwith zone of inhi-
bition of 0.8 cm to 1 cm. They claimed that antibacterial efficacy
ofC. longawas attributed to the presence of pleiotropic polyphe-
nolic curcumin (diferuloylmethane) element, which directly
interacted with target molecules and therefore traditionally
used in therapeutic remediation. Verma & Balasubramanian
[44] reported herbal Lantana camara oil-based PAN membrane
films which demonstrated antibacterial resistance against
B. subtilis and E. coli with zones of inhibition of 7–8 mm and
8–10 mm, respectively. They claimed that antibacterial perform-
ance of PAN membrane films was attributed to the collective
presence of α-humulene compound (9.3%), germacrene-D com-
pound (19.8%), bicyclogermacrene (11.7%) andE-caryophyllene
compound (19.7%) in the L. camara oil which drive direct



Table 1. Fibre diameter uniformity analysis.

sample specimen
mean diameter
(µm)

standard
deviation (±)

outer layer unwashed 17.657 0.848

outer layer washed 17.948 0.754

spray-coated layer

unwashed

18.885 0.577

spray-coated layer

washed

17.327 0.421

melt-blown unwashed 1.108 0.444

melt-blown washed 0.731 0.128

Table 2. Average breathing resistance of face mask as per Indian
IS9734:2002 standard.

activity
flow rate (litre
per hour)

average breathing
resistance (Pa)

inhalation 30 30

inhalation 95 110

exhalation 160 175
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molecular interactions with targeted molecules [44]. Similarly,
Balasubramanian & Kodam [45] reported herbal lavender oil
functionalized PAN nanofibres which exhibited antibacterial
resistance against S. aureus with K. pneumoniae with a zone of
inhibition of 14–15 mm. Considering the results discussed in
above-mentioned studies, herbal phytochemicals were found
to be safe in lower concentration for immunity boosting, tra-
ditional home remedies and personal hygiene. Diffusion of
these herbal phytochemicals in low concentration through
fibre layers and subsequent inhalation helps in improving the
immunity boosting, personal hygiene, and gives comfort feel-
ing, e.g. Vicks inhalers, to the mask bearing person [46].
Computational analysis of the phytochemicals as per formu-
lation (A) for countering protein-structured viral and bacterial
targets is significant for predicting the performance of constitu-
ent phytochemicals for impeding thevirus protein structure [47]
(figure 4). Computational investigation of phytochemicals was
performed with scoring function based on LibDock algorithm.

An in silico analysis predicted the performance of structural
characteristics of phytochemicals and protein–ligand complex
for countering multiple bacterial targets. Docking score deter-
mines the structural complementarity of phytochemicals for
analysing the neutralizing characteristics of phytochemicals
against protein structures. Neutralizing performance of phyto-
chemicals is accredited to their excellent docking score and
capacity to undertake an interaction for protein unfolding.
Higher docking score of salanin, arachidic acid, stearic acid
and palmitic acid to counter protein structure of SARS-2 virus
was attributed to the existence of hydrogen bond acceptor and
aliphatic chains as it amplifies hydrogen bonding within
protein–ligand compound due to attraction between electron
lone pair and acceptor positive charge [48]. Aliphatic structure
leads to efficient spin of bonds for occupying the targeted bind-
ing location, thereby improving the docking performance of
constituent chemicals for countering the protein structure
[48,49]. Neutralizing performance of stearic acid to counter the
protein folding of H7N9 virus was enabled due to the presence
of hydrogen bond acceptors. Similarly, the confined perform-
ance of cis-11-octadecanoic acid and arachidic acid to counter
the protein structure of Dengue virus was attributed to the ali-
phatic structure of constituent herbal extracts, leading to an
efficient-binding performance at targeted protein interface.
Structural compatibility of salanin against influenza virus
demonstrated an optimal docking score, resulting in improved
binding of ligand structure against the protein-structured bind-
ing sites. Hindered performance of oleic acid and stearic acid
was significant due to structural compatibility of constituent
chemicals to counter hantavirus. Structural attributes of palmi-
tic acid, stearic acid and oleic acid against hepatitis C virus
demonstrated an enhanced docking score leading to improved
binding of ligand molecules across the protein structures. The
neutralizing performance of oleic acid and linoleic acidwas sig-
nificant for exhibiting structural compatibility against Ebola
virus and herpes simplex virus. Computational analysis
revealed antibacterial/microbial performance of ayurvedic
phytochemicals to counter the protein-structured virus, for
restricting the spread of viral and bacterial infections through
COVID-19 pandemic.

The heat map analysis of constituents (as shown in figure 5)
illustrates the molecular binding characteristics of formulation
(B) for denaturing the virus’s cell wall and/or membrane. Indi-
vidual docking performance of constituent chemicals as per
the high energy of the Ludi algorithm elucidates promising
bioactivity of salanin, nimbin, gedunin and mahmoodin for
inhibiting the potent effect of influenza A virus. The structural
compatibility of the formulation was dominated by pharmaco-
phore of chemical constituentswhichwasmore compatiblewith
the active binding sites of influenzaAvirus. Similarly,molecular
docking performance of salanin, stearic acid and oleic acid
contributewithmild tomoderate binding against the homology
modelled envelopeprotein ofSARS-CoV-2. The structuraldock-
ing was attributed to a combined effect of more hydrogen
acceptors and rotation of bonds in aliphatic structures of stearic
acid and oleic acid. Furthermore, constituent chemicals of
A. indica, S. aromaticum, Santalum album andOcimum tenuiflorum
exhibited potent behaviour against the protein-structured cell
wall (except glycoprotein of herpes virus). Among herbal-
extract major constituents, the bioactivities of stearic acid, lino-
leic acid, oleic acid, palmitic acid, nimbin and nimbolin were
found to be more effective for inhibiting the activity of airborne
viruses. Availability of hydrogen bond acceptors in nimbin and
nimbolin elevates the extent of molecular docking, whereas ali-
phatic characteristics and relatively lowmolecular polar surface
areas of oleic acid, linoleic acid, stearic acid and palmitic acid
facilitate the structural combability against the protein struc-
tures of viruses. The herpes virus wrapping of glycoprotein D
was dominated by chemical constituents of Eucalyptus citriodora
and S. aromaticum due to the optimized energy per unit of the
Ludi algorithm of eugenol, o-cymene and limonene.
5. Contact angle analysis
The surface wetting analysis of spray-coated C6-fluorocarbon
on polypropylene-based non-woven layer against water mol-
ecules was investigated using a contact angle goniometer.
Fluoro molecule-dispersed solution of C6-fluorocarbon
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(TUBIGUARD 30-F) was spray coated [50] on the non-woven
material in such a way that it retained the porous structure of
the non-woven fabric and formed a thin layer of 0.1 µm on
fibre surface. C6-Fluorocarbon includes six carbon-based mol-
ecules in its main structure, bonded to different fluorine
atoms. CHT Group (from Germany) have demonstrated textile
finishing using C6-based fluorocarbon for decreasing the sur-
face energy of spray-coated non-woven surface, for enhancing
the water repellency [51–54]. Static contact angle of spray-
coated C6-fluorocarbon on polypropylene non-woven layer
was found to be 130 ± 2° (outer layer of face mask) and 91.1 ±
2°, respectively (figure 6a,b). CHT Group further investigated
the activity of C6 fluorocarbon for inhibiting the bacterial and
viral contamination due to adsorption of aerosol droplets over
the exposed layer of the protective mask [54].
6. Conclusion
Present study demonstrated functionalization and utilization
of non-woven fabric in a protective face mask for combating
the spread of infectious SARS-CoV-2 virus. The developed
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Figure 6. Contact angle analysis of the outer layer of mask material. (a) Outer layer in face mask and (b) inner side of top layer of face mask.
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four-ply face mask demonstrated BFE of 99.65% and the encap-
sulated herbal extract phytochemicals helped in improving the
immune-boosting of mask wearer. Surface functionalization
of outer layer by spray coating of TUBIGARD 30F generated
hydrophobicity (water contact angle (WCA) of approximately
130°), which facilitated in inhibiting the transmission of
aerosol particles from the surrounding air. Fine fibre diameter
and compact fabric structure supported in effective blocking
of harmful viruses and bacteria. Second layer of face mask con-
sisting of polyester-based melt-blown non-woven filter media
helped in inhibiting transmission of aerosol particles of 5 μm
in size. Third layer of the face mask containing PLA polymer
and herbal phytochemicals helped in enhancing the BFE and
giving immune-boosting through inhalation to mask wearer.
A thorough computational analysis was performed using Lib-
Dock algorithm and showed docking score of herbal
phytochemicals against harmful virus structures. Herbal phyto-
chemical constituents such as salanin, arachidic acid, oleic acid,
linoleic acid, stearic acid and palmitic acid demonstrated prom-
ising results for utilization as immune-boosting agents to
inhibiting the viral infections. The developed four-ply face
maskwas tested against S. aureus (as perAATCC6538 standard)
which showed BFE of 99.65%. Further, the developed facemask
demonstrated sufficient breathability as per the Indian IS
9734:2002 standard which showed breathing resistance of
30 Pa at aerosol flow rate of 30 l h−1.
7. Material and methods
7.1. Material sourcing
PLA (Fiberel, PLA white, 1.75 mm diameter) was obtained from
Rever Industries, Nashik. Dichloromethane (99% pure) was
obtained from Thermo Fisher Scientific India Pvt Ltd. Polyester
fibre-basedmelt-blown non-woven fabric (VN 140 GSM) and poly-
propylene-based spun-bonded non-woven fabric were procured
from Venus Safety and Health Pvt Ltd. A. indica, Eucalyptus citrio-
dora, Santalum album, Cinnamomum camphora, Ocimum tenuiflorum,
S. aromaticum and C. longa L. were obtained fromVishal Chemicals,
Mumbai. Mask thickness was measured using a digital thickness
meter gauge. TUBIGUARD 30-F (C6-fluorocarbon-based dis-
persion solution) and TUBICOAT FIX H26 (cross-linking agent)
were obtained from CHT Group Germany, and the resulting sol-
ution was spray-coated using hand-controlled spray gun.

7.2. Spray-coating technique
Spray-coating solution for formulation A was prepared by
dissolving PLA (2 wt.% of solution) in dichloromethane solvent
under continuous stirring (200 rpm) at room temperature. Herbal
extracts containing A. indica (2 wt.% of solution), Eucalyptus citrio-
dora (1wt.% of solution) and C. longa L. (1 wt.% of solution) were
added to the dispersed solution while maintaining continuous stir-
ring. Other spray-coating solution for formulation B was prepared
by replacing the herbal extracts to Azadirachta indica (1 wt.% of sol-
ution), Santalum album (0.8 wt.% of solution), Eucalyptus citriodora
(0.5 wt.%of solution),Cinnamomumcamphora (0.1 wt.%of solution),
Ocimum tenuiflorum (0.1 wt.%of solution) and Syzygium aromaticum
(0.1 wt.% of solution). PLA/herbal-extract solution was spray
coated on filter media using a customized spray-coating machine,
while maintaining the distance between tip of spray and non-
woven fabric as 1 m to get the optimized thickness for effective fil-
tration efficacy.
7.3. Bacterial filtration efficiency and anti-microbial
characteristics

BFE of the face mask was evaluated as per ASTM-F2101-19
standard [48,55].Aprepared test specimenwas incubatedat a temp-
erature of 21 ± 5°Cand relativehumidityaround85%± 5%for 4 h in
order to adapt adequate operating conditions as per described in
practice E171/E171M. The bacterial culture was prepared using
adequate volume of tryptic soy broth, conditioned at 37 ± 2°C for
duration of 24 ± 2 h in the presence of mild shaking conditions.
The developed bacterial culture was diluted in peptone water for
achieving concentration of 5 × 105 CFU ml−1. The bacterial chal-
lenge delivery rate was adjusted to 1700–3000 viable particles per
test. The flow rates of the bacterial challenge were monitored
using a six-stage viable particle cascade impactor, without any
test specimen to evaluate the effectiveness of aerosol particles
during the testing. The aerosol particles were directed towards
mask material, and the bacterial challenge was delivered to nebuli-
zer using a peristaltic pump and further exposed on the cascade
impactor. Mean particle size of the aerosol droplets was adjusted
at 3 ± 0.3 µm. The test specimen was mounted on the agar plates
and kept in cascade impactor such that outer layer faced the flow
of aerosol particles. The aerosol particles were exposed over the
test specimen for a duration of 2 min, with flow rate adjusted to
28.3 l m−1. After the completion of positive control of test specimen,
agar plates were removed and conditioned at 37 ± 2°C for a time
durationof 48 ± 2 h.Thenegative controlwasobtainedbycollecting
a sample of air on agar plates from specimen chamber after the dur-
ation of 2 min and incubated. The agar plates were counted for
bacterial growth, and BFE of the test specimen mask was deter-
mined by the following equation:

bacterial filtration efficiency (%) ¼ C� T
C

� 100, ð7:1Þ

where C is total average plate count for test controls and T is count
for test sample of plate.
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7.4. Breathing resistance analysis
Breathability of the face mask was evaluated as per Indian IS
9473:2002 [56] standard; the testing was carried out on the
dummy human prototype to analyse the breathing resistance. A
breathing resistance of 30 Pa at aerosol flow rate of 30 l h−1 was
reported under standard temperature and pressure conditions.
The face mask was conditioned by simulating the wearing treat-
ment by adjusting the breathing machine at 25 cycles min−1 and
2 l per stroke. Half filtering mask was affixed on Sheffield dummy
head to evaluate the breathing performance. A saturator was
placed in the exhalation line adjusted at temperature of 37°C, and
saturated airwas adjusted at 37 ± 2°C at themouth interface. The fil-
tering halfmaskswere subjected to thermal cycles at 70 ± 3°C in dry
atmosphere and 30 ± 3°C for duration of 24 h, respectively. Further,
the test specimenwas kept in the enclosure, and the test subject was
subjected towalking at a speed of 6 km h−1 for a duration of 2 min.
Concentration of testing agent was measured inside face mask to
develop the background level and reading was recorded. The test
atmosphere was switched on and the test subject was allowed to
walk for 2 min until the test atmosphere was stabilized. At the
same time the test subject should keep walking at various facial
movements for duration of 10 min. Subsequently, the test atmos-
pherewas turned off, and test agentwas cleared from the enclosure.

7.5. Field-emission scanning electron microscopy
Surface morphology of the non-woven protective face mask was
investigated by using FE-SEM (Model: FE-SEM, Make: Carl-Zeiss
AG, JSM-6700F, Germany). The surface morphology of fine fibre
structures in non-woven fabrics was analysed for assessing the
compactness in surface area of protective face mask. Surface mor-
phology analysis was important for understanding the filtration
characteristics of non-woven layers.

7.6. Contact angle analysis
Surface wetting analysis is important for understanding the inter-
action of liquid-phased aerosol particles in air with mask material
[57]. In the present study, a drop shape analyser (Model: DSA
25E, Make: Kruss GmbH, Germany) was used for the contact
angle analysis. WCA was recorded by placing a standard 8 µl
drop of deionized water on the surface at room temperature of 25
± 2°C, and the contact angle was measured using Young–Laplace
method [15]. WCAwas recorded four times, and the final average
value was taken as standard.

7.7. Computational analysis of phytochemicals
Computational assessment of two separate formulations A and B
(details given in §7.2) of phytochemicals to counter the bacterial
and viral protein structures was performed using docking score-
functioned LibDock algorithm [58,59]. The algorithm was
functioned for docking ligands at active receptor location, support-
ing ligand configurations to polar and non-polar receptor
interactions. Recording of the optimized scoring positions, and the
process mainly depends on binding energy, rotation of bonds and
structural properties [60]. The docking performance of interactions
was improved by Broyden Fletcher Goldfarb Shanno algorithm
along with steady force field minimization. Heat map technique
wasmore precise compared to picto-trendline or dot map for deter-
mining the spread of infectious bacteria and virus [61]. Proteins and
ligands at drug target site were retrieved from protein data-bank
(PDB) structure database. Theoretical models of ligand and protein
structures were used to record the docking score. Main phytochem-
ical constituents of the therapeutic Santalum album, A. indica,
Cinnamomum camphora, Eucalyptus citriodora, Ocimum tenuiflorum,
S. aromaticum andC. longaL.were sourced fromPubChemdatabase.
Raw protein structures were obtained from PDB database. Docking
analysis was performed to investigate improved binding activity of
constituent phytochemicals by insertion of missing atoms in incom-
plete residues and modelling of missing loop areas, removing
alternative conformations, standardizing the atom names and
removing destructive steric clashes. The molecular interactions
within ligand and receptor were recorded by analysing molecular
docking performance, using computer-aided drug design and
structural molecular biology.
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