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Metabolic reprogramming is one of the hallmarks of tumorigenesis. Understanding the
metabolic changes in cancer cells may provide attractive therapeutic targets and new
strategies for cancer therapy. The metabolic states are not the same in different cancer
types or subtypes, even within the same sample of solid tumors. In order to understand
the heterogeneity of cancer cells, we used the Pareto tasks inference method to
analyze the metabolic tasks of different cancers, including breast cancer, lung cancer,
digestive organ cancer, digestive tract cancer, and reproductive cancer. We found that
cancer subtypes haves different propensities toward metabolic tasks, and the biological
significance of these metabolic tasks also varies greatly. Normal cells treat metabolic
tasks uniformly, while different cancer cells focus on different pathways. We then
integrated the metabolic tasks into the multi-objective genome-scale metabolic network
model, which shows higher accuracy in the in silico prediction of cell states after gene
knockout than the conventional biomass maximization model. The predicted potential
single drug targets could potentially turn into biomarkers or drug design targets. We
further implemented the multi-objective genome-scale metabolic network model to
predict synthetic lethal target pairs of the Basal and Luminal B subtypes of breast
cancer. By analyzing the predicted synthetic lethal targets, we found that mitochondrial
enzymes are potential targets for drug combinations. Our study quantitatively analyzes
the metabolic tasks of cancer and establishes cancer type-specific metabolic models,
which opens a new window for the development of specific anti-cancer drugs and
provides promising treatment plans for specific cancer subtypes.

Keywords: cancer metabolism, metabolic network, metabolic task, multi-objective, synthetic lethality

INTRODUCTION

Metabolic reprogramming is one of the hallmarks of tumorigenesis (1) Understanding the
metabolic changes in cancer cells provides attractive therapeutic targets, and new strategies for
cancer therapy (2). Altered metabolic activity is vital for sustaining uncontrolled proliferation,
evasion of growth suppression, resistance of cell death and the metastasis to other areas. Cancer
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cells have many metabolic characteristics. In order to provide
enough energy source for rapid proliferation, cancer cells involve
a shift from mitochondrial metabolism toward glycolysis, even in
the presence of oxygen, which is called Warburg effect (3).

The metabolic states are not the same in different cancer
types or subtypes, even within the same sample of solid tumors.
Metabolic reprogramming is largely based on genetic changes
and environment (4, 5), and those different reprogramming
routes contribute to metabolic heterogeneity. Many researches,
including transcriptomics (6), proteomics (7) and metabolomics
(8), show metabolic heterogeneity across cancer types. Although
in most cancers, nucleotide synthesis and glycolysis are
upregulated, others, like oxidative phosphorylation, vary a lot
(6). Cancer subtypes also display diverse metabolic phenotypes.
For instance, triple negative breast cancers (TNBCs) rely more
on glucose and glutamine uptake than ER+ breast cancers (9).
Understanding metabolic heterogeneity is of significance for
identifying metabolic vulnerabilities susceptible to therapeutic
targeting (2).

Taken into consideration of all those metabolic objectives,
it is impossible to simply synthesize one key general criterion
for all cancer types, even subtypes that originate from the
same tissue. In comparison of experimental and model-predicted
flux, Schuetz et al. demonstrated that the combination of two
or three metabolic objectives and modeling by Flux Balance
Analysis (FBA) offers a better performance for the explanation
of flux distribution in microbe modeling (10, 11). The theory
of evolutionary trade-offs can shed light on the biological
significance of multi-task optimization, as cells need to perform
multiple tasks that all contribute to fitness in gene expression
space (12, 13). Using a multi-objective genome-scale metabolic
model is a reasonable approach to improve the accuracy and
prediction ability of genome-scale metabolic network modeling
in evolutionary terms (14).

In order to understand the heterogeneity of cancer cells, we
construct a multi-objective metabolic model (MOMM) using
transcriptomics data of different cancer types. Specifically, we
studied breast cancer, lung cancer, digestive organ cancer,
digestive tract cancer, and reproductive cancer. To evaluate
our methodology, we applied MOMM in the prediction of
cell viability. We implemented MOMM to predict synthetic
lethal target pairs, and many of the top-ranking pairs have
been reported as lethal target pairs in previous experimental
studies. Our analysis showed that the number of activated
synthetic lethal target pairs is a good marker of patient
survival time. This study opens a new window for the
development of anti-cancer drugs and provides promising
treatment plans for cancer.

MATERIALS AND METHODS

Pre-processing of Data
The transcriptomics data used in this study comes from
TCGA (15). Cancer types include breast cancer, lung
cancer, digestive organ cancer, digestive tract cancer, and
reproductive organ cancer.

(1) Breast cancer contains 1,215 samples, with four PAM50
subtypes and normal types, as well as unknown types.
Among them, the basal subtype of breast cancer contains
142 samples, the luminal A subtype contains 423 samples,
the luminal B subtype contains 194 samples, the HER2
subtype contains 67 samples, and the normal cell
contains 137 samples.

(2) Lung cancer contains 1,129 samples, with two
pathological types and normal types. Among them, lung
adenocarcinoma contains 517 samples, lung squamous
cell carcinoma contains 502 samples, and normal type
contains 110 samples.

(3) Digestive organ cancer contains 651 samples, and there
are three cancer subtypes and normal types. Among them,
liver cancer contains 373 samples, bile duct cancer contains
36 samples, pancreatic cancer contains 179 samples, and
normal cell contain 63 samples.

(4) digestive tract cancer contains 444 samples, and there are
two cancer subtypes and normal types. Among them, colon
cancer contains 288 samples, rectal cancer contains 95
samples, and normal type has 51 samples.

(5) Reproductive organ cancer contains 874 samples, and there
are four cancer subtypes and normal types. Among them,
ovarian cancer contained 308 samples, endometrial cancer
contained 177 samples, cervical cancer contained 305
samples, uterine carcinosarcoma contained 57 samples,
and normal cells contained 27 samples.

The genome-wide metabolic network used in the model is
the Recon 1 model supplemented by Duarte et al. (16). On
top of this, we imposed additional constraints on the intake
of 20 amino acids and important metabolites (Supplementary
Table 4). The network used in the simulation contains 4,924
metabolic reactions (reversible reactions are disassembled and
counted as 2 reactions, so that the flow rate is non-negative,
which is convenient for subsequent calculations) and 2,767
metabolites. By comparing the existence of metabolic genes in
the metabolic network in the transcriptome data, we obtained a
total of 1,442 metabolic-related gene expression profile data for
subsequent analysis.

Inference of Metabolic Tasks Using
Pareto-Tasks Inference Method
We used Pareto-tasks inference method to interpret the number
of metabolic tasks (17). By using the default algorithm, we used
three criteria to evaluate the propriate number of tasks. (1)
Simplicity: The greater the number of metabolic tasks, the greater
the explained variance and the more information it contains, but
more complex the model will be. We used the Elbow plot to find
the best trade-off task number between information content and
model complexity. (2) Interpretability, we used the t-ratio test,
the smaller the P-value. The more explanatory the model is for
biological significance. (3) Stability: The average error value of the
vertex position of the multi-objective model is calculated by the
bootstrapping method. The smaller the average error value, the
stronger the model stability.
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Evaluation of Multi-Objective Metabolic
Model
The relationship between gene expression and survival
probability is represented by hazard ration (HR). Genes
with HR > 1 means that their low expression corresponds
to high survival probability; genes with HR < 1 means that
their high expression corresponds to high survival probability.
We select genes whose objective function value are within[
Objmin + 0.1∗

(
Objwt − Objmin

)
, Objwt

]
after their knockout

to calculate their receiver operating characteristic (ROC) curve,
where Objwt is the wild-type objective function value before
gene knockout simulation, Objmin is the minimum value of
the objective function in all gene simulations, that is, the
most affected state.

Integration of Metabolic Tasks and
Genome-Scale Metabolic Network Model
The metabolic tasks that predicted by Pareto task inference
(ParTI) method are represented by the metabolic gene expression
level. Integrating the metabolic tasks into the genome-scales
metabolic network is essentially integrating the gene expression
to the flux model.

First, we mapped the gene expression level to metabolic
enzyme expression level. In the genome-scale metabolic network,
the relationship between reactions and genes and proteins is
connected by gene-protein-reaction (GPR) relationships, which
are Boolean expressions between transcripts, proteins, and
the corresponding reactions. Isozymes are represented by OR
relationship, and we used the sum of the expression of isozymes
as the total expression of the enzyme. If the protein contains
multiple subunits, it is represented by AND relationship. We
used the minimum value of the subunits to represent the total
expression of the enzyme.

r1 g1ORg2 sum(g1, g2)

r2 g3ANDg4 min(g3, g4)

Then, we integrated the enzyme expression to flux by E-Fmin
method (18),

max
∑
i

wivi (1)

Subject to,

S = 0 (2)

vL ≤ ν ≤ νU (3)

ε ≤ vbiomass (4)

Where wi is the function of enzyme expression, wi = ri − 1,
ri is the normalized enzyme expression. vi is the flux of the ith
reaction. S is the stoichiometric matrix (m× n), m represents
the number of metabolites, n represents the number of reactions.
ν is the sum of n flux, vL and νU are the lower and upper
bound of ν. vbiomass is the flux of biomass, its lower bound ε

depends on the real situation. Through the prediction of the
model, we can calculate the optimal flux distribution of the
corresponding metabolic task.

In silico Simulation of Gene Knockouts
We used minimization of metabolic adjustment (MOMA) to
calculate the flux distribution after knockout (19). Essentially, we
use this method to find new flux distribution which is the closest
to the original flux distribution in new feasible area.

D (w, x) =

√√√√ N∑
i = 1

(wi − vi)2 (5)

Where w is the original flux distribution, wi is the ith flux,
v ∈ φj is the flux distribution after knockouts, vi is the ith flux
after gene modification, N is the number of fluxes. D (w, v)
represents the Euclidean distance between w and v. We want
to find v which let D minimizes. So we turn (5) into (6), i.e.,
minimize,

f (x) = L · v+
1
2
vTQv (6)

Where L and Q are the linear and quadratic parts of the
objective function, the length of L is N, the size of Q is N × N, vT
is the transpose of v. Minimizing (6) is equivalent to minimizing
the quadratic formula inside the rood, and the constant term
after expansion can also be ignored. Therefore, minimizing D
is equivalent to minimizing f(v). If only the optimal solution
exists, and the feasible region is not empty after adjustment, we
can always find a solution to this optimization problem. The
uniqueness of the solution is guaranteed by the convexity of f(v).

Identification of Synthetic Lethality Pairs
We simulated the paired knockouts of all genes in the metabolic
network, and used MOMA to calculate the flux distribution
afterward. According to “highest single agent” synergy model
(20), i.e., synthetic lethality pair represents the combined effect
outperforms either its single component. Here, we exclude
“transport” and “exchange” related reactions, and only consider
intracellular reactions.

We introduce Impact Score (IS) to represent the impact
of the cell after knockouts. IS = (objmax − objval)/(objmax −

objmin), where objmax represents the maximum of the objective
function, which is the original value without gene modification;
objmin represents the minimal objective function value in
all the combined knockout simulations; objval represents the
corresponding objective function value after the specific gene
pair knockouts. We choose gene pairs with IS ≥ 0.5 in the
following analysis.

For survival analysis in synthetic lethality pairs evaluation, we
choose the breast cancer GEO data set, with 1,809 patients (21).
And we use the subtype classification method derived by Mihály,
etc., to category the sample (22).

RESULTS

The Dominant Metabolic Tasks for
Cancers
We used multi-objective metabolic model (MOMM) to answer
the questions of how many and what are the dominant metabolic
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tasks for a specific type of cancer. We assume that every
single cell should be in a Pareto-optimal situation in order to
survive. Here, we used TCGA gene expression data by RNA-
seq (data was obtained from UCSC Xena)1 to build the model.
Only metabolism-related expression profile data were used. The
metabolism-related genes were defined as the genes that are
involved in the metabolic reactions in Recon 1, a commonly used
genome-scale metabolic network (16), and at the same time, have
expression records in the TCGA data set (Details of data were
shown in Supplementary Table 1).

According to the theory of evolutionary trade-offs between
tasks, whole-cell gene expression can fall into a low-dimensional
polytope whose vertices are the optimal points in each task
alone (12, 13). We therefore inquired whether a low-dimensional
polytope (e.g., line, triangle, or tetrahedron) could enclose
the metabolism-related gene expression data. We used the
ParTI method to fit the metabolism-related transcriptomics data
into a low-dimensional polyhedron, in which each vertex, i.e.,
archetype, represents an optimal phenotype for a single metabolic
tasks (17). This approach was used in many biological contexts,
including population and single-cell level gene expression
(13, 23).

The more the metabolic tasks are, the more accurate
the model, but less simplicity. To identify the dominant
metabolic tasks that can cover as much information as
possible without being overly complicated, we set three
criteria: simplicity, interpretability, and stability (see section
“Materials and Methods”). Simplicity represents the complexity
level of metabolic tasks model and is analyzed by explained
variability of different number of archetypes. Interpretability
represents the biological significance of the calculated metabolic
tasks, i.e., the description of the data of these metabolic
tasks. Stability requires that the metabolic tasks are not
changed along with the sample size changes, and is calculated
by bootstrapping.

By applying these criteria, we found that the combination
of three dominant metabolic tasks is the best representation
for breast cancer (Figures 1A–C). Although the combination of
four metabolic tasks also works comparably, it adds more model
complexity and is less stable.

Applying the same criteria, we found that the combination of
three metabolic tasks is the best representation for lung cancer
(Figures 1D–F). From the perspective of simplicity and stability,
models with three tasks are the optimal modeling direction.
However, from an interpretability point of view, models with
three or four metabolic tasks are similar. Therefore, we choose
three tasks for the follow-up analysis of lung cancer.

We also analyzed the metabolic tasks in digestive organ
cancers (include liver cancer, bile duct cancer, and pancreatic
cancer), digestive tract cancers (include colon cancer and rectal
cancer) and reproductive system cancers (include ovarian cancer,
endometrial cancer, cervical cancer, and uterine carcinosarcoma).
The models for digestive organ cancers, digestive tract cancers
and reproductive system cancers contain four, three, and three
dominating metabolic tasks, respectively (Details were given in
Supplementary Material).

1http://xena.ucsc.edu/

The Biological Significance of Metabolic
Tasks
Based on the estimation of the number of metabolic tasks,
we further analyzed the biological significance of metabolic
tasks, including their corresponding subtype information and
biological functions. We mainly focus on the breast cancer and
lung cancer. In terms of the propensity of different subtypes of
metabolic tasks, we calculate the degree of enrichment of the
subtypes around the metabolic task. We inferred the significance
of the metabolic task through the gene sets that enriched
around the metabolic task. Through the analysis of the cancer
subtype enrichment, we found that different cancer subtypes
have different metabolic task tendencies, and their biological
significance is also quite different.

By analyzing the PAM50 subtypes of breast cancer, including
luminal A subtype, luminal B subtype, basal subtype, HER2
subtype, and normal subtype, we found that luminal B, basal and
normal subtype have clear metabolic task tendency (Figure 2).

Luminal B accounts for about 35% of breast cancer, and is
estrogen receptor (ER) positive, and either human epidermal
growth factor receptor 2 (HER2) positive or negative (24).
We found that luminal B has dominated energy metabolism
(Hypergeometric test P-value <1×10−4). There are only
two enriched kyoto encyclopedia of genes and genomes
(KEGG) metabolic pathways of Luminal B subtype, namely
steroid synthesis and oxidative phosphorylation (Supplementary
Table 2). That is, the gene expression levels of these two metabolic
pathways are significantly higher than other metabolic tasks.
Steroid hormones can exert their mitogenic effects by binding
to estrogen, progesterone and androgen receptors (25). Targeting
steroid synthesis pathway to control the development of luminal
B cancer has been clinically applied, such as the treatment
using anastrozole, a competitive inhibitor of androgen synthesis
(26). Oxidative phosphorylation is related to energy production
and cell metabolism intermediate production. Experiments at
the cellular level have shown that luminal B cell line is more
active in oxidative phosphorylation, and inhibiting the upstream
regulatory pathway of oxidative phosphorylation, i.e., mTOR
pathway, can reduce cell respiration, while has no effect on basal
subtype (27).

Basal subtype is also known as triple-negative breast cancer,
the overlap of the two subtypes is about 70–80% (28). Basal
subtype accounts for about 10–20% of breast cancer with
poor survival rate (29). Basal subtype tends to accomplish
rapid proliferation (Hypergeometric test P-value < 1 × 10−4).
It enriches six KEGG metabolic pathways, including folic
acid synthesis, oxidative phosphorylation, glyoxylic acid and
dicarboxylic acid metabolism, etc (Supplementary Table 2). Folic
acid is a carbon donor for one-carbon metabolism. Folic acid
supports the production of NADPH, nucleotide production and
methylation. Cancer cells up-regulate the folic acid metabolism
pathway that is related to DNA production and cell growth
(30). Basal subtype also enriches oxidative phosphorylation
pathway. Clinical studies have shown that targeting oxidative
phosphorylation provides an effective way to treat basal subtype
(31, 32). Glyoxylic acid and dicarboxylic acid pathways are highly
expressed in basal breast cancer (33).
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FIGURE 1 | Determination of the number of metabolic tasks. (A) Simplicity, the elbow plot of the number of metabolic tasks and the explained variance in breast
cancer. The point with the largest distance is the best trade-off point between the amount of information and model complexity. This figure show three-task model is
the best. (B) Interpretability, P-value of t-ratio test for different metabolic target numbers of breast cancer. (C) Stability, the average variance of the vertices position of
breast cancer. (D–F) Lung cancer.

Normal cells tend to fulfill the metabolic tasks other than
cancer tasks (Hypergeometric test P-value < 1 × 10−4).
Interestingly, there are 60 gene sets enriched for normal
cells metabolic tasks, far exceeding luminal B and basal. The
metabolic tasks of normal cells should be maintaining metabolic
homeostasis, such as the balance of redox potential and the stable
rhythm of the circadian clock.

We performed the same analysis for lung cancer (Figure 3).
There are two pathological types and the normal type of lung
cancer samples. The pathological types are lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC).

Through the enrichment analysis of the KEGG metabolic
pathway for lung cancer metabolic tasks, we found that
LUSC cancer cells tend to complete the metabolic task
3 (Hypergeometric test P-value <1×10−4), but with no

significantly enriched KEGG metabolic pathways. However, the
metabolism task 1, which normal cells tend to accomplish
(Hypergeometric test P-value < 1 × 10−4), has 36 KEGG
metabolic pathways significantly enriched. As no enriched
KEGG metabolic pathways were found in LUSC, in order to
understand the biological significance of the metabolic task
of cancer cells, we alternatively conducted enrichment analysis
of the REACTOME metabolic pathways and found that the
metabolic tasks of LUSC enriched in six pathways, including
basic immunoglobulin interactions, vascular wall cell surface
interactions, and amino acids synthesis and transamination,
glycolysis, Gastrin-CREB signaling pathways through PKC and
MAPK, and purine nucleoside monophosphate biosynthesis,
which as a whole, are related to biomass production and energy
production. Normal cellular metabolism tasks are enriched in 33
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FIGURE 2 | Schematic representation of the three-task of breast cancer and enrichment analysis of breast cancer subtypes. (A) The vertices in the figure represent
the best metabolic tasks. The ellipse represents the error value calculated by the bootstrap method. The dots represent patient samples, and the color represents
the clinical molecular subtype of PAM50. See the legend at the top right. (B–D) The enrichment distribution relative to the three metabolic tasks of basal, luminal B,
and normal type. The horizontal axis represents the Euclidean distance ranking of the data bin (see section “Materials and Methods” for definition) and the metabolic
task, and the vertical axis is the degree of enrichment, which is defined as the ratio of the density of the subtype in this bin to the overall density.

REACTOME pathways, and are related to the maintenance of
tissue function and homeostasis. No highly enriched pathways
are found for LUAD.

The reason that there are more metabolic pathways enriched
in normal cells than cancer cells is largely because normal cells
need to maintain function and body homeostasis, while cancer
cells do not have clear physiological functions, but only to meet
the monolithic requirements of proliferation and migration.

Multi-Objective Metabolic Model
Outperforms Classical Objective
Function in Gene Knockout Simulations
We use MOMM to simulate gene knockout to predict cell state.
In order to verify the predictive power of the model, we compare
the MOMM prediction results with the maximization of biomass
production model.

We first use Kaplan–Meier online analyzer2 to analyze the
effect of gene expression on the survival probability of breast
cancer patients. This online tool collected the relationship
between the expression levels of 22,277 genes in 1,809 patients
and the prognosis of cancer patients (34). We selected genes
that have effect on cells after knockout, and compared the ROC
curves of the two models. The selection criteria of genes and the

2http://kmplot.com/

calculation method of ROC curve are shown in section “Materials
and Methods.”

We used breast cancer basal and luminal B subtype specific
MOMM to simulate the impact of all metabolic gene knockout
on cells, and the ratio of the deviation degree of the objective
function value was used to express the degree of the gene
knockout effect. We found that our model performed better than
the maximize biomass model (Figures 4A,B).

Subsequently, we also used the CRISPR-Cas9 gene knockout
database of cell line data to further compare MOMM and biomass
model. We obtained the Boolean relationship matrix between
cell lines and gene essentiality from the DepMap database3. The
essentiality means that after knocking out with CRISPR-Cas9,
it has a significant impact on the adaptability of the cell. We
define that for the same type of cell line, if a gene is necessary
in at least one cell line, this gene is also necessary for this
type of cancer. See the Supplementary Table 3 for the cell type
classification of cell lines.

We used the model to predict the basal and luminal B subtype,
lung adenocarcinoma in lung cancer, liver cancer in digestive
organ cancer, colon cancer in digestive tract cancer, and ovarian
cancer in reproductive organ cancer. We found that MOMM
outperforms the maximization of biomass production in all these
cancer types (Figures 4C–H).

3https://score.depmap.sanger.ac.uk/
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FIGURE 3 | Schematic representation of the three-task of lung cancer and enrichment analysis of lung cancer subtypes. (A) The vertices in the figure represent the
best metabolic tasks. The ellipse represents the error value calculated by the bootstrap method. The dots represent patient samples, and the color represents the
clinical molecular subtype of PAM50. See the legend at the top right. (B,C) The enrichment distribution relative to the three metabolic tasks of LUSC and normal
type. The horizontal axis represents the Euclidean distance ranking of the data bin (see section “Materials and Methods” for definition) and the metabolic task, and
the vertical axis is the degree of enrichment, which is defined as the ratio of the density of the subtype in this bin to the overall density.

Exploration of Potential Synthetic
Lethality Gene Pairs of Breast Cancer
Subtypes
Synthetic lethality refers to the phenomenon that when two genes
are interfered at the same time, it will cause cell death, while
single ones will not be lethal (35). The interference includes loss of
function mutation, RNA interference (RNAi), and drug therapy.

We used MOMM to perform pairwise knockout simulations
for all reactions, to calculate the value of the objective function
after double knockout, and used the highest single agent method
to determine whether it is a valid combination (see section
“Materials and Methods”). For luminal B subtype, there are 9,854
synthetical lethality pairs (SLPs). For basal subtype, there are
11,198 SLPs. Tables 1, 2 list the top 20 SLPs for basal and luminal
B, respectively.

We found that the top 1 and 2 SLPs in both basal and
luminal B are the same, one is glutathione oxidoreductase
(also named as glutathione reductase, GR) and cytochrome c
oxidase, mitochondrial complex IV (COX), the other is L-lactate
dehydrogenase (LDH) and ubiquinol-6 cytochrome c reductase,
mitochondrial complex III (UQCR).

Glutathione reductase is an antioxidant that catalyzes the
reduction of glutathione disulfide to glutathione, and its
high expression is related to the resistance of cancer cells
to oxidative stress (36). COX is the last enzyme in the
mitochondrial respiratory chain. It is the oxygen receptor of the

respiratory chain and catalyzes the reduction of oxygen to water.
Anthracyclines such as daunomycin (DAU) and doxorubicin
(DOX) are breast cancer chemotherapy drugs, and their side
effects are that they can cause cardiomyopathy during long-term
treatment (37, 38). Both DAU and DOX can inhibit COX and
promote the production of ROS, and the inhibitory effect is
related to the dose of the drug (39). Flavonoids are inhibitors
of glutathione reductase (40). Studies have shown that flavonoid
inhibitors can reduce the cardiotoxic side effects of anthracyclines
(41). Breast cancer cell line experiments have shown that the
combined use of flavonoid drug quercetin and anthracycline
DOX has better anti-tumor effect on highly aggressive breast
cancer cells than the effect of single use, and weakens the side
effects of DOX on non-tumor cells (42). Our results provide
another theoretical basis for the combined use of flavonoids and
anthracyclines in cancer treatment.

Lactate dehydrogenase catalyzes the conversion of lactic acid
to pyruvate, and is usually highly expressed in breast cancer
(27). LDH is located in the mitochondrial matrix. UQCR is
overexpressed in breast cancer, and its knockdown can reduce
the aggressiveness of breast cancer (43). Jeong et al. found that
after inhibiting LDH in Chinese hamster ovary (CHO) cells, the
respiration rate of the cells increased and they were more sensitive
to UQCR inhibitor Antimycin A. After inhibiting both LDH
and UQCR, cell activity decreased more than UQCR alone was
inhibited (44).
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FIGURE 4 | Comparison between MOMM and the maximization of biomass model. (A,B) The survival comparison of basal and luminal B, the green line represents
MOMM, and the red line represents the biomass model. The shade of the color represents the degree of influence on the objective function, the darker the color, the
stronger the influence, and the 10% influence degree of the original function is used as the threshold. (C–H) Comparison of the accuracy of MOMM and the biomass
model on the CRISPR-Cas9 knockout gene database DepMap.
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TABLE 1 | The top 20 SLPs of basal breast cancer.

Reaction A Reaction B ISa

Glutathione oxidoreductase Cytochrome c oxidase, mitochondrial Complex IV 1.000

L-Lactate dehydrogenase, cytosolic/mitochondrial Ubiquinol-6 cytochrome c reductase, Complex III 0.989

Cytochrome c oxidase, mitochondrial Complex IV Acetyl-CoA carboxylase 0.987

Hydrogen peroxide synthesis (NADPH dependent) Cytochrome c oxidase, mitochondrial Complex IV 0.980

Phosphofructokinase Cytochrome c oxidase, mitochondrial Complex IV 0.979

Triose-phosphate isomerase forward Cytochrome c oxidase, mitochondrial Complex IV 0.975

Glutathione peroxidase, mitochondria forward Cytochrome c oxidase, mitochondrial Complex IV 0.970

Cytochrome c oxidase, mitochondrial Complex IV Acetyl-CoA C-acetyltransferase, mitochondrial forward 0.969

Inorganic diphosphatase Cytochrome c oxidase, mitochondrial Complex IV 0.969

Pyruvate dehydrogenase Cytochrome c oxidase, mitochondrial Complex IV 0.967

L-lactate dehydrogenase backward Ubiquinol-6 cytochrome c reductase, Complex III 0.964

Acetyl-CoA C-acetyltransferase backward Cytochrome c oxidase, mitochondrial Complex IV 0.945

Cytochrome c oxidase, mitochondrial Complex IV Acetoacetyl-CoA:acetate CoA-transferase forward 0.944

Ribulose 5-phosphate 3-epimerase forward Cytochrome c oxidase, mitochondrial Complex IV 0.939

ATP synthase (four protons for one ATP) Acetyl-CoA carboxylase 0.937

Ubiquinol-6 cytochrome c reductase, Complex III Acetyl-CoA C-acetyltransferase, mitochondrial forward 0.933

Retinol dehydrogenase (all-trans, NADPH) forward Cytochrome c oxidase, mitochondrial Complex IV 0.931

Fructose-bisphosphate aldolase forward Cytochrome c oxidase, mitochondrial Complex IV 0.930

Nucleoside-diphosphate kinase (ATP:dTDP) forward Cytochrome c oxidase, mitochondrial Complex IV 0.925

Fatty-acid–CoA ligase forward Cytochrome c oxidase, mitochondrial Complex IV 0.923

a IS, Impact Score, definition is given in section “Materials and Methods”.

TABLE 2 | The top 20 SLPs of luminal B breast cancer.

Reaction A Reaction B IS

Glutathione oxidoreductase Cytochrome c oxidase, mitochondrial Complex IV 1.000

L-Lactate dehydrogenase, cytosolic/mitochondrial Ubiquinol-6 cytochrome c reductase, Complex III 0.975

Hydrogen peroxide synthesis (NADPH dependent) Cytochrome c oxidase, mitochondrial Complex IV 0.968

Triose-phosphate isomerase forward Cytochrome c oxidase, mitochondrial Complex IV 0.966

Glutathione peroxidase, mitochondria forward Cytochrome c oxidase, mitochondrial Complex IV 0.962

Cytochrome c oxidase, mitochondrial Complex IV Acetyl-CoA C-acetyltransferase, mitochondrial forward 0.960

Inorganic diphosphatase Cytochrome c oxidase, mitochondrial Complex IV 0.958

L-lactate dehydrogenase backward Ubiquinol-6 cytochrome c reductase, Complex III 0.956

Pyruvate dehydrogenase Cytochrome c oxidase, mitochondrial Complex IV 0.955

Cytochrome c oxidase, mitochondrial Complex IV Acetyl-CoA carboxylase 0.951

Acetyl-CoA C-acetyltransferase backward Cytochrome c oxidase, mitochondrial Complex IV 0.937

Fructose-bisphosphate aldolase forward Cytochrome c oxidase, mitochondrial Complex IV 0.935

Cytochrome c oxidase, mitochondrial Complex IV Acetoacetyl-CoA:acetate CoA-transferase forward 0.935

Phosphofructokinase Cytochrome c oxidase, mitochondrial Complex IV 0.932

ATP synthase (four protons for one ATP) Acetyl-CoA carboxylase 0.923

Ubiquinol-6 cytochrome c reductase, Complex III Acetyl-CoA C-acetyltransferase, mitochondrial forward 0.921

Retinol dehydrogenase (all-trans, NADPH) forward Cytochrome c oxidase, mitochondrial Complex IV 0.920

Nucleoside-diphosphate kinase (ATP:dTDP) forward Cytochrome c oxidase, mitochondrial Complex IV 0.915

Nucleoside-diphosphate kinase (ATP:dUDP) forward Cytochrome c oxidase, mitochondrial Complex IV 0.913

Cytochrome c oxidase, mitochondrial Complex IV Aspartate transaminase forward 0.907

We also counted the frequency of metabolic reactions in
the SLPs, and found that mitochondrial energy metabolism-
related enzymes occur most frequently, including ATP synthase
(four protons for one ATP), acetyl-CoA carboxylase, cytochrome
c oxidase, NADH dehydrogenase, ubiquinol-6 cytochrome c
reductase, pyruvate dehydrogenase, acetate CoA-transferase. This

suggests the importance of mitochondrial-related enzymes in
combination medication. In fact, the inhibition of mitochondria
already has some applications in tumor treatment. Wang et al.
combined treatments targeting mitochondria and radiotherapy
to reduce the growth of multidrug resistant tumors without
significant systemic toxicity (45). Inhibition of mitochondria can
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FIGURE 5 | The survival curve of the high and low SLP level. (A) Basal subtype; (B) Luminal B subtype.

FIGURE 6 | The determination of the relationship between the threshold of activated SLP levels and survival prediction in basal subtype. (A–D) The thresholds for the
number of high-level SLPs are the top 10, 20, 30, and 50%, and the thresholds for the number of low-level SLPs are the bottom 10, 20, 30, and 50% of all patients.

also overcome dose toxicity. In addition to reduce cardiotoxicity
of anthracyclines, it can also reduce the systemic toxicity
of glycolysis inhibitors. Cheng et al. used mitochondrial

inhibitors and glycolysis inhibitor 2-deoxy-D-glucose treatment
of basal subtype of human breast cancer xenograft model,
and found that the tumor size was significantly reduced, and
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the kidney, liver, and heart had no obvious morphological
changes (46).

Other lethal combinations for which there is no direct
experimental or clinical evidence may provide new guidelines
for combination drug design. Most metabolic pathways also play
important roles in normal cells, so the design of combination
drugs may reduce the dosage of single drugs and avoid
serious side effects.

We also compared the ranking of SLPs in single-target
models. In most cases, the two targets in one top-ranking
SLP pair do not rank high at the same time in single-target
analysis. For example, combination of GR and COX of the
Basal subtype is the top 1 SLP, while GR ranks 214th and COX
ranks 4th in Basal single-target analysis. For the Luminal B
subtype, combination of GR and COX are also the top 1 SLP,
while GR ranks 139th and COX ranks 5th in the single-target
analysis of Luminal B.

The Number of Activated Synthetic
Lethality Gene Pairs as a Marker for
Relapse-Free Survival
We analyzed the correlation between SLPs and breast cancer
patient survival to evaluate the model. Patients data come from
Györffy et al. (21). It should be pointed out that we did not
select TCGA data that used to infer metabolic tasks to avoid
circular reasoning. The data set contains 230 basal patients and
265 luminal B patients. We define activated SLPs as SLPs with
low expression of gene A and high expression of gene B. We
calculated the number of activated SLPs in patients with different
subtypes. When the number of activated SLPs in the patient is
higher than three-quarters of the number of activated SLPs in all
patients of this subtype, we define that the patient has a high level
of activated SLPs. When the patient’s activated SLPs is less than a
quarter of all patients of this subtype, we define that the patient
has a low level of activated SLPs.

We found that the number of activated SLPs can be used as
an indicator of relapse free survival (RFS). Patients with higher
survival probability have less activated SLPs, possibly due to
less severe disorders of the patients’ metabolic network. While
patients with lower survival probability have more activated SLPs
(Basal: HR = 2.54, P-value = 1.13× 10−3; Luminal B: HR = 2.12,
P-value = 1.15× 10−2; Figure 5).

In addition, the stricter the threshold for judging the number
of activated SLPs, the more obvious the predictive effect on
survival (Figure 6). HR > 1 means that patients are more
likely to have cancer recurrence. The larger the HR is, the
more dangerous situation the patients are in. When we decrease
the threshold for distinguishing the number of activated SLPs,
the value of HR will be lower, which proves the predictive
effect of our model. If we choose 10% as threshold, i.e., high-
level SLPs are the top 10% and low-level SLPs are the bottom
10% of all patients, HR is 3.99 (P-value = 8.19 × 10−4). HR
is 2.53 (P-value = 1.13 × 10−3) when 20% is the threshold;
HR is 2.40 (P-value = 2.77 × 10−4) when 30% is the
threshold; and HR is 1.81 (P-value = 1.64 × 10−3) when 50%
is the threshold.

DISCUSSION

Due to the lack of fluxomics data, we used transcriptomics data
instead to defer the metabolic tasks. Although transcriptomics
data and fluxomics data are positively correlated, there are
discrepancies due to the presence of post-transcriptional
regulation and translation process regulation (47, 48). More
experimental fluxomics data in the future will help to improve
the current analysis.

Metabolic heterogeneity not only exists among different
cancer subtypes, but also among patients within the same cancer
subtype. When patient-specific transcriptomics data are available,
personalized drug targets and treatment plans can be predicted.
Along with the rapid development of single cell technologies,
heterogeneity of cancer cells within one cancer tissue of a
patient can be analyzed and treatment plans considering the
diversity and spatial arrangement of the cancer cells can be
given. Moreover, the tumor-associated immune cells also have
metabolic reprogramming during tumor progression to facilitate
the escape of tumor cells from immune surveillance (49, 50). Our
metabolic tasks analysis method may also be used to uncover
the metabolic regulators in the tumor-associated immune cells
in future studies.

Metabolic reprogramming is a key feature and vulnerable
point of cancer cells. Predictive mathematical modeling
can incorporate multiple levels of data to enable a better
understanding of metabolic reprogramming in cancer cells and
uncover therapeutic targets (51–53).

The heterogeneity of cancer cell metabolism due to
different metabolic tasks increases the complexity of research
and cancer drug discovery. In this study, we used ParTI
method to analyze the metabolic tasks of breast cancer,
liver cancer, digestive organ cancer, digestive tract cancer
and reproductive system cancer. We found that different
cancer types have different metabolic task tendencies with
different biological implications. The metabolic tasks of cancer
cells are more “uniform” compared to normal cells. The
metabolic tasks of different sub-types of the same cancer are
also different. For example, the luminal B subtype of breast
cancer is more prone to energy metabolism, and the basal
subtype is more prone to rapid proliferation. The anticancer
target prediction by MOMM outperforms the conventional
biomass maximization objective as evaluated by patient
survival analysis.
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