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Abstract

Background: Tumorigenesis is an evolutionary process by which tumor cells acquire mutations through successive
diversification and differentiation. There is much interest in reconstructing this process of evolution due to its
relevance to identifying drivers of mutation and predicting future prognosis and drug response. Efforts are challenged
by high tumor heterogeneity, though, both within and among patients. In prior work, we showed that this
heterogeneity could be turned into an advantage by computationally reconstructing models of cell populations
mixed to different degrees in distinct tumors. Such mixed membership model approaches, however, are still limited in
their ability to dissect more than a few well-conserved cell populations across a tumor data set.

Results: We present a method to improve on current mixed membership model approaches by better accounting
for conserved progression pathways between subsets of cancers, which imply a structure to the data that has not
previously been exploited. We extend our prior methods, which use an interpretation of the mixture problem as that
of reconstructing simple geometric objects called simplices, to instead search for structured unions of simplices called
simplicial complexes that one would expect to emerge from mixture processes describing branches along an
evolutionary tree. We further improve on the prior work with a novel objective function to better identify mixtures
corresponding to parsimonious evolutionary tree models. We demonstrate that this approach improves on our ability
to accurately resolve mixtures on simulated data sets and demonstrate its practical applicability on a large RNASeq
tumor data set.

Conclusions: Better exploiting the expected geometric structure for mixed membership models produced from
common evolutionary trees allows us to quickly and accurately reconstruct models of cell populations sampled from
those trees. In the process, we hope to develop a better understanding of tumor evolution as well as other biological
problems that involve interpreting genomic data gathered from heterogeneous populations of cells.
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Background
Cancer progression is an evolutionary process of suc-
cessive genetic diversification and selection for muta-
tions promoting tumor growth. While specific sequences
of mutations are idiosyncratic to each tumor, function-
ally similar clusters of mutations are found across many
patients in specific genetic pathways that are crucial to
promoting tumor growth and invasion and disabling nor-
mal checks on cancer development [1]. The recognition
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that distinct tumors frequently exhibit similar progres-
sion pathways led to the idea of cancer phylogenetics
(oncogenetics): the use of algorithms for evolutionary
tree-building to reconstruct common pathways of evo-
lution in tumors [2]. These methods originally modeled
distinct tumors as “species,” using heterogeneity between
tumors to derive phylogenetic trees providing an infer-
ence of common progresion pathways among patients. An
alternative approach to tumor phylogenetics arose from
the observation that as tumors evolve, they generate het-
erogeneity between cell populations within single tumors.
This cell-to-cell variability can also be used to infer path-
ways of tumor evolution, in this case via phylogenetic trees
linking cell populations in single tumors [3, 4].
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Both strategies have inspired considerable subsequent
study, but each also brings some significant limitations.
Approaches drawing phylogenetic inferences from inter-
tumor heterogeneity are generally limited by the fact that
the bulk genomic data used by such approaches conflate
all cells within a tumor (or subregion of a tumor [5–7])
into a single mixed profile, hiding variability cell-to-cell
that includes many important clues about tumor progres-
sion. Studies building phylogenies of single tumors from
intratumor heterogeneity can produce much finer recon-
struction of cell-to-cell variation, but generally with more
limited profiles of the individual states in an evolutionary
tree. Much of the work on cellular tumor phylogenetics
to date has relied on fluourescence in situ hybridization
(FISH) [3, 4, 8, 9], a technology that makes it practical to
examine thousands of single cells but to observe only a
few pre-chosen markers per cell. The more recent intro-
duction of single-cell sequencing for cancer studies [10]
has made it possible in principle to observe and to apply
whole-genome genetic variation data on single-cells for
phylogenetic inference, but it, too, is limited so far by
poor data quality and coverage [11] and a high cost that
has made it necessary for each such study to profile only
small numbers of tumors [10] or small numbers of cells
per tumor [12–14].
In prior work, we proposed that one could in principle

combine the advantages of both intertumor and intra-
tumor phylogenetics through a class of computational
methods called “mixed membership modeling” [15] (also
known as unmixing or deconvolution) that can computa-
tionally infer patterns of intratumor variability from bulk
genomic tumor data [16]. (We note that such models
are sometimes called “mixture models” in this literature,
although that term more properly refers to models in
which each data point has a single potentially uncertain
class.) Such mixed membership models provide a way to
reconstruct whole-genome profiles of major cell popula-
tions in tumors, constructingmodels of major progression
steps both within and across tumor populations simul-
taneously solely from intertumor genomic data. Similar
mixed membership model approaches were initially used
in cancer research to distinguish confounding influences
of genetically healthy stromal cells in interpreting tumor
genomic assays [17–19] and later extended to resolve mul-
tiple clonal states in tumor samples [20] independently
of their use for tumor phylogenetics. Our specific use
of mixture modeling for tumor phylogenetics relied on
a geometric intepretation of unmixing as the problem of
finding bounding simplices around point clouds of tumor
genomic data [21], an approach to mixed membership
modeling also known as archetype analysis [22].
This mixed membership approach to tumor phy-

logenetics has itself inspired extensive recent work
on improved reconstruction of cell populations and

progression pathways and application to wide varieties
of bulk genomic data types. This work has included fur-
ther development of the geometric approaches [23] as well
as numerous other strategies for deconvolution of tumor
genomic data. Earlier versions of this approach focused
on the related problem of purity estimation, essentially
assuming each tumor is a mixture of normal cells with
a single class of tumor cell. Oesper et al. [24] provides a
recent example working from DNA sequence data. More
closely related to our work has been a variety of tech-
niques for reconstructing more detailed subclonal archi-
tectures within tumors. For example, Zare et al. [25]
provided a technique to derive tumor phylogenies (also
called oncogenetic trees) from next generation sequenc-
ing (NGS) reads of regional sections of single tumors. Ha
et al. [26] developed an approach incorporating loss of
heterozygosity (LOH) events into a probabilistic frame-
work for interpreting mixtures of sequence data. Li et al.
[27] likewise developed a mixed membership approach
to integrate subclone and purity estimation from NGS
data and LOH data. Roth et al. [28] developed Bayesian
models specificaly tuned for deep (> 100X) sequencing.
The work of Qiao and others [29] focused on using vari-
ant allele frequencies to generate oncogenetic trees, but
using the relative prevalences of subclones as an input.
Such methods have been applied to a wide variety of
genomic data types, including RNA expression [16, 30],
copy number variant (CNV) [23, 24, 26, 28, 31], and sin-
gle nucleotide variant (SNV) [20, 28, 30, 32–34] data. As
bulk tumor sequencing data has become available on large
scales (c.f., [35]), descendants of these mixture approaches
have proven particularly popular as a way of deconvolv-
ing reads from bulk NGS data, including the exemplar
approaches mentioned above and a variety of related
methods (e.g., [36–38]).
Despite their successes, such mixed membership mod-

eling approaches are limited in their ability to resolve
fine details of cellular heterogeneity within tumors. They
can typically resolve up to about ten distinct cell types,
potentially enough to provide representatives of a few
major cell clusters but far short of the hundreds of genet-
ically distinct cell populations one can identify in single-
cell studies [10, 39, 40]. Furthermore, the difficulty of
resolving more than a few cell populations means that
each computationally deconvoluted cell type is in real-
ity a noisy average of many genetically similar clones,
rather than a single well-defined genetic state. This limi-
tation arises because of the inherent difficulty of resolving
mixtures in high dimensions, particularly when distin-
guishing very similar subpopulations from one another or
when distinguishing low-frequency sub-populations from
noise.
In the present work, we propose a methodological

improvement on genomic unmixing to take advantage



Roman et al. BMC Bioinformatics  (2015) 16:254 Page 3 of 17

of the fact that mixed genomic data from cells evolving
according to an evolutionary tree could be expected to
have a mathematical substructure unexploited by prior
methods. In particular, if one assumes that cell popu-
lations across tumors evolve approximately by sampling
evolutionary trajectories from a common oncogenetic
tree model then we would expect that point clouds pro-
duced by representing tumors as points in a genomic
space (e.g., by gene expression or gene copy numbers)
would yield a finer-scale structure than the uniform
simplices assumed by prior work. Instead, they would
be expected to yield simplicial complexes: conjunctions
of low-dimensional sub-simplices, corresponding to dis-
tinct tumor subtypes, joined to one another via lower-
dimensional surfaces corresponding to shared ancestral
cell populations. Indeed, this kind of subsimplicial struc-
ture was noted in earlier studies [16, 23] but has, to our
knowledge, not been exploited by any tumor unmixing
methods yet developed. By performing mixture analysis
in these low-dimensional subspaces rather than the full
dimension of the complete point cloud, we hope to avoid
the computational challenges and uncertainty introduced
by deconvolution in higher dimensions while simultane-
ously extracting additional information about commonal-
ities within and between tumors useful for reconstructing

common cell types and intratumor evolutionary trajecto-
ries between tumors.
Figure 1 shows an overview of the central concept of

the work for a toy evolutionary model for two related
tumor subtypes. The figure illustrates how an evolution-
ary scenario might give rise to a structured point cloud
consisting of two lower-dimensional subspaces. It then
illustrates how the point cloud might be resolved by tra-
ditional clustering methods, by prevailing single-mixture
deconvolution methods, and by our proposed simplicial
complex method.
Below, we present our proposed approach for tumor

unmixing via simplicial complexes and validate its effec-
tiveness. We first describe the approach in more detail,
presenting an overall pipeline for simplicial complex infer-
ence from point clouds of tumor genomic data. The
pipeline introduces additional innovations in clustering
to identify discrete subspaces of a genomic point cloud
and in scoring geometric simplex models for genomic
data. We then validate the approach in comparison to
our earlier simplex method and an alternative Gaussian
mixture model method on a collection of synthetic data.
Finally, we demonstrate the method on RNASeq breast
cancer (BRCA) data from The Cancer Genome Atlas
(TCGA) [35], showing that it is able to identify a simplicial

Fig. 1 Comparison of the simplicial complex model to other approaches for interpreting tumor genomic data. A simple hypothetical evolutionary
tree model (left) describing possible progression pathways of a tumor from an initially healthy cell (1), to an early progression state (2), which then
diverges into two subtypes distinguished by two possible late progression states, (3) or (4). If each tumor represents evolution along one of the two
subtypes then we would expect plotting many tumors in a low-dimensional representation of gene expression space to yield a point cloud
describing mixtures of cell types (1,2,3) or (1,2,4), resulting in a geometric structure consisting of two triangular point clouds joined at an edge
(middle). Conventional clustering analysis such as k-medioids with the appropriate distance metric separates this structure into two clusters (top
right) that conflate the shared cell states (1,2) and thus provide poor representations of differences in underlying cell populations (3) and (4). Prior
approaches to unmixing, such as Tolliver et al., [23] with the correct parameters and under sufficient noise constraints, reconstruct four populations
interpreting each tumor as a mixture of all four, introducing high error because the resulting tetrahedral simplex (center right) is poorly populated
with data points. The proposed simplicial complex approach here explicitly searches for an overall point cloud that is composed of lower-dimensional
subsimplices (bottom right), potentially providing better resolution of mixture compositions in individual tumors and direct ability to infer aspects
of the evolutionary process from the geometric structure
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substructure with significant correspondence to known
breast cancer subtypes and to build genomic profiles of
inferred major cell populations across subtypes.

Methods
Model
Computationally, the goal of our overall analysis is to
take a data set of genomic measurements on a set of
tumors and return a mixed membership model describ-
ing inferred genomic measurements of major cell types
across tumors and the fractional representation of each
cell type in each tumor. We assume input data are given
in the form of a set of g measurements per tumor across
s tumors or tumor subsamples, organized into a matrix
M ∈ Rg×s. Depending on the data set, the gmeasurements
may be RNA or DNA copy number values or other probes
to genomic state (e.g., overall SNV counts or methylation
fractions). For simplicity of exposition, we will refer to the
measurements as genes, but they may represent probes at
resolutions higher (exon, single base) or lower (genomic
region, pathway) than single genes. We will refer to the s
input samples as tumors, although they may correspond
to distinct regional measurements from single tumors.We
will assume below that each probe’s measurements have
been normalized and recentered to yield a Z score (mean
zero and variance one) across samples.
The method attempts to infer a set of mixture com-

ponents C = �c1, . . . , �ck , where each �ci = ci,1, . . . , ci,g
is an inferred genomic profile of an unobserved “pure”
cell type. Each observed sample �sj can be approximately
explained as a convex combination of components �sj =
fj,1 �c1 + fj,2 �c2, . . . ,+fj,k �ck + εj for

∑k
i=1 fj,i = 1, fj,i ≥ 0. The

mixture fraction terms fj,i are collectively denoted by a g
by kmatrix F and εj represents a presumedGaussian noise
in each measurement assumed independent across mea-
surements. The major goal of our computational method,
then, is to infer C and F from M, as in prior unmixing
approaches.

Algorithmic overview
While in principle it might be preferable to identify a
single objective function for the complete inference pro-
cess, in practice, the complexity of problem-specific data
handling and the disparate classes of algorithms involved
make it difficult to effectively pose and solve simpli-
cial complex inference as a single optimization. To pro-
duce a practical implementation of the simplicial complex
approach, we therefore instead break the computation
into a series of discrete steps. The process is illustrated in
Fig. 2 and summarized as follows:
(0) Perform dimensionality reduction on M to produce

a low-dimensional representationM′ of dimension g′ by s,
where g′ � g.
(1) Cluster points inM′ to identify subsimplices.
(2) Unmix each cluster to provide a distinct subsimplex

and set of vertices per cluster.
(3)Merge nearby vertices across clusters to form a single

simplicial complex collectively defining a vertex setC′ and
mixture components F.
(4) Map the components C′ from g′-dimensional space

to g-dimensional space to yield a final set of g-dimensional
mixture components C.
We now describe the methods behind each of these

steps in detail.

Dimensionality reduction (0)
As a preprocessing step, we reduce the initial g-
dimensional data set to a set of dimension g′ = k − 1,
where k is a user-specified target maximum number of
cell types to infer. This step is done to reduce noise in
the data and avoid problems of poor scaling in dimension
that affect the subsequent computational geometry algo-
rithms. For this purpose, we use principal components
analysis (PCA) [41], which projects the initial inputM into
a form M′V + A, where M′ is the reduced representation
ofM, V is a set of k−1 orthogonal basis vectors ofM, and
A is a residual constant translation vector.
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Fig. 2Workflow of the proposed simplicial complex model. We first reduce ambient dimension of the data via PCA to facilitate geometric analysis.
We then fit simplices to each of the lineages using a shortest-path weight as an estimate of similarity between 2 points. We then use a novel
objective function to robustly unmix each of the lineages. We reconcile shared sub-populations across lineages by training the noise based on
several replicates of each of the robust unmixing runs. After a representative model has been derived from the replicates, we abstract the simplicial
complex into a phylogeny, based on the dimensionality and connectivity of the simplices in the simplicial complex
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Various alternative methods for dimensionality reduc-
tion might also be options here, such as independent
components analysis (ICA) [42], or any of a variety of non-
linear dimensionality reduction methods in the literature
[43, 44]. Such methods might lead to better performance
depending on the type of data, the degree to which the
linear mixture assumption is valid, and the volume and
noise-characteristics of the data available. We stick with
PCA for the proof-of-concept method developed here,
though, because of its simplicity and widespread use in
genomic applications.
The number of principal components used involves a

trade-off between keeping enough axes of variation to dis-
tinguish clonal populations while discarding enough to
avoid the poor scaling in dimension of the simplex infer-
ence step of the algorithm. We use 10 principal compo-
nents in the present work because it slightly upper-bounds
the number of distinct cell populations we seek to infer.

Clustering data into putative subsimplices (1)
The next step in our inference is to identify subgroups
of points (tumors) that correspond to distinct low-
dimensional subsimplices. This step can be treated as a
clustering problem, but differs from standard clustering
problems in its objective and requires somewhat special-
ized methods. In particular, whereas standard clustering
typically looks for subsets of points that are separated in
space, the present application requires finding subsets of
points that are contiguous but occupy distinct subspaces
in a larger ambient space. To address this unusual vari-
ant of clustering, we use a distance measure based on one
originally proposed for the related problem of manifold
learning [45]. Specifically, we first establish a complete
graph on all samples, with edges weighted by the square
of the Euclidean distance between each pair of samples.
We then define the distance between any two samples si
and sj to be the length of the shortest path between si
and sj in the graph. This measure is intended to approx-
imate the geodesic distance, i.e., the distance between
two points traveling through the point cloud itself. Intu-
itively, the clustering method seeks to distinguish points
in distinct subsimplices based on the observation that
the distance between two points in the same subsim-
plex should be approximately the same whether distance
is measured within the point cloud (geodesic) or via
straight-line the distance between the points (Euclidean),
while the geodesic distance will generally be longer than
the Euclidean distance for points in distinct subsimplices
[45, 46]. Given this distance measure, we can then apply a
basic clustering algorithm to separate clouds of points in
separate subspaces.
We perform clustering via the k-medoids algorithm, an

extension of the more standard k-means clustering algo-
rithm [47]. K-means seeks to optimize k cluster centers,

each inferred to be the mean of a set of points x assigned
to that cluster, i.e., ki = mean(x ∈ Ki). In k-medoids, by
contrast, a cluster center is computed as the data point
nearest to the mean of the points assigned to a particular
cluster, i.e., ki = p|p ∈ data, argmin

p
||p − mean(x ∈ Ki)||.

This small difference in the method better serves our goal
of finding clusters representative of tumor evolutionary
data because such a method prevents inference of cluster
centers that are not in the subspaces spanned by the data.

Unmixing each cluster (2)
Once we have defined distinct clusters in the data, we next
unmix data within each cluster via a variant of our prior
robust geometric unmixing method [23], which provides
a noise-tolerant simplex-fitting assignment by approxi-
mately fitting a simplex around a point cloud. The vertices
of the simplex will then correspond to inferred mix-
ture components. We modify the prior method in one
important respect, however. The prior method used as its
objective function the following:

min
K

∑
|xi − KFi|p + γ log(vol(K));∀Fi : 1(Ft

i ) = 1, Fi ≥ 0

(1)

where K is a matrix of the inferred vertices of the simplex,
F is the mixture fraction describing amount of each vertex
attributed to each input data point, and vol is the volume
of the simplex. This formula effectively treats the volume
of the simplex as a measure of goodness of fit, balanced
by a noise term penalizing for data points outside the sim-
plex. In the present work, we instead use the following
objective function:

min
K

∑
|xi − KFi|p + γ log(mst(K))∀Fi : 1(Ft

i ) = 1, Fi ≥ 0

(2)

wheremst is the length of the minimum spanning tree on
the simplex vertices. This alternative formulation provides
a more straightforward interpretation of the problem in
terms of an inferred evolution model among cell types,
effectively scoring the quality of a simplex by the parsi-
mony score of a tree connecting its vertices. Informally, it
says that a “good” simplex is one that yields a parsimonious
evolutionary tree by which its vertices could have evolved
from a common ancestor. It is also intended to resolve the
problem of scores being incompatible between subsim-
plices of distinct dimension by ensuring that the cost of
every subsimplex has the same units. This change makes
it possible to sum contributions between subsimplices and
define a single quality of fit for the full simplicial complex.
Optimization is performed through the fmincon func-

tion of the Matlab optimization toolbox, which utilizes an
interior-point method of constrained optimization. The
algorithm works by taking as input the data points x for
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a given simplex, and an initial guess of the vertices K,
determined by the minimum volume enclosing simplex
(MVES) algorithm, presented by Chan and others [48].
Then, the computation of the mixture fractions F are
found by holding K and x constant, and solving for the
first term of the objective function, which is equivalent
to a least-squares formulation solvable using the Matlab
function lsqlin, given that the F are constrained to be
nonnegative and sum to 1. In the next iteration of the
evaluation of the objective function, the mixture fractions
F are fixed, and the values for K are varied. The itera-
tive process repeats until convergence, or a user-specified
number of maximum iterations are exceeded.
In subsequent steps, we also require estimates of uncer-

tainty of the simplex fit. To derive these estimates of
uncertainty, we run bootstrap replicates (see, for example,
[49]) of the simplex inference procedure for each cluster,
using 10 replicates and performing a maximum matching
of vertices between replicates for each cluster, in order to
identify a mean position and a variance in the position for
each vertex of each cluster.

Probability model
The objective function defined above is motivated by a
probabilistic model combining an assessment of fit of data
to the simplicial complex and an assessment of intrinsic
plausibility of the complex. For model θ and data x, we
seek to maximize a Bayesian likelihood function

P(x|θ)P(θ) (3)

as in our prior work [23]. We effectively assign an expo-
nential prior to the likelihood of the data given the
model, yielding exponential decreases in the probability of
observing data as it becomes increasingly far from the sur-
faces of the inferred simplicial complex. That assumption
corresponds to the following function:

P(x|θ)P(θ) ∝ exp
(
−

∑
|xi − KFi|p

)
mst(K)−γ (4)

In practice, it is convenient to work in the negative log
domain, seeking to minimize∑

|xi − KFi|p + γ log(mst(K)) (5)

The model uses two hyperparameters, γ and p, for the
regularization of the prior on simplicies and the order of
the distance measure used to account for noisy simplex
fits. We set γ in the present work based on prior anal-
ysis in Tolliver et al. [23] connecting γ to the estimated
noise level of the data. Recent estimates of Su et al. [50]
put RNAseq noise level in approximately a range of 5 %
to 40 %, with the sort of HiSeq data we examine here
towards the low end of that range. We tested our method
on simulated data of 1,000 data points in 20,000 dimen-
sions reduced to 10 PCs using a range of γ values from

1 to 15 (consistent with 1 to 15 % noise) with 10 repli-
cates per parameter value. The resulting root mean square
deviations (RMSDs) of reconstruction per model compo-
nent per dimension were not significantly different across
γ values, with a low of 24.9 at γ = 14 and high of 27.8
at γ = 5. We thus conclude that the method is not highly
sensitive to γ in this range and chose γ = 10. p = 1 was
set based on an analysis of data noise from Tolliver et al.
[23] suggesting that noise in data in that study was best
fit by a log-Laplacian distribution, leading to an L1 norm
as the appropriate log likelihood term. This is in contrast
to the more conventional use of L2 norm, which would be
implied by log-Gaussian noise.

Merging subsimplices into a simplicial complex (3)
The previous steps identify a set of subsimplices, each
defined by a set of vertices for which we have mean posi-
tions and variances. In the final step, we seek to identify
instances in which the same vertex is inferred on multiple
subsimplices. To accomplish this task, we identify pairs of
vertices on distinct simplices that are sufficiently close so
as to be putatively an inference of the same data point. We
define two vertices to be equivalent if their Euclidean dis-
tance from one another is smaller than the sum of their
individual standard deviations in distance estimates, as
estimated by bootstrapping over simplex inferences in the
prior step. We merge all points determined to be equiv-
alent, joining their subsimplices into a single simplicial
complex. Formally, we consider two vertices indistinct if
they satisfy the following condition, where V is the ver-
tex set mean over the replicates, and σ is the standard
deviation of a vertex as estimated over the replicates:

∃v1 ∈ V , v2 
= v1 ∈ V , i ∈ 1, 2, . . . , |v1|
s.t.

∑ ( ||v1 − v2||
max i(σ (v1,iσ(v2,i)))|v1|

)
≤ 1

(6)

Mapping inferred vertices into gene space (4)
To map the inferred vertices back into the gene space,
we can project the inferred vertices K using the coeffi-
cient matrix determined in the PCA (part 0) portion of the
algorithm.

Complexity analysis
We have also performed a complexity analysis on the
code. Because the algorithm presented has a number
of parameters influencing run time, and some compo-
nents of the algorithm, such as k-medioids, are iterative,
the complexity expression can become complicated.
Nevertheless, we consider a piecewise breakdown of an
upper bound to the running time. The first portion of
the code uses PCA to reduce the dimensionality of the
data. The bottleneck in that step is computation of the
singular value decomposition (SVD) [51], which has a
complexity of O(mn2) for m data points and n ambient
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dimensions (genes markers in our case). The clustering
phase of our technique uses k-medioids [52], which has
a complexity of O(km). The simplex fitting applies the
method of Tolliver et al. [23] with our modified objec-
tive function, an iterative method whose complexity
depends on the number of rounds T of iteration, as well
as the number of clusters k, simplex vertices dp, and
principal components P. The total complexity of this
step is O(Tknmaxp{2dp+1, nP2}) for each of b bootstrap
replicates. The resolution of each of the simplicies into a
simplicial complex is performed by learning a Gaussian
mixture model on the b bootstrap replicates for each
of the

∑
p(dp) + k vertices [53], contributing a factor

of O(b ∗ (
∑

p(dp) + k)). As a consequence, then, we
can upper-bound the running time of the algorithm by
O

(
max

(
mn2, km, bTknmaxp

{
2dp+1, nP2

}
, b ∗

(∑
p(dp) + k

)))
.

In practice, the bottleneck in run time is the simplex
inference step, which is likely to be dominated by the cost
of the highest-dimension subsimplex. This can, however,
be a substantial improvement over the single-simplex
approach, which has run-time exponential in the total
number of vertices rather than the maximum number in
any subsimplex.

Validation
Synthetic data
Evaluation of the effectiveness of the method is compli-
cated by the lack of true heterogeneous tumor data with
known ground truth mixture compositions. We therefore
used simulated scenarios to quantify effectiveness of the
methods for data sets for which the mixture components,
mixture fractions, and simplicial structure are known. We
considered four tumor evolution scenarios, each involving
a model of tumors evolving into two subtypes.
The scenarios are illustrated in Fig. 3. In scenario A

(Fig. 3(a)), we assumed an ancestral healthy cell subpop-
ulation that diverges into two discrete subtypes each with
a single progression state. The result is a simplicial com-
plex structure consisting of two lines joined at a point.
In scenario B (Fig. 3(b)), we assumed a more complex
two-subtype scenario, in which each subtype is defined
by early, intermediate, and late progression stages. The
resulting simplicial complex structure is a pair of tetrathe-
dra joined at a point. Scenario C (Fig. 3(c)) consists of
two subtypes each with its own early and a late progres-
sion stages, yielding a simplicial structure of two triangles
joined at a point. Finally, scenario D (Fig. 3(d)) consists
of a model in which a healthy state evolves into an early
precancerous state that subsequently branches into two
subtypes of late state. This model results in a simplicial
structure of two triangles sharing an edge. For each sce-
nario, we constructed variants of the data set at distinct
noise levels from zero to 1 in increments of 0.1σ , where σ

is the standard deviation per dimension in the input data.

In each case, the data were simulated with an ambient
dimension (equivalent to the number of genes probed) of
25,000. This ensures the comparison is similar to the real
data, which contains 20,531 probes across the genome.
For each scenario and noise level, we seek to measure

the relative performance of the method at reconstructing
the vertices, which correspond to the genetic signatures
of the major cell subpopulations, and identifying the mix-
ture fraction of each of the samples with respect to these
cell subpopulations. The errors in the mixture fractions
are computed as the RMSD per point per ambient dimen-
sion. The errors in the vertices are computed per vertex
found per ambient dimension.
To provide a basis for comparison, we repeated our

analysis using our earlier pure simplex method [16] and
an implementation of a Gaussian mixture model method,
because Gaussian mixture models are used in some
prominent alternative approaches to this problem (e.g.,
PyClone [28]). It should be noted that PyClone con-
tains significantly more complex machinery than only
a Gaussian mixture model, but in order to perform a
direct comparison of classical techniques to our method,
we have chosen the Gaussian mixture model because it
has appeared as a part of the PyClone architecture. We
fit Gaussian mixture models using the built-in expecta-
tion maximization (EM) approach supplied by Matlab.
To invoke the model, we fit the ground truth num-
ber of vertices using the data through the command
gmdistribution.fit(X,k) where X is the expres-
sion matrix and k was supplied with the correct number
of vertices for each simulated scenario (e.g., k=7 for two
tetrahedra joined at a point). We use a basic implemen-
tation of generic Gaussian mixture models because our
proof-of-concept method here is designed to work with
matrices of pre-aligned copy numbers rather than raw
sequence data and our test data is thus incompatible
with the widely used software platforms for this prob-
lem, which generally work directly on genome-mapped
sequence reads.

Real tumor data
To demonstrate the applicability of the method to real
tumor data, we applied it to RNAseq expression data from
The Cancer Genome Atlas (TCGA) [35]. We retrieved
all breast cancer (BRCA) RNAseq samples from the
RNASeqv2 section of the TCGA data portal (http://
cancergenome.nih.gov/), selecting normalized data. The
data matrix consists of 1100 tumors profiled at 20,531
expression levels. We then preprocessed data to convert
expression values for each gene to Z scores by subtracting
the mean expression level of each gene from all observed
values for that gene and then dividing the zero-centered
expression levels by the standard devation across values
for the gene. We then applied our analysis pipeline to

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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A B

C1 C2

D1 D2

Fig. 3 Simulated data sets used for validation. Each data set is visualized as a point cloud plotted in the first three principal components of the gene
expression space. Each simulated data set is visualized with noise level 0.1 σ , where σ is the variance in gene expression level per gene across cell
types. Data are displayed in the case of two lines at a point (a), two tetrahedra at a point (b), two triangles at a point (c1 and c2), and two triangles at
an edge (d1 and d2). The triangle cases have been separated to show the connectivity of the non-cosubspatial complexes. Insets in blue provide
cartoon illustrations of the projections of cosubspatial versions of the simplicial complexes to facilitate visualization of the true structure of
high-dimensional point sets

the resulting data matrix. We have chosen the RNASeq
data due to the availability of a relatively large number
of samples compared to other data types. Clinical labels
for the tumor types were extracted from the clinically
available data in TCGA, with a label of unavailable if one
or more of the clinical labels was listed as not available,
indeterminate, or not evaluated.
Direct comparison to other published tools for this

problem is challenging due to differences in assumptions
about inputs and outputs. Our technique is designed to
be a generic with respect to input data type, with the only
requirement being that the data can be represented as a
matrix of samples by genes. Further, our method does not

require that the samples be evaluated on a per-allele basis,
or that the data be provided as paired normal/tumor sam-
ples. This flexibility, however, creates a challenge in com-
paring and contrasting our work with previous models of
tumor purity and tumor evolution. Several of the previ-
ous models require significantly more input data, often
in the form of paired normal/tumor samples [32]. Other
techniques performing similar tasks are suited to using
only specific data types, such as specifically-formatted
single nucleotide polymorphism (SNP) or array compar-
ative genome hybridization (aCGH) arrays [54]. Other
published methods require additional input parameters,
such as the relative prevalences of subclones [29] or LOH
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information [27]. Many of the recent methods are specific
to sequence data, rather than the processed expression
matrix format we use as input [25, 26, 28, 29]. Still other
popular methods in this class solve only the purity esti-
mation problem rather than the problem of finer recon-
struction of subclonal architecture solved by our method
[24]. These incompatibilities in inputs or outputs make a
direct head-to-head comparison of our method with any
other available method known to us infeasible. We there-
fore provide a final validation based on comparison of
results of our novel method with published subclone and
purity estimation results on TCGA breast cancer samples
on which our method has also been run, despite some dif-
ferences in the specific data used by ourmethod versus the
comparative method used to derive the TCGA subclone
and purity estimates [31].

Results and discussion
Validation on synthetic data
We first examined the ability of the methods to cor-
rectly infer mixture fractions across scenarios. Results are
shown in Fig. 4. For the simplest scenario, the two-line
scenario 1 (Fig. 4(a)), the basic simplex unmixing showed
the best performance, with nearly perfect fitting at low
noise, although generally poor scaling with noise level.
The simplicial complex showed poorer results except at
the highest noise level, but high consistency across noise
level and independent trials. The primary advantage of
the simplicial complex over the simplex is in mitigat-
ing the poor scaling of the pure simplex method with

dimension of the data by performing geometric inferences
in low-dimensional subspaces. It is to be expected that this
advantage would be minimal for problem instances with
small total dimension. The Gaussian mixture model did
slightly worse than the simplicial complex on this scenario
and showed higher variance run-to-run, but similarly
good scaling with noise level. For the remaining scenarios,
results were qualitatively similar in each case. The sim-
plicial complex method yielded slightly better accuracy
than the simplex method in scenario 2 (Fig. 4(b)) and sce-
nario 4 (Fig. 4(d)) and slightly worse accuracy in scenario
3 (Fig. 4(c)). Both geometric methods substantially out-
performed the Gaussian method for scenarios 2–4. Aside
from the anomolous results for the simplexmethod in sce-
nario 1, all of the methods show minimal sensitivity to
noise in determining mixture factions.
We next examined ability of the methods to reconstruct

the correct vertices, representing inferences of the expres-
sion profiles of the unmixed states. The results for each
scenario are shown in Fig. 5. For scenario 1 (Fig. 5(a)),
both geometric models led to substantially more accurate
inferences than the Gaussian mixture models. Scenario
2 (Fig. 5(b)), which involved the highest total dimen-
sion, showed similar results for the simplicial complex and
Gaussian methods. The simplicial complex again yielded
substantially better accuracy and scaling with error than
Gaussian. In this case, however, the simplex method
closely tracked the Gaussian. Scenarios 3 (Fig. 5(c)) and
4 (Fig. 5(d)), which have intermediate total dimension,
show qualitiatively similar outcomes to one another. The

Fig. 4 Comparative accuracy of inferring mixture fractions (tumor composition) from simulated data as a function of data noise level. Accuracy is
quantified by the RMSD per point per dimension, shown in the example cases of two lines at a point (a), two tetrahedra at a point (b), two triangles
at a point (c), and two triangles at an edge (d). The inferences are computed as the mean over 10 replicates. The figure shows relative inference
accuracies for the simplicial complex method and the comparative simplex and Gaussian mixture model methods
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Fig. 5 Comparative accuracy of inferring subpopulation genomic signatures (cell types) from simulated data as a function of data noise level.
Accuracy is quantified by the RMSD per model component per dimension, shown in the example cases of two lines at a point (a), two tetrahedra at
a point (b), two triangles at a point (c), and two triangles at an edge (d). The inferences are computed as the mean over 10 replicates. The 10
replicates are used to form the merged consensus simplicial complex model. The figure shows relative inference accuracies for the simplicial
complex method and the comparative simplex and Gaussian mixture model methods

simplicial complex method shows the lowest error at low
noise levels, but the Gaussian mixture model the low-
est error at high noise levels. The pure simplicial method
performs worst in every case except zero noise.
These scenarios allow us to draw a few general con-

clusions about the advantages of the simplicial complex
approach. The geometry-based methods have a signifi-
cant advantage with respect to mixture fraction inference,
presumably because they are based on an explicit model
of the expected point cloud structure of linear mixtures.
The advantage may be overstated here, though, since the
data is simulated directly from the model assumed by
these methods, while real data might be expected to devi-
ate more significantly from that model. The advantage
of simplicial complex inference would be expected to be
most pronounced when there is a large gap between the
intrinsic dimension of the full data set and that of its low-
dimensional subspaces. From a biological perspective, this
condition is most likely to be met when distinct tumors
subsample from distinct subsets of a set of fundamen-
tal cell types, as might occur if tumors partition early
into distinct subtypes each of which has its own defined
progression stages. This expectation is generally consis-
tent with the better performance of the simplex method
on scenario 1 and simplicial complex on scenario 4, with
both showing essentially the same accuracy on scenarios
2 and 3. The portrait is more complex with respect to
vertex inference. Both geometric methods outperform the
Gaussian method for very low-dimensional data and the
simplicial complex method outperforms both others with
high-dimensional data. For intermediate dimensions, the

Gaussian method shows significantly better noise toler-
ance, leading to a preference for the simplicial complex
method when working on low-noise data and the Gaus-
sian mixture model when analyzing high-noise data.
Prior work of Su et al. [50] examining noise levels of

various RNASeq platforms estimated noise ranges from
approximately 5 % to approximately 40 %, dependent upon
the platform [50]. We would thus expect real modern
RNA-seq data sets to fall in the low-to-middle region of
noise ranges examined in the synthetic scenarios, where
the superior tolerance of the Gaussian method to high
noise is not yet an appreciable advantage.
Although run time is not expected to be a particular

strength of the newly proposed method, we do compare
run times of the simplicial complex method, Gaussian
mixture model, and simplex unmixing method on one run
of 400 data points for each of the four scenarios to eval-
uate practicality of our new method on realistic sizes of
data set. For the scenario of two lines joined at point, run
times were 173 s for the simplicial complex method, 0.794
s for the simplex method, and 0.0955 s for the Gaussian
mixture model. For the scenario of two tetrahedra joined
at a point, run times were 297 s, 4.62 s, and 0.112 s for the
simplicial complex, simplex, and Gaussian mixture model
respectively. For the scenario of two triangles joined at a
point, run times were 829 s, 1.22 s, and 0.133 s for the
simplicial complex, simplex, and Gaussianmixture model,
respectively. For two triangles joined at an edge, run times
were 554 s, 5.94 s, and 0.147 s. These results suggest that
the greater complexity of the simplicial complex approach
does come at a significant cost in run time.
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However, we believe these run times should be a rea-
sonable tradeoff for better accuracy for typical users,
considering this analysis would generally only need to run
once per replicate.

Application to real tumor data
We applied our clustering method in order to partition
data points into simplices, selecting two clusters empiri-
cally. We based the selection on the relatively low variance
in cluster size for the choice of two clusters when com-
pared to the variance in cluster size of larger numbers
of clusters over multiple clustering replciates. After clus-
tering, we estimated seven total vertices in the resulting
simplicial complex, comprising two simplices of four ver-
tices each, using a prior heuristic test of the eigenvalue
spectrum [23]. Two of the vertices of one tetrahedron
were sufficiently similar to one another, as determined by
the criterion of Eq. (3), that they were merged to form
one vertex. The final resulting simplicial complex struc-
ture then consisted of a triangle and a tetrahedron joined
together at a point, yielding a total of six subpopulations.
The resulting simplicial complex and associated point
cloud appear in Fig. 6, with inferred vertices labeled 1–6.
The tetrahedral subsimplex is defined by vertices 1, 2, 3,
and 6 and the triangular subsimplex by vertices 4, 5, and 6.
As a test of whether the results yielded any significant

subtyping of tumors, we labeled each observed tumor with
one of four labels corresponding to known breast can-
cer subtypes. We extracted clinicial labels where present
from TCGA, and labeled the points as no label avail-
able if at least one of the clinical labels was missing.
We used immunohistochemistry (IHC) labels if available,
and if these labels were not available, we attempted to

apply a label obtained by fluorescence in-situ hybridiza-
tion (FISH).We considered clinicial labels of HER2+, ER+,
ER+/PR-, Triple negative, and a tumor with missing clini-
cal labels. To assess whether the inferred structure showed
corresponsence with the known subtyping, we applied
a chi-squared test for independence to the contingency
table comprised of the two simplicies and five labels, yield-
ing a strongly significant chi-squared score of 542.5002
(p-value <0.001). Manual inspection of the simplex fits
shows that the triangular simplex is strongly associated
with triple-negative tumors and the tetrahedral simplex
with the remaining classes. Within the tetrahedral sim-
plex, HER2+ tumors are shifted towards vertex 3 and ER+
tumors towards vertices 1 and 2. Insufficient numbers of
ER-/PR+ tumors are observed to discern any bias in their
placement.
We similarly examined the distribution of PAM50 [55]

subtyping labels (Basal, HER2+, Luminal A, Luminal B,
and Normal) relative to our simplex asignments. We
assigned these labels by identifying the nearest PAM50
expression signature from Parker et al. to each sample
in Euclidean distance. Where assignment of gene names
between TCGA samples and PAM50 genes was ambigu-
ous, we used the first suggested gene name from the
BioDB gene ID Converter System [56]. We then con-
structed a contingency table comparing our two sim-
plex labels against the five PAM50 labels. We found a
strongly significant chi-squared score of 775.2952 (p-value
< 0.001). We further performed a finer comparison of
PAM50 labels to our mixture components by establish-
ing a contingency table of PAM50 labels versus most
prevalent mixture component for each tumor. We found
a strongly significant chi-squared score of 1128.6668
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Fig. 6 Simplicial complex reconstruction on real RNAseq data from TCGA breast cancer samples. Data is plotted in a two-dimensional projection
derived from the first three principle components, manually rotated to best display separation amoung discrete subregions of the tumor point
cloud. Inferred vertices are shown as magenta points, labeled with integers corresponding to the labels in Table 1. The simplicial complex is shown
by magenta lines. The underlying point cloud is shown with four point types corresponding to an inferred labeling by clinical subtypes: HER2+ (red
asterisks), ER+ (blue points), ER-/PR+ (green triangles), triple-negative (black crosses)
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(p-value <0.001). These results suggest that our method’s
inferred simplicial structure is strongly correlated with
accepted breast cancer subtypes.
We further tested for potential functional significance

of the six inferred subclonal populations identified by ver-
tices of the simplices. We identified potential markers of
subclonal populations by selecting genes in each of the
inferred populations with Z score less than −3 or greater
than 3. In order to link the differentially expressed genes
with cancer types, we used DAVID [57] to identify signif-
icantly over- or under-represented functional categories.
The functional annotation cluster results are presented
in Additional file 1, while a summary of terms is pre-
sented in Tables 1 and 2. We note that some terms are
nearly repeated due to DAVID’s use of multiple ontology
resources.
The DAVID analysis showed the upregulated genes of

vertex 1 to be enriched for genes related to inflamma-
tion response. The association of inflammation-related
expression with tumors is supported by extensive liter-
ature. For reviews of the role of inflammation in can-
cers, see, for example, [58–61]. We speculate this ver-
tex may reflect a confounding influence of immune cell
infiltration in the tumors. The upregulated genes of ver-
tex two disproportionately involve contractile fiber and
actin filament-related expression, which is likewise an
unsurprising result given known relationship of these
functions to cancers [62, 63] and their prior use as a
marker for predicting clinical outcomes of carcinomas
[64]. Vertex 2 shows downregulation of genes related
to cytokines and taxis, processes whose dysregulation is
linked to the development of breast cancers in general
[65–67]. Elevated cytokine expression has been linked
specifically to ER- breast cancers [68], which seems con-
sistent with the observation that this vertex is most closely
associated with an ER+ tumor subpopulation. Vertex 3
shows elevation for genes associated with splice varia-
tion, sequence variation, and polymorphism, suggestive

Table 1 Summarized terms for genes with high Z scores in
inferred subpopulations

Z score ≥ 3

Subpop. 1 Defense Response, Inflammatory Response, Response to
Wounding

Subpop. 2 Myofibril,Contractile Fiber Part, Sarcomere, I band, Actin
Cytoskeleton, Z disc

Subpop. 3 ∅
Subpop. 4 RNA recognition motif and associated terms, RNKP-1,

alpha-beta plait

Subpop. 5 Cell cycle and associated terms, M phase, organelle fission,
nuclear division

Subpop. 6 ribosome and associated terms, translational elongation,
cytosolic part

Table 2 Summarized terms for genes with low Z scores in
inferred subpopulations

Z score ≤ −3

Subpop. 1 ∅
Subpop. 2 Chemokine and associated terms, Cytokine and associated

terms, interleukin-8-like

Subpop. 3 Alternative Splicing, Splice Variant, phosphoprotein, poly-
morphism, sequence variant

Subpop. 4 Signal, Signal peptide, glycoprotein, glycosylation site: N-
linked, disulfide bond

Subpop. 5 Icosanoid, unsaturated fatty acid, alkene, leukotriene,
transmembrane protein, lipid

Subpop. 6 Zinc and associated terms, c2h2-type

of hypermutability processes associated generically with
breast cancers [69–73]. Vertex 4 shows upregulated genes
related to RNA binding motifs, which have also been
linked to pathways associated with breast cancer [74–76].
Vertex 4 also shows underexpression of genes associ-
ated with glycosylation, which has also previously been
linked to breast cancers [77–79]. Vertex 5 shows increased
expression for genes associated with the cell cycle and
mitosis, a generic feature of many cancers [80]. Different
mechanisms of upregulating the cell cycle have, however,
been linked with distinct clinical subtypes of breast can-
cer [81]. Similarly, vertex 5 shows decreased expression
for genes associated with metabolic processes, another
broad category generically linked with development of a
wide variety of cancers [82, 83]. Vertex 6, which joins
the two subsimplices, is most closely associated with
ribosomal genes and depleted for genes related to zinc
metabolism. Based on location of this vertex at the junc-
tion of the two subsimplices, we speculate it corresponds
to healthy stromal cells infiltrating all tumor types. A rel-
atively high expression level of ribosomal genes, a generic
housekeeping marker, would be consistent with that inter-
pretation. There is also evidence for generic upregula-
tion of zinc metabolism in breast tumors [84], which
would be consistent with a normal cell subpopulation
showing comparatively reduced expression of zinc-related
metabolism.
In Fig. 7, we attempt to synthesize the minimum span-

ning tree found during simplex fitting with visual exam-
ination of the correspondence between the simplicial
complex and the point cloud into an intepretation of the
tumor progression process. At a high level, the simplicial
complex shows a broad separation between the triangu-
lar subsimplex and the tetrathedral subsimplex. The most
plausible interpretation would be that the triangular sub-
simplex corresponds to the basal-like tumors. The tetra-
hedral subsimplex shows discrete regions corresponding
to HER2+, ER+, and ER-/PR+ tumors, with vertex 3 cor-
responding to HER2+ progression and vertices 1 and 2
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Fig. 7Minimum spanning tree of simplicial complex derived from the
TCGA data and a model of the data as a phylogeny. We compute the
minimum spanning tree of the simplicial complex found during
unmixing of the RNASeq data to learn the phylogeny of subpopulations
inferred by the simplicial complex unmixing. Labels for the vertices
carry over from the previous figure and Table 1. We use the minimum
spanning tree to define tree structure among the vertices. We label
each vertex manually based on examination of the simplicial complex
fit and the DAVID categories associated with the vertices. We note
that although population 1 is included where it is assigned in the
tree, we speculate that it reflects infiltration of immune cells not
phylogenetically related to the tumor cell populations

to ER/PR progression. We attributed vertex 1 specifically
to immune cell infiltration based on the DAVID func-
tional analysis, and we therefore believe this vertex is a
confounding factor in evolutionary tree inference since it
shows up as part of the mixture fraction in many tumors
but is presumably not on a progression pathway with
the other cell populations. We therefore believe that a
more correct model would be consist of progression from
normal cells (6) through two independent triple-negative
steps (4,5) or alternatively progression from normal to
either a HER2+ (3) or an ER/PR (2) pathway. The seem-
ing mixture of HER2+ and ER+/PR+ cells could then be
explained by the confounding effects of these popula-
tions both exhibiting mixture with normal and immune
cell populations in violation of the assumptions of the
phylogeny.
Total run time on the real data for ourmethodwas 242 s.

By comparison, the simplex method required 13.5 s on
this data set and the Gaussian mixture model 0.271 s.

Comparisonwith prior methods
We can provide some comparison of our method to
alternative approaches based on similarity of our results
with those reported in Oesper et al. [31] in benchmarking
their method (Theta2) against the widely used purity
analysis tool ABSOLUTE [54]. They examined two TCGA
breast tumor samples for which we have also derived
results using the TCGA RNAseq data. Oesper and other
achieved an estimate of three total populations in each of
samples TCGA-A2-A0EU and TCGA-AO-A0JL [31]. Our
method also found three total populations for these sam-
ples. ABSOLUTE [54] does not determine a total number
of subpopulations since its goal is purity analysis, so

we cannot directly compare against ABSOLUTE in that
sense; however, our method found a normal subpopula-
tion proportion in TCGA-AO-A0JL-01A-11R-A056-07
of 0.601 (purity 0.399), while ABSOLUTE yielded 0.500
purity in Oesper et al.’s analysis. For the same sample,
Theta2 estimated subclones in proportions of 0.57 and
0.3, while our method yielded estimates of 0.34 and 0.05.
In a second sample, TCGA-A2-A0EU-01A-22R-A056-07,
our method estimated a total tumor purity (non-normal
fraction) of 0.6359, compared to ABSOLUTE’s value of
0.49. Theta2 yielded subclone estimates of 0.427, 0.346,
and 0.227, while our estimates were 0.5434, 0.3641, and
0.0925. We also note that the authors of ABSOLUTE
validated their method on a proprietary breast cancer
dataset unavailable for further analysis, finding mean
purity 0.67 and standard deviation 0.07 across this
population [54]. We cannot compare to their results on
the same data, but treating our non-normal frequency
as a purity estimate gives mean 0.614 and standard
deviation 0.156 for the TCGA breast cancer samples.
These results are only anecdotal and provide no way of
comparing relative accuracy of the three methods, but
are suggestive that our method yields at least qualita-
tively similar purities and clonal compositions to these
methods.
A more direct comparison of comparable predictions

on a common set of tumor samples was possible with
ESTIMATE [85], a tumor purity tool that had previ-
ously been applied to 480 TCGA breast tumor samples,
representing a subset of the data unmixed here, in the
process of analyzing a larger pan-cancer data set. ESTI-
MATE separately derives scores intended to measure
degrees of stromal and immune infilitration, which are
then integrated with other analysis to derive an over-
all purity estimate. (Additional file 2: Figure S1) provides
dot plots comparing ESTIMATE scores with component
mixture fractions from our method. (Additional file 2:
Figure S1 (A))) plots ESTIMATE immune scores against
our component 1 fraction, which we attributed to immune
infiltration.While ourmethod assigned component 1 only
to a subset of samples, it did nonetheless show a strongly
significant Spearman correlation coefficient of 0.264
(p < 0.00001). (Additional file 2: Figure S1 (B))) plots
ESTIMATE stromal scores against our component 6,
which we attributed to normal stromal cell contami-
nation. These two scores showed an insignificant cor-
relation of 0.0271, however. Finally, (Additional file 2:
Figure S1 (C))) plots ESTIMATE percent purity infer-
ences against the sum of our components 2–5 mixture
fractions, which we attribute to the non-stromal, non-
immune cell populations and hence to tumor purity.
Our purity estimates tend to occupy a narrower range
of values than the ESTIMATE ones, but the results
show significant Spearman correlation coefficient of 0.180
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(p < 0.00001). These results cannot be considered a true
head-to-head comparison of the two methods, since they
are designed for different purposes and work on differ-
ent data, and because we lack a known ground truth to
which to compare. Nonetheless, they do provide some
indication that our method can infer mixture components
consistent with separating tumor and non-tumor cell pop-
ulations. The lack of correlation between our identified
normal component and the ESTIMATE stromal score
might reflect a misidentification of our component 6 as
stromal, or simply an incomparability of the two scoring
schemes.

Conclusions
We have developed a novel method for deconvoluting
mixtures of genomic data with the goal of more accu-
rately reconstructing cellular progression processes from
bulk tumor genomic data. The method is designed to
take better advantage of an underlying geometric struc-
ture one would expect from data produced by lineages
sampled from a common evolutionary tree. Specifically,
the work advances prior geometry-based unmixing work,
which uses a representation of mixed membership mod-
eling in terms of fitting simplices to high-dimensional
data, by instead seeking fits that correspond to unions of
disjoint subsimplices of lower dimension. This approach
is intended to improve handling of non-uniform mix-
tures and minimize problems of poor scaling in intrinsic
dimension that plague all standard methods for blind-
source unmixing. Implementing this approach required
additional innovation in clustering to handle the special
problem of identifying clusters that are spatially contigu-
ous but occupy distinct subspaces. It also introduced a
novel objective function for geometric fitting intended to
better reflect the interpretation of tumor mixed mem-
bership models as products of an evolutionary process.
Tests on simulated data demonstrate that the method
provides markedly improved ability to correctly identify
fractions of cells in distinct subsamples relative to the
common alternative of Gaussian mixture modeling while
improving on the basic simplex approach for data sets
with a significant gap between the dimension of the full
data set and its subspaces. At the same time, it substan-
tially improves inferences of vertices over the pure simplex
method, although with poorer handling of noisy data than
Gaussian methods. We attribute this improved accuracy
to its ability to explicitly model the fact that distinct
mixtures will tend to share only defined subsets of cell
types, removing the confounding influence of cell types
completely absent from particular tumors.
The current method demonstrates the power of more

sophisticated geometric models, but also leaves many
avenues for future improvement. One current weakness
of the approach is the difficulty of accurately estimating

the dimensionality of subsimplices, a challenging prob-
lem for sparse, noisy data sets embedded in high-
dimensional spaces. This problem might be better solved
with approaches specifically designed for the data size and
noise characteristics of genomic data, which are quite dif-
ferent from the much larger numbers of data points and
smaller ambient dimensions frequently assumed by the
dimensionality estimation literature [86]. There is likewise
room for improvement in the clustering method, which
tends to yield significant error at boundaries between
sub-simplices and might benefit from the introduction
of soft clustering to better model this uncertainty. One
consequence of our simplicial complex model is that a
sample cannot be inferred to have any contribution from
a component outside its simplex. This feature may lead to
incorrect inferences of mixture assignments if some cell
populations violate the assumption of progression along
a phylogeny, as can occur when accounting for the influ-
ence of non-tumor cells within a tumor sample. This
potential problem becomes apparent in our interpreta-
tion of our inferred component 1 for the real tumor data
as representing immune cell infiltration. By assigning that
component to a subsimplex, our method then concludes
that tumors not assigned to that subsimplex have zero
immune component. The method might be improved, at
least for application to gene expression data, by allowing
for components that do not arise from a common tumor
phylogeny and thus may not obey the assumed simpli-
cial complex structure. More generally, we expect that the
method could be improved by handling the complete pro-
cess as a optimization over a unified objective function
that allows tradeoffs between solution qualities of the dis-
crete steps of our pipeline. In principle, the MST measure
we have developed for scoring simplex fitting will extend
easily to a single score for the entire simplicial complex.
Properly integrating a phylogenetic likelihood with con-
tributions to reflect the quality of the clustering, data
fitting, andmodel regularization could present substantial
algorithmic challenges, however. The relatively poor noise
tolerance of our method compared to Gaussian mixture
models suggests that a hybrid of the two approachesmight
outperform both.
We further expect that the problem this method is

intended to solve — better fitting mixed membership
models to data derived from tree-like progression pro-
cesses — is likely to apply to many other kinds of genomic
data. In particular, DNA variation data (copy number or
SNV) would be expected to conformmuch better to linear
mixture assumptions and avoid some confounding effects,
such as that of immune cell inflitration, and thus pro-
vide more reliable inferences of clonal structure of tumors
and their evolution. Quantitation accuracy of DNA-seq
has not been studied as intensively as for RNA-seq and
can in any case be expected to be sensitive to platform
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and coverage. Nonetheless, a comparative analysis of copy
number detection accuracies [87] found that standard
DNA-seq could detect CNVs with perfect sensitivity at
a 10 % false positive rate, rates suggestive of quantita-
tion accuracy comparable to that of RNA-seq. Studies of
synthetic DNA-seq data, such as that created for vari-
ous DREAM challenges [35, 88, 89], may prove useful
in better evaluating the relative success of the proposed
methods for DNA-seq compared to RNA-seq and more
precisely measuring accuracy of the proposedmethods on
sequence data with known ground truth.
Finally, we note that the work here is not intended to

establish a stand-alone software utility for broad use by
experimentalists. Rather, it is intended to provide a proof-
of-concept demonstration of a methodological improve-
ment that we believe could benefit many tools for decon-
volution of genomic data for cancer research and related
fields.

Availability of supporting data
Supportingmaterials for this work, in the form of software
used for the described analysis, is provided as Additional
file 3.
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Additional file 1: Full results of clustered ontology terms from
DAVID, first cluster. These results are for the first cluster using the default
parameters of DAVID [57]. The genes were separated based on the
intepretation of Z score ≥ 3 as overexpressed and Z score ≤ −3 as
underexpressed. Results are shown for each of the six inferred mixture
vertices (cell subpopulations). (XLSX 5.44 KB)

Additional file 2: Comparison of our method with ESTIMATE [85]. This
file provides dot plots comparing mixture fractions from the simplicial
complex unmixing method to scores from the ESTIMATE tumor purity
estimation program for 480 TCGA breast cancer tumors, presented as
Supplementary Fig. S1. We compare results on TCGA breast tumor samples
from ESTIMATE to putatively comparable mixture fraction estimates from
our simplicial complex method. (A) Component 1 mixture fraction, which
we attribute to immune contamination, versus the immune score from
ESTIMATE. (B) Component 6 mixture fraction, which we attribute to normal
cell contamination, versus the stromal score from ESTIMATE. (C) Sum of
component 2–5 mixture fractions, which we attribute to tumor cells, versus
ESTIMATE-inferred tumor purity. (PDF 90.3 KB)

Additional file 3: SCUnmix software package. This file is a zip archive
containing source code used to perform the analysis in the paper, in the
form of Matlab “.m” files. Instructions for use are contained in the file
README.txt. (ZIP 19.2 KB)
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