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Interface Chemistry of Graphene/
Cu Grafted By 3,4,5-Tri-
Methoxyphenyl
Gina Ambrosio1,2, Giovanni Drera1, Giovanni Di Santo   3, Luca Petaccia   3, Lakshya Daukiya2, 
Anton Brown2, Brandon Hirsch2, Steven De Feyter2, Luigi Sangaletti1 & Stefania Pagliara1*

Chemical reaction with diazonium molecules has revealed to be a powerful method for the surface 
chemical modification of graphite, carbon nanotubes and recently also of graphene. Graphene 
electronic structure modification using diazonium molecules is strongly influenced by graphene 
growth and by the supporting materials. Here, carrying on a detailed study of core levels and 
valence band photoemission measurements, we are able to reconstruct the interface chemistry of 
trimethoxybenzenediazonium-based molecules electrochemically grafted on graphene on copper. 
The band energy alignment at the molecule-graphene interface has been traced revealing the energy 
position of the HOMO band with respect to the Fermi level.

The possibility to steer the band structure of graphene without a strong degradation of the ultrahigh mobility 
of the charge carriers and the destruction of its basic electronic properties is a main challenge of the current 
research on graphene. In pristine graphene, in fact, the Fermi energy separates the occupied and empty states at 
the Dirac point thus making it a gapless semimetal with a low density of states at the Fermi level. Due to the small 
conductivity of graphene in this condition, various approaches are being explored to change the charge carrier 
concentration such as the direct doping of graphene through the chemical modification of graphene itself, either 
by the introduction of defects or by elemental substitution of the carbon or through molecular adsorption. At the 
same time, an electronic bandgap for graphene, mandatory to develop graphene-based electronic devices, can 
also emerge as a result of the interaction with the substrate or the introduction of atomic doping, as well as of the 
presence of organic molecules on the graphene layer1–3.

Being simple and scalable, chemical modification is becoming a promising approach to modify the graphene 
electronic structure4–7. Nowadays, methods of graphene chemical modification includes the covalent attachment 
(or grafting) of aryl groups onto the graphene surface, which transforms the sp2 carbon atoms into the sp3 hybrid-
ization state8,9. With respect to the adsorption (non-covalent bonding) of the organic molecules on the graphene 
layer, the functionalization by covalent bonding is efficient in the graphene electronic structure modification1.

Based on the previous experimental and theoretical experiences with fullerene and carbon nanotubes, (elec-
trochemical) reduction of diazonium ions shows to produce highly reactive free radicals which attack the sp2 
carbon atoms of graphene forming a covalent bond. The reduction reaction consists of an electron transfer to the 
aryl diazonium ions, releasing molecular nitrogen and creating a reactive intermediate aryl radical. This radical 
usually reacts directly with the carbon surface or can undergo polymerization with other aryl radicals. Electron 
transfer to diazonium ions can be spontaneous or can be controlled electrochemically (electrons are transferred 
to aryldiazonium ions from the carbon network by an external electrical field). To date, a lot of different diazo-
nium salts have been used for graphene modification4,6,9.

The Gr/Cu (graphene/Cu) interface is extensively studied and is among the candidates for scaling up the pro-
duction of graphene. In this context the evaluation of the energy level alignment between the organic layer and 
graphene is of paramount importance to develop hybrid junctions. This feature makes the overall system interest-
ing to develop devices based on a metal/Gr/organic layer interface where the covalently bonded diazonium-derived 
molecules can interact with the environment and transfer charges to the graphene layer beneath.
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It is important to note that the covalent attachment of aryl groups onto the graphene surface requires the use 
of an electrolyte solution, containing acids and salts, that makes this technique potentially exposed to contamina-
tions that could in principle affect the properties of graphene. In order to assess the consequences of electrochem-
ically assisted grafting on the graphene electronic structure, a systematic study of the electronic properties across 
the different stages of sample preparation and grafting is mandatory.

In the present study, graphene has been grafted by in situ generated 3,4,5-trimethoxybenzenediazonium 
(TMeOD) cations. This compound is expected to form aryl radicals via electrochemical reduction and to graft 
the graphene as 3,4,5-trimethoxyphenyl (TMeOP) units10 (Fig. 1). For simplicity, we refer to it as TMeOP-grafted 
graphene. The grafting of TMeOP has been carried out on graphene grown on copper foil, as well as on graphene 
grown on Cu (111) (see Methods and Supporting Information for details).

The nature of the chemical modification of graphene, the relation between molecular structure and film mor-
phology have been deeply investigated in literature8,11,12, however a systematic study of the electronic properties 
to understand the chemical environment is still missing. This study is a standard procedure for functionalized 
graphene in UHV condition as usually happened for a non-covalent approach13. To unambiguously reach this 
result, we have also prepared control samples where the Gr/Cu interface was treated in the electrochemical cell 
by cycling the potential in a solution of HCl and NaNO2 without aniline precursors. These samples are hereafter 
denoted as treated samples.

The chemically modified graphene has been characterized through Raman spectroscopy. Then a detailed 
study of both core levels and valence band has been carried out by comparing the photoemission spectra col-
lected from the pristine, from the treated and from TMeOP-grafted graphene. In order to single out the contri-
bution of the grafted molecular units to the core-level photoemission spectra, the data of the C 1 s, O 1 s, and N 
1 s core levels have been contrasted and compared to those collected from graphene exposed to in situ generated 
3,5-bis-tert-butylbenzenediazonium (TBD) cation, leading to the grafting of 3,5-bis-tert-butylphenyl (TBP) units, 
as well as from grafted Highly Oriented Pyrolytic Graphite (HOPG). TBD has been chosen as it does not contain 
oxygen, allowing for an unambiguous discussion of the oxygen contribution to the measured spectra. Indeed, 
oxygen may have a three-fold origin, i.e. from the growth solution (water and NO2), from unreacted TMeOP, 
but also from the Gr/Cu interface. Finally, the band structure at the Γ and K points of the Brillouin zone has 
been experimentally probed by angle-resolved photoemission spectroscopy (ARPES) with synchrotron radia-
tion. Supported by density functional calculations on 3,4,5-trimethoxybenzene, as well as on TMeOP-grafted 
on free-standing graphene the analysis of the density of states in the valence band region has also allowed us to 
identify the HOMO band of TMeOD and set its energy with respect to the Fermi level, thus obtaining a scheme 
for the band alignment at the Gr/TMeOP hybrid interface.

Results and Discussion
Raman spectroscopy was carried out to investigate the influence of chemical modification on the graphene struc-
tural properties (Fig. 2). The Raman spectrum of pristine graphene mainly displays two main peaks denoted as 
G and 2D. The G band, located at 1580 cm−1, is associated with in plane C-C stretching of sp2 hybridized carbon 
atoms in the planar graphene skeleton7,14,15. The 2D peak is associated with in plane breathing mode of carbon 
atoms and is a second order Raman scattering process (Fig. 2a). The D band located at 1320 cm−1 is associated 
with defects in the regular network of sp2 hybridized carbon atoms and the presence of sp3 hybridized carbon 
atoms. The D/G band intensity ratio can be used to compare and qualitatively estimate the defects and the degree 
of disorder in the pristine and grafted graphene. For pristine graphene on Cu, the ID/IG ratio is 0.105 (Fig. 2a); 
after the treatment (in absence of TMeOD), the D band intensity increases and the ratio ID/IG becomes 0.92, sug-
gesting that some defects in the regular network of sp2 hybridized carbon atoms are introduced by this procedure 
(Fig. 2b). The ID/IG ratio further increases when molecules are grafted, up to a value of 1.40 for TMeOP-grafted 
graphene. At the same time, the shoulder D’-band appears, confirming that the defects related to sp3 hybridization 
due to the grafting procedure (Fig. 2c) significantly increases.

After the grafting procedure, core level photoemission spectroscopy measurements were carried out using 
X-ray photoelectron spectroscopy (XPS) (a) on the pristine graphene on Cu foil (Gr/Cu), (b) on the treated 

Figure 1.  Scheme showing in situ formation and grafting of aryl radical. The aniline precursor is converted into 
a diazonium ion which is then electrochemically activated (EC) to form the aryl radical.
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Gr/Cu foil, and (c) on Gr/Cu foil grafted with TMeOP units. XPS spectra have been collected also on (d) 5 mM 
of TBP-grafted graphene on Cu foil for comparison. The TBD units has been chosen because, as shown in 
Supplementary Information, the methoxy (O-CH3) groups of the TMeOP units are substituted by C4H9 groups 
where the oxygen is missing, allowing to better single out the different contributions in the carbon and oxygen 
core levels.

The wide scan photoemission spectra (See Supplementary Information, Fig. S3) collected on Gr/Cu foil, 
treated Gr/Cu foil and on the two grafted Gr/Cu foil, i.e. grafted with TMeOP and TBP, show all the features 
ascribed to carbon, copper and oxygen atom.

In Fig. 3, the C 1 s and O 1 s XPS peaks are shown, along with the N 1 s core level. Performing several scans 
around a binding energy BE = 400 eV16, in fact, a very small feature, ascribed to N 1 s, appears in the XPS spectra 
of the treated Gr/Cu foil, the TBP-grafted, and TMeOP-grafted samples. As N2 is released by the electrochemically 
induced formation of the radical species17, none of the two molecules is expected to contain nitrogen atoms after 
the reduction procedure.

To clarify the origin of N 1 s feature, we have performed the quantification of the atomic elements, summa-
rized in Table 1. A low, but detectable, amount of N with respect to the dominant C signal is found in the treated 
(N/C=0.04) and in the grafted Gr/Cu foil (N/C=0.01) samples. The presence of N 1 s in the treated sample sug-
gests that the origin of the N 1 s peak could be attributed to NaNO2 employed for the grafting process. The N 1 s 
core level spectra are shown in Fig. 3a–d, where the treated Gr/Cu foil sample is compared with TMeOP and 
TBP-grafted Gr/Cu foil; we note, in fact, that no feature ascribed to N 1 s appears in the pristine Gr/Cu foil sample.

The spectrum of the N 1 s core level can be interpolated by two Lorentzian peaks ascribed to the amine nitro-
gen group (N-H) at 399.5 eV18, and to nitrogen of nitro group present in the form of N-O2 bonds with an energy 
maximum at 405 eV19,20. The N 1s lineshape is preserved in TBP and TMeOP-grafted samples. The possibility of 
a N 1s signal arising from unreacted diazonium salt can be ruled out as such signal would produce two peaks at 
403.8 and 405.1 eV, which are not observed21,22. Therefore, we can assert that the observed N-groups are released 
from the growth solution (aqueous solution of NaNO2 and H2O) and they can be ultimately found anchored to 
the low sp2 defects of graphene lattice created by the electrochemical process or they can intercalate between 
graphene and copper.

The C 1 s spectra are shown in Fig. 3e–h. The main signal of C 1 s for the pristine Gr/Cu foil, treated Gr/Cu foil 
and TBP-grafted Gr/Cu foil is dominated by the carbon at 284.6 eV due to graphene sp2 bonding23,24.

In addition, other structures appear at larger BE for the treated sample. Two features can be ascribed to the 
graphene π−π* satellite and to the oxygen contamination (O-C=O contribution4,9).

For the TMeOP-grafted Gr/Cu foil, the presence of the methoxy contribution (O-CH3 feature) in the C 1 s 
confirms the success of the EC grafting procedure and suggests that the graphene coverage by TMeOP molecules 
is very high. We estimate, as shown in the supplementary, a coverage of about 1 molecule per 3 graphene unit 
cells. This result is in agreement with the increase of the D peak in the Raman spectrum if we consider the high 
density defect regime25 ascribed to the grafted molecules. In this approximation, we obtained, in fact, LD=1.07 nm 
which corresponds to a molecular density of 1 molecule per 4.5 ± 0.5 graphene unit cells in agreement with the 
coverage estimated by XPS measurements.

Consistently, a further structure, at a binding energy of 285.4 eV, due to C sp3 hybridization has been added 
in the C1s core level of the grafted samples. For the TBD-grafted, the area of the sp3 contribution in the C 1s core 
level (Fig. 3h) has been considered the same of the TMeOP-grafted (Fig. 3g) because the concentration of mole-
cules in the growth solution was for both sample 5 mM.

In the treated graphene, without grafted molecules, we can assume that the defect density, ascribed to car-
bon atoms out of strictly sp2 configuration, is low in agreement with STM measurements (See Supplementary 
Information for details, Fig. S4). The greatest quantity of nitrogen in this sample with respect to the grafted sam-
ples could be due to the capability of these defects to partially accommodate N-groups or with the intercalation 
of nitrogen between graphene and copper.

Figure 2.  Raman of (a) pristine graphene on copper foil, (b) treated graphene on copper foil, (c) 5 mM of 
TMeOP-grafted graphene on copper foil. “Treated” refers to graphene exposed to grafting conditions, however 
in absence of TMeOD.
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Figure 3.  N 1 s core level XPS spectra of (a) pristine Gr/Cu, (b) treated Gr/Cu, (c) TMeOP-grafted on Gr/Cu 
foil and (d) TBP-grafted on Gr/Cu foil. C 1 s core level XPS spectra of (e) pristine Gr/Cu foil, (f) treated Gr/
Cu foil, (g) TMeOP-grafted on Gr/Cu foil and (h) TBP-grafted on Gr/Cu foil. O 1 s core level XPS spectra of (i) 
pristine Gr/Cu foil, (j) treated Gr/Cu foil, (k) TMeOP-grafted on Gr/Cu foil and (l) TBP-grafted on Gr/Cu foil. 
The intensity of the N1s and O1s core levels is scaled consistently with the quantification reported in Table 1.

Sample
N 1 s
(%)

O 1 s
(%)

C 1 s
(%) N/C O/C

Pristine Gr/Cu – 23.8 76.2 – 0.31

Treated Gr/Cu 3.3 12.5 84.2 0.04 0.15

TMeOP-grafted 0.7 21.8 77.5 0.01 0.28

TBP-grafted 1.2 34.3 64.5 0.02 0.53

Table 1.  Quantification of elements (N, O, C) and N/C and O/C ratios obtained from the analysis of the XPS 
wide range spectra of pristine Gr/Cu foil, Treated Gr/Cu foil, TMeOP and TBP-grafted molecules.
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The analysis of oxygen is more complicated (Fig. 3i–l). The effect of atmospheric adsorbates on graphene was 
found to be relevant, as it can improve or degrade the carrier mobility depending on the nature of the impuri-
ties26. In Table 1, it is possible to observe for example how the O 1 s amount significantly changes with the sample 
type. The O/C ratio, last column of Table 1, is smaller in TMeOP-grafted rather than in TBP-grafted, even if the 
O quantity is expected to be larger in TMeOP-grafted molecules due to the O-CH3 groups. This discrepancy will 
be clarified by discussing the origin of each peak contributing to the O 1 s spectral weight. In the pristine Gr/Cu,  
three structures dominate the O 1 s core level, the contributions at higher binding energy (about 532.4 and 
533.9 eV) are related to the graphene surface contamination due to the air exposure and it is generally ascribed to 
C-O and H2O groups. The electrochemical process seems to mainly eliminate these oxygen contamination com-
ponents. This result is in agreement with the literature27, where the electrochemical process is usually adopted to 
reduce the graphene oxide. Traces of this contamination persist in the treated and grafted samples as proved by 
the presence of the O-C=O feature.

The contribution, at lower binding energy (at about 530.5 eV) in all the samples can be ascribed to the oxygen 
trapped between the graphene and the copper substrate7,21,28–30.

To confirm this interpretation, we have verified that when the XPS measurement is more surface sensitive, 
by changing the analyzer take-off angle from the normal emission (90° with respect to the sample surface, more 
bulk sensitive) to the take-off angle of 30° (more surface sensitive), the contribution of the oxygen contamination 
doubles (See Supplementary Information, Fig. S6).

With respect to the treated Gr/Cu sample, in the TMeOP-grafted sample a new feature at about 533 eV31 is 
detectable, which is therefore ascribed to the methoxy (O-CH3) groups. As shown in the supplementary informa-
tion (Fig. S5), this feature increases with the molecule concentration in the solution and with the feature ascribed 
to the O-CH3 group in the C 1 s and O 1 s XPS spectra.

To further discuss the origin of the contribution at 530.5 eV to the O 1 s XPS spectrum and to verify whether 
it comes from the CuOx layer at the interface between graphene and copper foil, we have collected the O 1 s core 
levels also on TMeOP-grafted on HOPG (See Supplementary Information, Fig. S7). Indeed, this peak is missing 
in the grafted HOPG as the O 1 s XPS spectrum shows only the contributions from oxygen contamination or from 
the O-CH3 group at higher BE.

The presence of a CuOx layer between Gr and Cu may have an impact on the extent of the Gr-Cu coupling. As 
it is reported in literature27, when graphene is grown on copper, a charge transfer from Cu surface to graphene 
takes place resulting in n-type doping of graphene and shifting of Dirac point 0.38 eV below the Fermi level. On 
the contrary, when graphene grows directly on copper oxide, it becomes electronically decoupled from the sub-
strate and shows properties comparable to the freestanding graphene with the Dirac point located at the Fermi 
level32.

In this scenario, we can assume that, in our case, TMeOP units are grafted on a graphene layer whose prop-
erties are intermediate between freestanding graphene and doped graphene, as expected for the weakly inter-
acting graphene on copper. This is also confirmed by ARPES measurements collected around the Γ point of 
the Brillouin Zone (BZ) for pristine Gr/Cu and TMeOP-grafted on Gr/Cu at different molecular concentrations 
(Fig. 4). In the former, the d band of Cu appears between 2 and 4 eV32, while the σ band of graphene dominates 
the spectra at BE= 4 eV (Fig. 4a). When graphene is grafted by TMeOP units a new, dispersion-less, structure 
appears at BE=3.05 eV below the Fermi level which can be ascribed to the TMeOP HOMO state (Fig. 4b–d). 
The lack of dispersion indicates that the electrons photoemitted from TMeOP-grafted originate from localized 
molecular-like electronic states, rather than from k-dispersing electronic bands. At the K point of the BZ, the 
Dirac point of our pristine Gr/Cu appears downshifted less than 100 meV with respect to the Fermi level after 

Figure 4.  ARPES measurements in p polarization around the Γ point of the first Brillouin zone on (a) pristine 
Gr/Cu foil, (b) on 1 mM TMeOP-grafted on Gr/Cu(111), (c) on 5 mM TMeOP-grafted on Gr/Cu foil, and (d) 
corresponding energy distribution curves (EDCs) at k|| = 0 Å−1. The annealing temperature carried out before 
the ARPES acquisitions is also reported.
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an annealing temperature of 200 °C–350 °C (See Supplementary Information, Fig. S8). It is known that graphene 
grown on metallic copper is n-type doped with the Dirac point shifted by about 380 meV below the Fermi level32, 
while on oxidized Cu the graphene is decoupled from its metallic substrate due to the oxide layer and therefore 
it is undoped with the Dirac point at the Fermi level. In our case, the Dirac point shifted about 100 meV below 
the Fermi level in the pristine sample as reported by A. J. Marsden et al.33, confirms the presence of a partially 
oxidized copper layer at the interface able to partially decouple graphene from the metallic substrate34.

The ARPES spectra on the 5 mM TMeOP-grafted Gr/Cu foil (Fig. 4c) at the Γ point is completely dominated at 
low binding energy by the HOMO at about 3 eV and HOMO-1 bands at 4.5–5.0 eV of TMeOP film. The absence 
of features ascribed to the graphene σ band (partially visible on the 1 mM TMeOP- Gr/Cu(111), Fig. 4b) at the Γ 
point and to the Dirac cone at the K point (see Supplementary Information Fig. S8) confirms the high quantity 
of grafted molecules that completely covers the graphene surface. Referring to Fig. 4d we can conclude that the 
HOMO of the TMeOP/Gr/Cu lays about 1 eV above the σ bands of pristine graphene.

In order to understand the effects of TMeOP grafting on graphene, we carried out a set of several ab-initio 
simulations. At first, we considered the isolated 3,4,5-trimethoxybenzene (TMeOB), as shown in Fig. 5a,b. The 
calculated HOMO-LUMO gap is 4.70 eV; as compared to the HOMO, the molecule LUMO is strongly depleted 
on oxygen atoms, which tend to acquire electrons from the neighbouring C and H atoms.

Then, free-standing graphene and TMeOP-grafted graphene, have been considered (Fig. 5c). In these calcu-
lations, the molecule is bond over a 5 × 5 graphene supercell, consisting of 50 carbon atoms; the TMeOP density 
is thus 0.76 molecule/nm2.

The grafting induces structural and electronic modifications. The graphene is strongly buckled with respect to 
the unrelaxed, free-standing, graphene plane the sp3 C atom and its three C neighbours are lifted of about 0.581 Å 
and 0.174 Å, respectively. Figure 6a displays the band structure of free-standing graphene (thick red lines) and of 
the TMeOP-graphene supercell (grey lines), while the corresponding calculated DOS are shown in Fig. 6b.

We note that the electronic structure calculations predict a weak peak (B) in the density of states (DOS) at the 
Fermi level. The origin of this in-gap state is mainly due to the breakdown of the lattice symmetry of graphene 

Figure 5.  Schematic atomic structure for DFT calculations: (a) calculated real part of HOMO and (b) LUMO 
of 3,4,5-trimethoxybenzene; (c) relaxed unit cell for the TMeOP grafted graphene. Brown circles are for carbon 
atoms, red for oxygen and white balls for hydrogen.

Figure 6.  (a) Calculated band structure for graphene (red) and TMeOP-grafted graphene (grey, folded on the 
graphene unit cell); (b) calculated DOS spectra for graphene, isolated 3,4,5-trimethoxybenzene (TMeOB) and 
grafted graphene. TMeOP pseudo DOS has been obtained by convoluting the DFT eigenvalues (blue vertical 
lines) with gaussian peaks.
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when grafted by TMeOP units and to the change in carbon hybridization from sp2 to sp3 at the grafting site. In 
fact, consistent with literature35, a change in carbon hybridization from sp2 to sp3 in the graphene layer introduces 
a flat band at the Fermi level, yielding a small peak in the DOS. This state is not present in ARPES measurements. 
We ascribe this discrepancy to disorder effects that are not accounted for in the supercell calculations. The DFT 
calculations are in fact carried out considering an ordered structure formed by a TMeOP units bound over a 5 × 5 
graphene supercell, as shown in Fig. 5. In the measured sample, on the contrary, the molecules, with an estimated 
density of about 1 molecule per 3 graphene hexagons, are randomly arranged on the graphene layer without any 
detectable periodicity. This disorder may therefore quench the intensity of the in-gap state expected from the 
supercell calculations.

In spite of the electronic hybridization between the molecule and graphene, it is possible to easily pinpoint the 
TMeOB contribution in the integral density of states (DOS) spectra, shown in Fig. 6b. Several features, labelled 
with an asterisk, can be recognized in 3,4,5-trimethoxybenzene (blue in Fig. 6b) and TMeOP-graphene system 
(black) spectra. Accordingly, the resulting HOMO for the grafted molecule should be at BE = 1.8 eV, while the 
peak ascribed to the σ band is found at about 3 eV. In agreement with the experiments (Fig. 4d), the relative posi-
tion of the HOMO with respect to the graphene σ band is about 1 eV. A difference exists between the calculated 
and the experimental absolute energy values of the HOMO and σ band, this can be ascribed to the approxi-
mation of the calculation. In the DFT calculation the σ band appears at 3 eV rather than at 4 eV already in the 
graphene, having considered, for simplicity, a free-standing graphene layer rather than graphene on Cu or better 
on CuOx/Cu. The other DOS feature ascribable to graphene, peak A in Fig. 6b, and the overall shape of the band 
dispersion (Fig. 6a) do not show any displacement with respect to the undoped case, apparently ruling out the 
presence of major energy shifts due to the grafting, again in agreement with our ARPES results on the pristine 
and 1 mM TMeOP-grafted graphene in Fig. 4a,b. An in-gap state contribution can be easily observed in the calcu-
lated DOS by the peak (labelled B) at the Fermi level which requires a more detailed ARPES investigation at the 
K point of the BZ. Finally, two additional DOS features in the empty states (peaks C and D) could be ascribed to 
TMeOP-grafting and should correspond to C’ and D’ peak of the isolated molecule; the interaction with graphene 
thus induces a small increase (about 0.4 eV) in the energy of TMeOB states close to the LUMO.

Conclusions
The interface chemistry of graphene grown on copper and functionalized by covalent bonding with TMeOP units 
has been studied by core level and angle-resolved valence band photoemission. Two main effects can be ascribed 
to the electrochemical treatment, the application of the electric field creates a low density of defects in graphene 
that can accommodate N-groups, in addition the treatment eliminates the oxygen contamination on the top of 
the graphene layer.

Moreover, comparing the core level spectra collected on both TMeOP and TBP-grafted on graphene, the 
contribution of the methoxy groups has been singled out in C 1 s and O 1 s spectra. An extra oxygen contribution 
coming from a CuOx layer between graphene and copper allows to regard graphene as almost decoupled from 
the metallic substrate and to measure the alignment between graphene σ and π bands and the HOMO of TMeOP, 
which is found to lay about 1 eV above the top of the σ bands, consistently with DFT calculations.

Therefore, despite the presence of the solution in the electrochemical cell, that makes this treatment a grafting 
procedure potentially exposed to contaminations from electrolytes, the results reported in this study show that 
the functionalization by diazonium chemistry does not affect significantly the chemical environment, and that the 
electronic properties at the interface are mainly determined by the covalently grafted molecules.

This finding demonstrates that high quality grafting can be achieved in a set-up with growth conditions less 
demanding with respect to UHV-related methods36, therefore disclosing the possibility to apply photoemission 
techniques to systems prepared on the basis of similar electrochemical methods37, and ultimately enabling a scal-
able pathway for the production of functionalized graphene layers.

Methods
Electrochemical measurements were performed using an Autolab PGSTAT101 potentiostat (Metrohm 
Autolab BV, The Netherlands). The electrochemical modification procedure was carried out in a homemade 
single-compartment three–electrode cell with a working electrode area of 38.5 mm2, Pt wire counter and 
Ag/AgCl/3 M NaCl reference electrodes. 3,5-bis-tert-butylbenzenediazonium (TBD) chloride and 3,4,5-tri
methoxybenzenediazonium (TMeOD) chloride are unstable and decompose rapidly: hence they were synthe-
sized from the corresponding aniline precursor immediately prior to electrochemical reduction. This procedure 
involves 5 mL of a 1 mM (or 5 mM) 3,4,5-trimethoxyaniline (97%, Sigma-Aldrich) or 3,5-bis-tert-butylaniline 
(98%, Sigma-Aldrich) in 50 mM HCl (Sigma-Aldrich) aqueous solution which was mixed with 50 µL (or 250 µL) 
of aqueous NaNO2 (0.1 M) for activation of the diazotization reaction. Within 90 seconds, this mixture was gen-
tly shaken and pipetted into the EC cell. Cyclic voltammetry was used for the electrochemical activation. In 
the measurements the potential window was chosen from 0.3 V to −0.6 V, scan rate 0.1 V/s for 3 cycles. After 
modification, the TMeOP modified samples were rinsed with Milli-Q water (Milli-Q, Millipore, 18.2 MΩ cm, 
TOC <3 ppb) to remove any physisorbed material from the surface and dried in a stream of Argon. The STM 
measurements were acquired with a molecular imaging STM system operating in constant current mode. The tip 
was obtained by a Pt-Ir wire (80–20%, diameter 0.25 mm).

The substrates used are CVD graphene on Cu foil obtained from Graphenea, graphene on Cu(111) obtained 
from IMEC and HOPG (grade ZYB, Advanced Ceramics Inc., Cleveland, OH).

In order to avoid the detachment of the phenyl units, all the X-ray photoemission measurements have been 
collected after an annealing treatment in ultra-high vacuum conditions at temperatures lower than 393 K. Core 
level spectra have been collected with a properly calibrated38 VG-SCIENTA R3000 analyzer and the Al Kα line of 
a twin anode X-ray source, operating in ultra-high vacuum conditions (base pressure 2×10−10 torr).
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Angle-resolved valence band spectra were carried out at the BaDElPh beamline of the Elettra synchrotron in 
Trieste (Italy) using a photon energy of 34 eV and an hemispherical electron analyzer SPECS Phoibos 150 with a 
2D-CCD detector system39. The overall energy and angular resolution were set to 100 meV and 0.3°, respectively. 
All the ARPES maps were collected at room temperature (RT) after an annealing treatment. The annealing tem-
perature (reported in the Figures), in this case, is the minimum value that allows to observe a clear ARPES map.

Raman measurements were performed with an OmegaScope 1000 (AIST-NT). Laser light (632.8 nm) from a 
He-Ne laser was focused onto the sample surface from the side (with an angle of 28° to sample surface) and top, 
for ‘grating’ and ‘normal’ measurements, respectively, through an objective (MITUTOYO, BD Plan Apo 100x, 
N.A. 0.7). Optical density at sample surface was about 500 kW/cm2. Raman scattering was collected with the same 
objective and directed to a Raman spectrograph (Horiba JY, iHR-320) equipped with a cooled-charge coupled 
device (CCD) camera operated at −100 °C (Andor Technology, DU920P-BRDD) through a pinhole, a dichroic 
mirror (Chroma Technology Corporation, Z633RDC) and long pass filter (Chroma Technology Corporation, 
HQ645LP). Accumulation time for each point in ‘grating’ measurement was 1 s. All of the measurements were 
carried out under ambient conditions and at room temperature.

The TMeOB, TMeOD-grafted graphene and pristine graphene electronic structures have been evaluated 
through ab-initio density functional theory calculations, in the framework of the GGA-PBE approximation40. 
Van der Waals corrections to the exchange-correlation potential have been neglected, due to the direct chemi-
cal bond induced by grafting. Calculations have been performed with the ABINIT package41 in the framework 
of Projector-Augmented wave atomic description. A large cut-off energy (700 eV) has been considered for the 
plane-wave basis definition. All atomic position have been relaxed up to a maximal interatomic force of 10–5 Ha/
Bohr. For the graphene and the grafted graphene cells a 7 ×7 ×1 Monkhorts-Pack grid has been adopted, with an 
adequately large cell size on the out-of-plane direction (15 Å); for the isolated TMeOB, the molecule was placed 
in a wide (15 Å) cubic cell size, with a single k point. For each case, the convergence on the total energy was set to 
the 10−9 Ha level.
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