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Lung and fissure shape 
is associated with age in healthy 
never‑smoking adults aged 20–90 
years
Mahyar Osanlouy1, Alys R. Clark1, Haribalan Kumar1, Clair King2, Margaret L. Wilsher2,3, 
David G. Milne4, Ken Whyte2,3, Eric A. Hoffman5 & Merryn H. Tawhai1*

Lung shape could hold prognostic information for age-related diseases that affect lung tissue 
mechanics. We sought to quantify mean lung shape, its modes of variation, and shape associations 
with lung size, age, sex, and Body Mass Index (BMI) in healthy subjects across a seven-decade age 
span. Volumetric computed tomography from 83 subjects (49 M/34 F, BMI 24.7± 2.7 ) was used to 
derive two statistical shape models using a principal component analysis. One model included, and 
the other controlled for, lung volume. Volume made the strongest contribution to shape when it 
was included. Shape had a strong relationship with age but not sex when volume was controlled for, 
and BMI had only a small but significant association with shape. The first principal shape mode was 
associated with decrease in the antero-posterior dimension from base to apex. In older subjects this 
was rapid and obvious, whereas younger subjects had relatively more constant dimension. A shift of 
the fissures of both lungs in the basal direction was apparent for the older subjects, consistent with a 
change in tissue elasticity with age. This study suggests a quantifiable structure-function relationship 
for the healthy adult lung that can potentially be exploited as a normative description against which 
abnormal can be compared.

Advancing age is associated with increasing chest wall stiffness and changes to thorax shape due to calcification 
of costal cartilages, narrowing of intervertebral spaces, and increased dorsal kyphosis/anteroposterior diameter 
(‘barrel chest’)1. Given the tight apposition of the lung and chest wall, it is reasonable to expect that the lung 
changes shape along with the thorax. However, to date adult age-related lung shape has only been directly exam-
ined quantitatively using clinical 2D chest X-ray2 which cannot give a complete shape description.

Quantitative descriptions of normal lung shape, inter-subject variability, and age-related differences are 
important for several reasons. First, diseases with age-related prevalence that affect the lung tissue can develop 
with a regional preference; for example, preferentially apical for emphysema as a component of chronic obstruc-
tive pulmonary disease (COPD), or subpleural basal for idiopathic pulmonary fibrosis (IPF). In IPF this has 
been proposed to be related to locally high shear stress3, which itself depends upon the degree of lung inflation 
and change in shape associated with posture and chest wall expansion during breathing. Detailed testing of this 
hypothesis has been limited by a lack of description of the normal and pathological lung shape. Second, mechani-
cal changes to the lung tissue and chest wall that accompany COPD or IPF affect the functional deformation 
of the lung tissue during breathing or breath-hold4. Lung and lobe shape—as well as the spatial distribution of 
abnormal tissue—could therefore hold prognostic information for staging or stratification of patients with these 
conditions. Finally, information on shape would improve automated image processing methods for detection 
of the pulmonary fissures, where fissure integrity, for example, is an important predictor of outcome for endo-
bronchial valve treatment of severe emphysema5.
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Despite its importance, descriptions of normal lung shape remain largely qualitative except for a relatively 
small number of studies (e.g.6–8). Several studies have suggested sexual dimorphism in ribcage morphology7,9,10 
and to a small extent ( 7%)—in static supine lung shape11. Sex-related shape differences could be important for 
understanding the greater susceptibility of women to COPD12. Other studies of subjects with and without COPD 
have observed a dependence of diaphragm shape on age (16) and Body Mass Index (BMI)13,14 and an association 
between percent emphysema and cross-sectional area of the lung12. However, no study has yet considered the 
impact of healthy adult age on lung—rather than its ‘container’—shape.

Biological shape variations are often complex and highly challenging to interpret. Principal component 
analysis (PCA) is a mathematical method that has previously been used to describe the shape of the lung8 and 
other organs15–17. PCA simplifies the complex patterns of shape variation into independent variables (principal 
components), providing more-readily interpretable metrics of shape than simple linear dimensions. Here, we 
sought to quantify the average lung shape using a PCA to derive a statistical shape average model and its principal 
modes of shape variation for a cohort of healthy adults aged 20–93 years of age, and to determine whether lung 
shape in these subjects is associated with age, sex, or BMI.

Methods
Data acquisition and preprocessing.  Imaging and pulmonary function testing data from 83 (34 M/49 
F) never-smoking subjects aged 20–93 years, with no history of lung disease or injury to the lung or chest wall 
were analyzed. Data were retrospectively obtained from two studies with consistent protocols. 47 (19 M/28 F) 
subjects aged 50–93 years ( 71.2± 10.9 years) were recruited with approval from the Northern A Health and Dis-
ability Ethics Committee, and data were acquired at Auckland City Hospital (New Zealand). A further 36 (15/21 
M/F) subjects aged 20–49 years (mean 32.0± 12 years) were selected retrospectively from the University of Iowa 
Comprehensive Lung Imaging Center ‘Human Lung Atlas’ database (data acquired under NIH R01-HL-064368, 
E. A. Hoffman PI, following approval by the University of Iowa Institutional Review Board and Radiation Safety 
Committees). All the data acquisition and analysis methods were carried out in accordance with relevant guide-
lines and regulations. An informed consent was obtained from all subjects. Subject data were selected to pro-
vide as uniform as possible spread of age by decade and sex, within the constraints of the available data. Data 
comprised volumetric multi-detector row computed tomography (MDCT) at full inspiration, spirometry, and 
lung volumes by plethysmography. Exclusion criteria were BMI > 30 kg/m2 , a history of respiratory or cardiac 
disease, ever-smoking, FEV1 < 80% predicted and FEV1/FVC < lower limit of normal18. Anthropometric data 
are given in Table 1.

Volumetric imaging had slice spacing 0.5–0.7   mm with reconstruction matrices of 768× 768 (> 50 years old) 
or 512× 512 (< 50 years old). Scan parameters were 120 kV, 100 mAs, and pitch of 1.2. Lung and fissure surfaces 
were segmented using custom-written software19 with manual correction of fissures as required. To define the 
lung shape a high-order finite element (FE) mesh was geometry-fitted to the lung and fissure surfaces20 using the 
same mesh topology for all subjects (Fig. 1). The generic FE mesh had 35 nodes and 44 elements covering the 
left lung and left oblique fissure surfaces, and 50 nodes and 62 elements covering the right lung and right oblique 
and horizontal fissure surfaces. In order to provide anatomical and mathematical shape correspondence between 
subjects, anatomical landmarks were placed at the lung apices, dome of the diaphragm, the edge of the lung base, 
and the edge of anterior segments. Additional pseudo-landmarks were regularly-spaced between these points. 
The generic mesh was geometrically fitted to each subject’s segmented lung image using a linear least squares 
optimization20. Briefly, the sum of the Euclidean distances between each data point and its projection onto the 
nearest element was minimized during the fitting process. This distance is a function of the node location and 
shape parameter, i.e. its derivatives. The points are fitted by minimizing the energy function T(u) with respect 
to the global shape parameters:

Table 1.   Summary anthropometric data for a cohort of never-smoking subjects aged 20–93 years, used for 
lung shape analysis. SD standard deviation, N sample size.

Anthropometric data (mean ± SD, N = 83)

Age (years) 53± 22

Sex (M/F) 34 (41%)/49 (59%)

Height (m) 1.70± 0.12

Weight (kg) 69± 11

BMI ( kg/m2) 24.7± 2.7

Ethnicity

Caucasian 78

New Zealand Maori 1

Asian 1

African American 1

Unknown 2
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where u is a vector of mesh parameters, γ is a weight factor for each point, z is geometric position which can be 
given by local element coordinate ξ , zd is the spatial coordinates of the data point, and Ω is the mesh domain. g 
is a second order weighted norm which is calculated from the derivatives of the geometry of each element21. This 
term is a smoothness constraint which measures the deformation of the surface, and was included to regularize 
the problem since data can sometimes be either insufficient or noisy. The root mean squared error for mesh fit-
ting across the cohort was 5.2± 2.3mm.

Statistical shape analysis: SSA.  We derived two statistical shape models (SSM) for the cohort using a 
principal component analysis (PCA). An SSM provides a mathematical description of the shape of an object and 
the ways that its shape varies. It captures the global shape of the object of interest instead of using fixed geometric 
measurements such as lengths and angles22. PCA is a mathematical technique that decomposes the shape of a 
generic object into its main components such that the weighted sum of these components can retrieve back the 
object’s shape. In our approach, the first model included lung size (using raw unscaled data; the ‘size-inclusive’ 
model) and the second model controlled for lung size (using scaled data; the ‘size-exclusive’ model). The mean 
shape and principal modes of shape variation were derived for the whole cohort for both the size-inclusive and 
size-exclusive models. The process of deriving the SSM involves three main steps: data alignment, data assembly, 
and data decomposition.

Data alignment.  A key first step in deriving any SSM is to align the object shapes to a chosen reference coor-
dinate. General Procrustes Alignment (GPA)23 was used to align all meshes to the same axis, hence removing 
rotation and translation bias; and in the size-exclusive model it was also used to remove scaling bias. This step is 

(1)T(u) =
∑

γ �z(ξ1, ξ2)− zd�2 +
∫

Ω

g(u(ξ))dξ ,

Figure 1.   Finite element mesh topology used to construct subject-specific lung shapes. (a) Lateral view of the 
left lung, (b) front view of both lungs, and (c) lateral view of the right lung. Lobar fissures are also highlighted. 
The larger black spheres indicate the nodes used as anatomical landmarks, the smaller grey spheres indicate the 
nodes used as pseudo landmarks, and the lines indicate the interpolation edges that are used as the description 
of surface curvature—note that the fissure is shown in red colour. This approach to describe the shape ensures 
that the entire lung surface is taken into account in the statistical modeling calculations.
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analogous to the rigid registration that removes any rigid body changes to the shape of an object. Without this 
step, the SSM would include rotation and translation as a component of shape variation, which is not desirable.

For the data alignment, let S be a vector containing the concatenation of all 3D lung coordinates, i.e. 
S = [x1, y1, z1 . . .] , to the reference (mean) surface (i.e. 1/N

∑N
i (x

i
1)
∑

i(y
i
1)
∑

i(z
i
1) . . . , where i iterates over N 

cases). We can now define the aligned shape vector S̄ by:

where R and T are the unknown rotation matrix and translation vector, respectively, which align shape S, and 
α ∈ R is the overall scaling factor.

Data assembly.  We assemble information about lung shape (here represented as finite element nodes and cur-
vature information at each node) from all of the subjects in the cohort. Each subject’s lung shape is considered 
to be a single observation. Let SL be one such observation column containing the shape parameters. In this case:

where ( T ) denotes transpose, u is the node containing 12 DoFs (four for each direction: c, ∂c
∂ξ1

, ∂c
∂ξ2

 , ∂2c
∂ξ1∂ξ2

 , where c 
= [x, y, and z]). These DoFs together describe the lung shape for one subject in the cohort. For a general surface 
in 3D space, these DoFs describe both the location and the surface curvature. Furthermore, p represents the 
number of nodes for both lungs and the overline ( _ ) operator symbolizes the GPA to the reference lung model.

A new data matrix S is built by a concatenation of each lung observation SL to construct a lung training set. 
The full training set can be described as a set of N3D shapes, where N is the number of subject lung shapes. Each 
of these lung shapes is represented by a set of n landmarks, where n is the number of nodal shape parameters (i.e. 
2700 for each subject, equalling 225 nodes times the number of nodal parameters of coordinates and derivatives 
for each node). By assembling the shape parameters this way, every lung shape has been converted from a 3D 
space to a single point in 3nD space. This 3nD space constitutes an ‘allowable shape domain’. S can be seen as a 
cloud of N points in the constructed 3nD space that lies within this domain24. Once such a space is constructed, 
any allowable shape will have to be a member of this domain. Conversely, any shape that is extracted from this 
domain will be an allowable shape.

Data decomposition.  Decomposition aims to reduce the complexity of the data. Once the data has been assem-
bled, the data matrix S can be decomposed into modes of shape variation using a number of different techniques. 
The current study employs a linear decomposition of S by PCA within the allowable shape domain. One of the 
benefits of PCA is to find a linear space of eigenvectors ml where l = 1, . . . , L , with L being much smaller than 
the number of variables in the original rectangular Cartesian space (in this case L ≪ 2700× 83 = 224, 100 ). In 
statistical terminology, this technique is referred to as reducing the dimension of the feature space.

Principal component analysis.  PCA was performed by centering the data in S around the mean, i.e. 
S = S0 − S̄0 where S0 is the original data matrix and S̄0 is the mean of S0 . Next the covariance matrix of S was 
built by C = SS

T . Mean-centered data matrix S was then factorized using singular value decomposition (SVD) 
to yield:

where U is an m×m unitary matrix of eigenvectors of SST , Σ is an m× n rectangular diagonal matrix with non-
negative square roots of the eigenvalues of SST , and V is an orthonormalized n× n unitary matrix containing 
eigenvectors of C = SS

T . U is a rotational representation of the lung matrix S25. Assuming that all dimensionality 
is preserved, the PCA transformation can be expressed by U using X = U

T
S . The elements in each column of 

U , namely u, are the new variables transformed into the PCA-space X . One column (i.e. ul ) represents a mode 
of variation or principal components, ordered by the singular values of Σ , namely σ l . The singular values are 
proportional to the size of the variance corresponding to each eigenvector. This clearly shows that the variance 
explained by each component ul can be derived as σ l ≡

√
�l  , where �l are the eigenvalues of C . The correspond-

ing eigenvalues of C show how significant the components σ are: a larger eigenvalue means a more significant 
eigenvector, hence a more significant mode of variation.

Shape modes are independent descriptors of shape and can be expressed as a percentage of the total shape 
variation in the population. Modes of variation are defined as perturbations about the mean and can be noted 
as ml for each principal component ul . In this case:

where w is a weight factor given to each mode of variation and l = 1, . . . , L . Variations in w within suitable limits 
(often between ± 2− 3σ ) allows for a direct visualization of the lung shape and shape changes. Each subject’s 
weight values for each mode of variation were calculated by projecting the subject onto the trained population’s 
PCs. The projection is performed by using the dot product of the PCA variance matrix and the subject’s shape 
vector:

(2)S̄ = αRS + T ,

(3)STL = [ū1, ū2, ū3, . . . , ūp−2, ūp−1, ūp],

(4)S = UΣV
T,

(5)ml(w) = S̄0 + wul ≡ Ml ,

(6)s = (Xi − smean) · R,
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where s is the array of PC scores, Xi is the desired subject dataset, smean is the mean shape vector, and R is the 
population PCA variance matrix. The scores in the array s were then converted into relative standard deviation 
(S.D.) weight values.

Mode selection and geometrical analysis.  The number of shape modes obtained as a result of a PCA 
analysis is typically large. It is impractical and also not useful to study all of the shape modes. We employed the 
cumulative percentage of total variation as the selection criterion. The number of modes included in the analy-
sis is then the smallest value of m for which this chosen percentage cut-off is exceeded. Modes are successively 
selected to have the largest possible variance. Let the variance of the kth mode be denoted as lk . Then the sum 
of the variances of the modes is equal to the sum of the variances of the elements of S (our data; also note that p 
indicates those variables in S), which when expressed mathematically:

As a result, the definition of ‘percentage of variation’ vm is:

A sensible cut-off for vm often depends on the nature of a particular data. When p is very large (like in our case 
which is 224,100) we end up with an impractically large value of m for further analysis. For large m, geometrical 
interpretation of the modes become extremely difficult or even impossible26. It is also important to retain as many 
m as feasible to interpret and examine. As a result, a cut-off was chosen empirically by examining all of the modes 
and retaining those which showed the possibility of interpretation. For the significant modes that were chosen, a 
careful and detailed approach using 3D graphical visualization techniques was employed to derive information 
regarding the topological and geometrical changes in lung shape.

Statistical analysis.  Weightings for the first four shape modes for each model were tested for relationships 
with age, BMI, sex, and lung volume using ordinary least squares regression and Pearson correlation. Means 
of the 50 year old groups were compared using one-way ANOVA. For age, we used a standard two-sided inde-
pendent t-test with unequal population variance (Welch’s t-test). A confidence level ( α ) of 0.05 was considered 
statistically significant.

Results
To confirm that the inclusion of data from different centers did not influence the imaged lung volume (and hence 
potentially the shape), the imaged full inspiratory supine lung volume as a proportion of plethysmographic 
(upright) assessed total lung capacity (TLC) was compared between subjects from the two centers (the > 50 and 
< 50 year old groups). There was no significant difference ( p = 0.15 ) in the relative lung volume during imaging 
(ratios were 0.88± 0.14 and 0.93± 0.08 for the > 50 y.o. and < 50 y.o. group, respectively).

Qualitative descriptions of modes of lung shape variation.  Two separate shape models were derived 
to enable evaluation of the contribution of size (volume) to shape: the size-inclusive model and size-exclusive 
model. Lung shape for ± 2.5 standard deviations from the mean are illustrated in Fig. 2 for the first four principal 
modes, for the size-inclusive and -exclusive models. For both models, the first mode explained 11% of the shape 
variation and the second explained 10% . Modes 3 and 4 explained 9% ( 6% ) and 6% ( 5% ), respectively for the 
size-inclusive (-exclusive) model; that is, the first four modes explained a total of 36% ( 32% ) of the shape varia-
tion in the cohort.

In Fig. 2, negative weightings for mode 1 in the size-inclusive model (tending to be female) corresponded 
to smaller lungs with thinner anterior edges; positive weightings corresponded to larger lungs (tending to be 
male) and thicker anterior edges that almost touched each other, with locally dilated regions. In contrast, in the 
size-exclusive model the first mode corresponded mainly to the antero-posterior diameter of the lung with a 
mediolateral narrowing towards the apices for negative weightings, and relatively constant mediolateral dimen-
sion from base to apex for positive weightings. In addition, this mode in the size-exclusive model showed a large 
shift in fissure locations in both the right and left lungs with mode weighting: the horizontal fissure descended 
towards the base as weighting became more negative, and the oblique fissures retracted posteriorly. The second 
principal mode for the size-inclusive model showed a very similar pattern of variation to the first principal mode 
for the size-exclusive model, explaining 10% of the cohort’s variation in shape.

For the second shape mode of the size-exclusive model, the shape variability involved an inwards rotation of 
the anterior aspect of each lung about the cranio-caudal axis, such that the upper anterior region of each lung 
moved closer to each other for negative weightings. The third mode for the size-inclusive model showed a very 
similar pattern of variation to this. The size-exclusive mode 3 and size-inclusive mode 4 presented some degree 
of aspect ratio change (that is, the ratio of the width to the height of lung). The size-exclusive mode 4 presented 
a more aggressive aspect ratio change with a more inflated and ‘barrel-shaped’ lung for positive weightings, and 

(7)
p∑

k=1

lk =
p∑

j=1

sjj ,

(8)vm = 100×

m∑
k=1

lk

p∑
j=1

sjj

= 100×
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k=1

lk

p∑
k=1
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a less inflated and elongated lung for negative weightings. This shape mode also showed some rotation about the 
cranio-caudal axis, with the anterior of the lungs rotating towards each other for positive weightings.

Associations between lung shape, sex, and size.  All shape modes were examined for associations 
with age, sex and lung size. Only the modes that have significant relationships with physiological or anthropo-
metric data are illustrated, except for sex differences.

As shown in Fig. 3a, when volume was not controlled for the first principal shape mode was strongly associ-
ated with lung size ( R = 0.77 , p < 0.001 ), with the female data tending towards negative, and male data posi-
tive, weightings. The relationship for the whole cohort was stronger than for females ( R = 0.52 , p < 0.001 ) or 
males ( R = 0.68 , p < 0.001 ) considered separately. In contrast, mode 1 was not associated with lung size in the 
size-exclusive model ( R = 0.18 , p = 0.10), but mode 4 was ( R = 0.65 , p < 0.001 ) when considering the entire 
cohort. While Fig. 2 suggests qualitatively that size could be a factor in modes 2–4 of the size-inclusive model, 
this is not borne out statistically: size-exclusive mode 4 (Fig. 3d) is the only other shape mode that shows a 
significant association with lung volume ( R = 0.65 , p < 0.001 ). Similar to the distribution of data for mode 1 
of the size-inclusive model (Fig. 3a), mode 4 in Fig. 3d shows females tending to negative weightings and males 
to positive weightings.

Figure 4 and Table 2 summarize the distributions of shape mode weightings when grouped by sex. The first 
three shape modes for the size-inclusive model are significantly different ( p < 0.001 for mode 1, p = 0.002 for 

Figure 2.   Lung shape at ± 2.5 SD from the mean for each of the first four principal modes, for the size-inclusive 
(left column) and size-exclusive (right column) statistical shape models. The left main panel illustrates shape 
modes 1 to 4 for the size-inclusive model, and the right main panel for the size-exclusive model. The middle 
column shows the relative contribution of each mode as a percentage of the total population shape variance.
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mode 2, and p < 0.001 for mode 3) between males and females, but the fourth mode is not. In contrast, the size-
exclusive model modes 1 to 3 have no sex differences, whereas the male/female difference in mode 4 is significant 
( p < 0.001 ). For the size-inclusive model, males and females tend towards negative and positive weightings for 
mode 1, respectively.

Associations between lung shape and age.  Age is strongly associated with shape for both the size-
inclusive and -exclusive models in Fig. 5. Strong relationships with age are evident for size-exclusive mode 1 
(Fig. 5b, R = − 0.75 , p < 0.001 ) and size-inclusive mode 2 (Fig. 5c, R = − 0.65 , p < 0.001 ). For both modes, the 

Figure 3.   The relationship between total imaged lung volume and principal shape modes 1 and 4 for the (a,c) 
size-inclusive and (b,d) -exclusive models. Data for females (filled circles) and males (crosses) are indicated 
separately. Linear regressions to the data are shown for the whole cohort (solid lines) and separately for females 
(heavy dashed lines) and males (light dotted lines). The size-inclusive mode 1 and size-exclusive mode 4 are 
strongly associated with volume ( R = 0.77 , p < 0.001 , and R = 0.65 , p < 0.001 , respectively). Significant 
relationships are not apparent for the other two model modes (R=0.18, p=0.10 for size-exclusive mode 1, and 
R=0.27, p=0.08 for size-inclusive mode 4).
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Figure 4.   Distribution of mode weightings for the size-inclusive (left column) and size-exclusive (right column) 
models, for females (grey) and males (cross-hatched). The shape modes 1–4 are shown from top to bottom. 
Statistical significance is indicated using ‘*’. Modes 1–3 in the size-inclusive model and mode 4 of the size-
exclusive model have statistically significant differences between males and females.

Table 2.   Mean (± standard deviation) of the first four principal shape mode weightings for males and females 
for a size-inclusive and a size-exclusive statistical shape model. Corresponding p-values from an independent 
t-test for females and males are shown, with p < 0.05 (indicated by ∗ ) considered statistically significant.

Size-inclusive model Size-exclusive model

Female (mean ± SD) Male (mean ± SD) p-value Female (mean ± SD) Male (mean ± SD) p-value

Mode 1 − 0.50 ± 0.72 0.77 ± 0.84 < 0.001* − 0.01 ± 0.98 0.04 ± 1.03 0.83

Mode 2 0.28 ± 0.96 − 0.40 ± 0.94 0.002* 1.31 ± 0.92 − 0.16 ± 1.10 0.20

Mode 3 0.38 ± 0.83 − 0.54 ± 0.98 < 0.001* 0.13 ± 1.10 − 0.20 ± 0.87 0.14

Mode 4 − 0.03 ± 1.06 0.03 ± 0.91 0.80 − 0.52 ± 0.75 0.74 ± 0.84 < 0.001*
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relationships for separate sexes are not different from that for the whole cohort. Age and size-inclusive mode 1 
shows moderate association for the whole cohort (Fig. 5a, R = − 0.39 , p < 0.001 ), however separation by sex 
reveals a strong relationship for males with age ( R = − 0.70 , p < 0.001 ), and a weaker (than male) but important 
association for females ( R = − 0.44 , p = 0.002).

Associations between lung shape and BMI.  The shape modes that appear to be associated with BMI 
are shown in Fig.  6. Size-inclusive mode 2 has a significant association with BMI ( R = − 0.41 , p < 0.001 ). 

Figure 5.   The relationship between age and shape modes 1 and 2 for the (a,c) size-inclusive and (b,d) size-
exclusive models. Data for females (filled circles) and males (crosses) are indicated separately. Linear regressions 
to the data are shown for the whole cohort (solid lines) and separately for females (heavy dashed lines) and 
males (light dotted lines). Qualitatively, size-inclusive mode 1 captures the lung size, size-inclusive mode 2 and 
size-exclusive mode 1 capture a change in the antero-posterior dimension when moving from base to apex as 
well as a large shift in fissure location, and size-exclusive mode 2 captures rotation about the medio-lateral axis. 
Age is strongly associated with mode 1 in the size-exclusive model ( R = − 0.75 , p < 0.001 ) and with mode 2 in 
the size-inclusive model ( R = − 0.65 , p < 0.001 ). Age is moderately associated with mode 1 in the size-inclusive 
model (R = 0.39, p < 0.001).
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Separation by sex reveals a similar relationship for females ( R = − 0.51 , p < 0.001 ) but no relationship for 
males ( R = − 0.14 , p = 0.43 ) with BMI. For size-exclusive mode 3, the individual relationships for females 
( R = − 0.35 , p = 0.02 ) and males ( R = − 0.40 , p = 0.02 ) with BMI are similar to that for the whole cohort 
( R = − 0.39 , p = 0.01).

Discussion
Older age and chronic disease are both known to affect chest wall shape, lung dimensions, and lung function. 
Lung shape therefore potentially provides a prognostic marker of lung health or accelerated aging, but this has 
not previously been explored. To distinguish between normal and abnormal lung shape, a quantitative description 
of normal shape and its variability is first required. Our study provides a quantitative statistical shape descrip-
tion of the lung and its lobes in a cohort of 83 never-smoking healthy subjects aged 20–93 years. The statistical 
model shows a strong relationship between shape and age, and an association between shape and BMI. Male 
and female shape only differed when lung size was not controlled for in the model, which differs from previous 
studies of sex differences in lung shape8.

Rib cage geometry has been studied in detail by a number of authors, using quantitative methods to describe 
its normal shape and revealing relationships with age, BMI, and sex1,10. However, the rib cage only describes 
one component of lung shape: the diaphragm forms the additional boundary of the lung ‘container’, and the 
pulmonary fissures provide important information about lobar shape. Some other direct analyses of lung shape 
have relied upon measurements of linear dimensions or cross-sectional area at select locations11–13, but this 
cannot account for detailed features such as surface curvature or the location of the fissures. We used a PCA to 
derive statistical shape models for healthy, never-smoking, and radiologically normal subjects. The shape mod-
els represent the average shape of this cohort and its principal modes of shape variation ranked in order of the 
proportion of variation in shape that they explain. Any subject in the study cohort can be modeled as the mean 
shape plus a weighted sum of principal components, providing a compact quantitative description of individual 
subject shape. A further advantage of this approach is that it is straightforward to test whether a subject that was 
not in the training cohort can be considered to have the same shape as the cohort.

Average lung size is different between males and females, therefore we derived two shape models that allowed 
us to assess the contribution of lung size (volume) to the quantitative description of shape and therefore the 
appearance of sex differences. We expect that mode ( i + 1 ) in the size-inclusive (not volume controlled) model 
captures similar shape information to mode (i) in the shape-exclusive (volume controlled) model. This is sup-
ported by the similarity of shape for modes ( i + 1 ) to modes (i) (size-inclusive and -exclusive, respectively) in 
Fig. 2, and the corresponding data in Fig. 4. However, the size-inclusive model—by its nature—includes size 
variation as a shape feature in each of the first four principal shape modes (Fig. 2).

Our shape models show strong relationships between age and lung shape (summarized in Fig. 5), consistent 
with relationships between rib morphology and age10. The strongest relationship was with the first principal shape 
mode in the size-exclusive model. There were no sex differences in the relationship for this model/mode. Similar 
relationships with both age and sex differences were observed for mode 2 of the size-inclusive model, albeit with 
slightly weaker relationships that presumably reflect some contribution of lung size. Interestingly, when volume 

Figure 6.   The relationship between (a) BMI and shape mode 2 for the size-inclusive model and (b) shape mode 
3 for the size-exclusive model. Data for females (filled circles) and males (crosses) are indicated separately. 
Linear regressions to the data are shown for the whole cohort (solid lines) and separately for females (heavy 
dashed lines) and males (light dotted lines). Both modes for the respective models have moderately strong and 
significant relationships with BMI when considering the entire cohort. The relationship for males in the size-
inclusive model is not significant ( p = 0.43 ) when considered separately.
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is not controlled for there is a much stronger relationship between the first principal shape mode and age for 
males compared with the whole cohort or females. The reason for these differences is not clear.

A more ‘pyramidal’ lung shape was observed with advancing age: that is, a smaller apical dimension compared 
with the diaphragmatic region in older subjects (Fig. 2). This was the same for both males and females (results 
not shown). These findings are consistent with previous studies that have found age-related alterations in thoracic 
shape, often as the consequence of deformity of the vertebral bodies leading to kyphosis27. Thoracic kyphosis leads 
to an increase in the anterio-posterior diameter of the chest which, in turn, results in an increased diameter of 
the lungs and the subsequent ‘pyramidal’ lung shape. In addition to differences in the exterior shape of the lung, 
a large displacement of the fissures with age was seen in both lungs (Fig. 2). The horizontal fissure descended 
towards the lung base in proportion to age, and the oblique fissures retracted posteriorly. The age-associated 
shape differences that we observed were therefore not just associated with chest wall remodeling, but also with 
a change in the configuration of the fissures.

Previous studies have reported that normal age-related changes to lung structure become most obvious from 
the beginning of the third decade of life28, and these changes in structure are associated with loss of static elastic 
recoil pressure of the lung29,30. We note that the large majority of the subjects aged greater than 30 years in our 
study had negative weightings for the size-exclusive mode 1 (i.e. in the direction of ‘older’ age in Fig. 5c) and 
almost every subject aged less than 30 years had positive weightings. That is, for the healthy cohort considered 
here, the average shape (zero SD weighting) was at about 30 years. This compares with an average cohort age of 
53± 22 years. It is therefore likely that the change in shape—and particularly the fissure displacement—with age 
that we observe in this cohort reflects lung tissue micro-structural and elasticity changes, and their force balance 
with the chest wall. For example, the loss of elastic recoil with age leads to airway closure and increase in RV. 
This implies that at full-inspiration, the dependent airways will be narrower with resultant changes in airways 
resistance and compliance impacting on lung volume, and this indirectly acting on the position of the fissures.

In our model, males and females differ in their lung shape for the first three principal shape modes only when 
size (i.e. lung volume) is included in the analysis, as illustrated in Fig. 4. Mode 4 of the size-exclusive model 
shows apparent sex differences, however this mode is strongly associated with lung volume. In our dataset, 
full-inspiratory imaged lung volume is significantly larger ( p < 0.001 ) in males ( 6.81± 1.16 L ) than females 
( 4.84± 0.85 L ). The relationship between lung volume and mode 4 in Fig. 3d) shows overlap between male and 
female lung size, with smaller male lungs tending towards negative weightings along with most female lungs, 
and larger female lungs tending towards positive weightings along with most of the males. That is, the mode’s 
apparent association with sex is because of the difference in average volume of male and female lungs. Our general 
lack of sex differences contrasts with studies of rib cage morphology, which describe a rounder (less elliptical) 
lung cross-section in females9,12. It also contrasts with a recent study that used similar methods to quantify shape 
differences between males and females8. This study found a 7% sex difference in shape in healthy subjects (21 
females and 19 males) aged 51.9± 1.2 years, and described males as having a ‘pyramidal’ geometry and females 
having a ‘prismatic’ shape. Interestingly, this is qualitatively similar to the extremes of the size-exclusive first 
principal shape mode in our study, which we found was strongly associated with age. A key difference between 
our study and others is that we explicitly included the pulmonary fissures. As previously explained, we found 
that the fissure location changes with age and this change is the same for males and females. It is therefore 
likely that in our cohort and model the fissure location is a more dominant shape feature than the external lung 
shape (which could have more-apparent sex differences). A further point is that most previous studies do not 
normalize for lung volume. This is not important when using ratios of linear dimensions (e.g. anterio-posterior 
diameter/lateral diameter) but is important for 3D analyses such as PCA. This is apparent in the size-inclusive 
model (Fig. 2), where size is the dominant feature of the first shape mode (Fig. 3) and contributes to significant 
sex differences in Table 2 and Fig. 4. One methodological difference is that our study used far fewer ’landmark’ 
points than other similar studies (e.g. in comparison to the 12 anatomical and 403 ‘semi-landmarks’ of Torres-
Tamayo et al.8). That is, our approach has far fewer points at which the surface location is sampled. However, our 
high-order FE mesh description includes surface curvature and smoothness such that additional intermediate 
points (between landmarks) could be interpolated as a function of the geometric information at the landmark 
nodes. That is, both approaches contain similar information, but stored in different forms.

BMI is associated with lung shape in Fig. 6, which is consistent with previous studies13. However, the rela-
tionship with BMI is only apparent in the third principal shape mode (size-exclusive model). That is, the con-
tribution to shape is quantifiable but qualitatively subtle. Mode 2 of the size-inclusive model and mode 3 of the 
size-exclusive model have similar strength of relationship with BMI when considering the entire cohort. However, 
separation by sex shows no relationship for males with BMI when size is not controlled for in the model. The 
impact of BMI on lung and lobe shape appears to be similar between males and females when we control for 
volume. Our cohort did not include subjects with BMI > 30 kg/m2 , hence we had a relatively narrow BMI range 
in the study. It is possible that the inclusion of subjects with higher BMI would reveal a stronger association with 
lung shape. Conversely, the inclusion of subjects with high BMI could decrease the strength of the relationship 
due to air trapping (when imaged supine) restricting lung shape.

One limitation of this study is that the cohort was not ethnically uniform. It is possible that genetic differences 
between different ethnic groups (e.g. European-American or -New Zealander, Asian-American) is associated 
with lung shape. We repeated our analysis after excluding five subjects who were identified as of non-European 
(’caucasian’) descent. A two-tailed non-parametric t-test between the results of our study and the new modes 
revealed no significant differences ( α > 0.05 ). It is possible that an analysis using a far larger cohort could reveal 
differences due to ethnicity, however the small ethnic diversity in our study does not appear to have influenced 
our results.

The first four principal shape modes only explained 32–36% of the shape variability in this cohort. The rel-
evance of other modes was examined (not shown here) but no associations with physiologic or anthropometric 
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data were found. It is possible that the addition of more subjects, or examination of a separate cohort, could 
yield different principal shape modes that explain more shape variation in the first few modes. A leave-one-out 
analysis of the current cohort shows no significant impact on the shape modes.

Our study only quantified shape in the supine lung at full-inspiration. A change to the upright posture is 
likely to modify lung shape, but we do not have data to determine how variable this is or if there is an associa-
tion with age, sex, or BMI. It is possible that the stiffer chest wall in older subjects limits the range of ‘container’ 
shape change (except at the diaphragm) more than in young subjects with a compliant chest wall, which would 
imply a stronger relationship between age and upright shape. Differences in tissue elasticity with age might also 
be more apparent in the upright lung (with gravity acting over a greater height than when supine), hence exag-
gerating differences in fissure location.

We only examined static lung shape from imaging acquired at full-inspiration because this is the volume at 
which clinical imaging is most frequently acquired. Other studies have found sex differences in the change in 
shape of the ‘container’ of chest wall and diaphragm from end-expiration to full-inspiration8. It is not clear how 
the presence of fissure shape would influence sex differences for a similar analysis using our model.

This study is a first step towards understanding age-related changes of lung shape that presumably impact 
on lung function, and establishing lung shape as a potential biomarker of healthy aging. The shape of the lung is 
straightforward to extract from clinical imaging, such as CT or even from non-ionizing sources such as magnetic 
resonance imaging. Therefore, if shape is shown to be associated with age, it could provide a straightforward 
means for staging or stratification of lung disease. We have shown very clear changes in lung shape with age 
that are not simply the result of changes in the rib-cage geometry. These effects of age almost certainly reflect a 
complex interplay between changes in lung parenchyma and chest wall compliance. The physiological importance 
of these relative changes remains to be explored.
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