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Abstract

Background: The advent of global gene expression profiling has generated unprecedented insight into our
molecular understanding of cancer, including breast cancer. For example, human breast cancer patients display
significant diversity in terms of their survival, recurrence, metastasis as well as response to treatment. These patient
outcomes can be predicted by the transcriptional programs of their individual breast tumors. Predictive gene
signatures allow us to correctly classify human breast tumors into various risk groups as well as to more accurately
target therapy to ensure more durable cancer treatment.

Results: Here we present a novel algorithm to generate gene signatures with predictive potential. The method
first classifies the expression intensity for each gene as determined by global gene expression profiling as low,
average or high. The matrix containing the classified data for each gene is then used to score the expression of
each gene based its individual ability to predict the patient characteristic of interest. Finally, all examined genes are
ranked based on their predictive ability and the most highly ranked genes are included in the master gene
signature, which is then ready for use as a predictor. This method was used to accurately predict the survival
outcomes in a cohort of human breast cancer patients.

Conclusions: We confirmed the capacity of our algorithm to generate gene signatures with bona fide predictive
ability. The simplicity of our algorithm will enable biological researchers to quickly generate valuable gene
signatures without specialized software or extensive bioinformatics training.

Introduction
Clinicians are commonly faced with two important deci-
sions when treating cancer patients: whether or not
adjuvant chemotherapy is required, and selecting the
most appropriate treatment. Traditionally, several histo-
pathological characteristics of the tumor are taken into
consideration when deciding on the best treatment [1].
However, it has been reported that 70-80% of breast
cancer patients do not benefit from the use of che-
motherapy, but are still exposed to the deleterious side
effects of these drugs [2]. Therefore additional predic-
tion methods are needed to improve the quality of life
for breast cancer patients. One of these methods relies
on gene expression profiling based predictors, which can
be used to further inform the decision making process
and increase a clinician’s ability to successfully treat

cancer patients [3]. Recently, researchers developed a
70-gene signature that can correctly separate patients
into good- and poor-prognosis groups, and identified
patients who can be spared unnecessary chemotherapy
[2,4]. However, constructing such a signature requires
the use of various clustering and classification algo-
rithms, which in turn require specialized software and
bioinformatics training. Consequently, the need arises
for strategies that can be used to generate predictive
gene signatures, which are amenable to the software and
skill sets available to the cancer biologist.
Typically gene expression based predictors are

“trained” on a cohort of samples whose gene expression
profiles are known, and for which at least one biological
characteristic has been measured [5]. After the “training”
of a predictor it must be validated on a set of samples,
which were not used to initially “train” the algorithm.
Predictors should in turn be able to accurately forecast
the biological characteristic of samples of interest.
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For our purposes we used a data set consisting of
whole tumor gene expression profiles derived from 295
primary human breast tumors, as well as clinical data
relating to the patients survival and occurrence of
metastasis [2]. We then coarsely grained the expression
data into high, average and low expression levels, and
ranked genes based on the extent of their expression in
patients who either survived or succumbed to breast
cancer. In this fashion we were able to find genes whose
transcripts generally had high and low expression in
patients who succumbed and survived, respectively, and
vice versa. By combining the top ranked candidates
from a 144 patient training dataset we were able to cre-
ate a 20 gene signature which performed well on a 151
patient validation dataset.
Our analyses establish an effective method to obtain

gene expression based predictors that clearly separate
human breast cancer patients into distinguishable prog-
nosis groups with statistically significant differences in
survival.

Methods
Microarray and clinical data
The microarray data used for our analyses was obtained
from the Stanford microarray repository (downloaded
from http://microarray-pubs.stanford.edu/wound_NKI/
explore.html, henceforth called NKI dataset). A matrix
containing clinical data for the patients that provided sam-
ples for the microarray profiles used in the present study
was downloaded from the same location. This data con-
sists of the gene expression profiles of primary breast
tumors biopsied from 295 human breast cancer patients.
All patients had either stage I or stage II breast cancer,
and were younger than 53 years old. The prevalence of
lymph-node positive and lymph-node negative disease was
49% and 51%, respectively. We combined these data into
one matrix containing indices for survival, metastasis, and
the gene expression profiles for each patient. We used 12
year overall survival as the clinical endpoint for this study.

Organization of data
We blindly divided the patients into two groups consist-
ing of similar numbers of patients, one for algorithm
training (144 patients) and the other for algorithm vali-
dation (151 patients).

Defining levels of gene expression
In order to rank the predictive ability of a gene, we first
needed to assess its expression in each given patient tumor
relative to its expression in the tumors of all patients. To
this end we first calculated the 95% confidence interval for
expression of each gene. The level of expression for each
gene was then defined as the following:

i) If the expression of a gene in a given patient’s
tumor was greater than the upper limit of the 95%
confidence interval for the expression of the same
gene across all patient tumors, then the gene’s
expression was scored high for that patient’s tumor.
ii) If the expression of a gene in a given patient’s
tumor was less than the lower limit of the 95% con-
fidence interval for the expression of the same gene
across all patient tumors, then the gene’s expression
was scored low for that patient’s tumor.
iii) If the expression of a gene in a given patient’s
tumor was within the 95% confidence interval for
the expression of the gene across all patient tumors,
then the gene’s expression was scored average for
that patient’s tumor. These steps were completed for
every gene across every patient tumor.

This new matrix consisting of clinical patient data, as
well as the gene expression score for each gene, repre-
sented by either high, average or low, was then used to
rank the genes based on their predictive capacity.

Ranking the predictive capacity of each gene
We ranked each gene in the training set according to its
expression in the tumor of patients who either survived
or died from breast cancer. We expected genes whose
expression was associated with poor prognosis to be
generally highly expressed in patients who died and to
be expressed at low levels in patients who survived.
Conversely, we expected genes whose expression was
associated with good prognosis to generally be highly
expressed in patients who survived and to be expressed
at low levels in those patients who succumbed. There-
fore, the ranking of the genes was performed as follows
for genes predictive of poor or good prognosis.

Genes predictive of poor prognosis
i) A predictive score for each gene was computed for
each gene across all patients, and was initially set at
0.
ii) 1. The score for each gene was increased by 1
when the patient had both high gene expression and
died, or had both low gene expression and survived.

2. The score was decreased by 1 when the
patient had both low gene expression and died,
or had both high gene expression and survived.
3. Average gene expression levels did not lead to
any changes in the predictive score.

Genes predictive of good prognosis
i) A predictive score for each gene is computed for
each gene across all patients, and was initially set at 0.
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ii) 1. The score was increased by 1 when the patient
had both high gene expression and survived, or had
both low gene expression and died.

2. The score is decreased by 1 when the patient
had both low gene expression and survived, or
had both high gene expression and died.
3. Average gene expression levels did not lead to
any changes in the predictive score.

We then combined the top ranked genes from both
the poor-prognosis and good-prognosis gene lists to
generate a predictor gene signature. We completed all
of the steps described above using Microsoft Excel™
2007. Template file available upon request.

Measuring the predictive ability of the gene signature
In order to separate the training data set into good
prognosis and poor prognosis groups we summed the
expression of both poor-prognosis genes (poor-prog-
nosis gene score) and good-prognosis genes (good-prog-
nosis gene score) for all the patients in our training set.
To give each patient a single overall-prognosis score we
subtracted the good-prognosis gene score from the
poor-prognosis gene score, and ranked the patients
according to this new total. This led patients with the
highest and lowest expression of poor-prognosis and
good-prognosis genes, respectively, to receive the high-
est scores, and patients with the lowest and highest
expression of poor-prognosis and good-prognosis genes,
respectively, to receive the lowest scores. In this fashion,
high scores were indicative of poor prognosis and low
scores were indicative of good prognosis. In order to
determine a optimal cut-off score which would yield
prognosis predictions with the highest possible specifi-
city and sensitivity, we used receiver-operator character-
istic curves (ROC) [6]. This generated a list of possible
cut-off scores, as well as each score’s associated specifi-
city and sensitivity. We next summed the specificity and
sensitivity for each cut-off score and used the cut-off
which yielded the highest total. For the random control
sample, we generated a 20-gene signature where the sig-
nature was populated with randomly selected genes
selected by a random number generator http://www.ran-
dom.org.

Analysis of survival differences between good-prognosis
and poor-prognosis groups
Unless otherwise indicated, GraphPad Prism 5™ software
was used to complete survival analysis, linear regression,
and comparison of survival means, as well as all asso-
ciated statistical tests, and ROC analysis, to measure the
predictive ability of the prognosis gene signature in both
the training and validation data sets. Additional details
available as supplementary methods.

Comparison of models
We calculated the predictive accuracy (Cases correctly
predicted Vs All cases), specificity (Cases of correctly
predicted good overall survival Vs Cases of actual good
overall survival), and positive predictive value (PPV)
(Cases correctly predicted of poor survival Vs All cases
predicted poor survival) for our 20-gene signature, the
Aurora kinase A, and 70-gene signature models. Patients
were divided into good and poor survival groups based
on Aurora kinase A expression, where the average
expression of Aurora kinase A for all patients was used
as the cut-off separating the two groups. The 70-gene
signature classification for the patients was included in
the original clinical data file.

Gene ontology
Gene names were uploaded to the gene ontology web-
site http://www.geneontology.org, and the biological
processes associated with the human form of the gene
were recorded.

Results
Generation and validation of a gene signature that
predicts human breast cancer patient survival
To establish a gene signature that could accurately pre-
dict the survival outcome of human breast cancer
patients we used a 295 patient database containing both
clinical data relating to patient survival and occurrence
of metastases, as well as the patient’s individual tumor
gene expression profiles. We divided this database into
training and validation groups, containing 144 and 151
patients, respectively. We then identified genes whose
expression levels correlated with patient survival as
described in Methods. The 10 most highly ranked genes
predictive of poor-prognosis and those 10 genes most
highly predictive of good-prognosis established a 20-
gene expression based predictor (Table 1).
To learn whether this gene signature could accurately

predict survival of the patients from which it was cre-
ated, we used our 20 gene signature to rank all 144
patients within the training set and divided them into a
poor-prognosis group and good-prognosis group (Fig.
1A). We also compared the overall survival between the
two groups (Fig. 1B, log-rank test [7], p < 0.0001), fitted
linear regression to examine the correlation between
time-to-death or censure and prognosis score (Fig. 1C,
F-test, significant negative correlation, p < 0.0001), and
mean survival time (or time to censure) between the
two groups (Fig. 1D, Mann-Whitney test, p < 0.0001).
In total, our results demonstrated the capacity of our
gene signature to properly segregate human breast can-
cer patients into good- and poor-prognosis groups.
To validate our signature in patients whose data had

not been used to generate the signature, we divided the
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151 patient validation group into poor-prognosis and
good-prognosis groups (Fig. 2A). Again, our signature
correctly separated patients based on survival (Fig. 2B,
log-rank test p < 0.0001), correlated prognosis score
with survival time (Fig. 2C, F-test, significant negative
correlation, p = 0.034), and predicted mean survival
time (Fig. 2D, Mann-Whitney test, p = 0.0056). To rule
out the possibility that our signature’s significance was a
result of chance, we randomly generated a different 20-
gene signature. As expected the random 20-gene signa-
ture did not separate patients into groups with differ-
ences in survival (Fig. 2E).

Analysis of the 20-gene signature
To ensure that our algorithm produced predictors with
comparable predictive power to other forms of feature
selection we compared the 20-gene signature to a pre-
viously published Aurora kinase A expression model, as
well as the FDA approved 70-gene signature (Mamma-
Print™) [2,8]. The 70-gene MammaPrint signature was
originally tested on the NKI dataset, the same dataset
we used for the development of our 20-gene signature.
We also included the Aurora kinase A expression
model, as this model was shown to predict breast cancer
patient outcome with similar accuracies to many other

feature selection techniques [8]. Our 20-gene signature
had a slightly higher predictive accuracy (0.67 Vs 0.64
Vs 0.61, 20-gene signature, Aurora kinase A, 70-gene
signature models, respectively), and roughly comparable
specificity and positive predictive value to the Aurora
kinase A expression and 70-gene signature models
(Table 2). Importantly, these comparisons indicate that
our algorithm produces classifiers of at least similar pre-
dictive power than those produced by other feature
selection techniques.
Since gene signatures are readily measurable cell char-

acteristics which serve to indicate biological processes,
we mapped the gene ontology of each gene-member of
our 20-gene signature to learn whether our signature
was linked to a particular biological process (Table 3).
We found that genes linked to poor-prognosis were
generally involved in processes such as mitosis, tran-
scription, as well as DNA replication and DNA repair,
whereas genes linked to good-prognosis were generally
involved in processes such as cell differentiation and
induction of apoptosis. These observations are consis-
tent with the histological observations that patients with
highly proliferative and poorly differentiated tumors
generally have poorer survival outcomes than those with
well differentiated and non-proliferative tumors.

Discussion
We sought to generate an algorithm with the following
properties: (i) simple implementation with straight for-
ward methodology, and (ii) high predictive accuracy.
The reasons for this were to facilitate non-bioinformatic
expert biologist development of valuable and biologically
useful gene expression based prediction models. Impor-
tantly, we completed all steps of our algorithm using
Microsoft Excel™ 2007, and will share the template files
used for these analyses with interested researchers. This
software is widely (if not universally) accessible to and
used by the biological research community, suggesting
that implementation of this technique will not be ham-
pered by lack of software or training. As mentioned pre-
viously, most other feature selection techniques require
the use of sophisticated clustering and classification
algorithms, whose use requires specialized software and
software based training.
To confirm that our algorithm produced a prediction

model with comparable predictive power to other tech-
niques in feature selection we compared its predictive
power with that of an Aurora kinase A expression
model as well as the 70-gene signature MammaPrint™
model. The Aurora kinase A model was previously
shown to have comparable predictive accuracy to several
feature selection techniques at predicting breast cancer
patient survival, and can be used to make comparisons
between feature selection techniques [8]. Additionally,

Table 1 Genes comprising the 20-gene signature

95% CI
interval

Gene
ID#

Systemic_name Gene name/
symbol

Average Upper Lower

10855 D43950 KIAA0098 -0.004 0.027 -0.035

19769 U96131 TRIP13 -0.039 -0.001 -0.077

14841 NM_014865 KIAA0159 -0.007 0.029 -0.044

15318 Contig55725_RC -0.219 -0.150 -0.289

12548 AF047002 ALY -0.040 -0.008 -0.072

3342 NM_004111 FEN1 -0.028 0.003 -0.058

3493 NM_004153 ORC1L 0.037 0.057 0.017

8204 NM_004631 LRP8 0.038 0.067 0.009

3838 NM_002794 PSMB2 -0.024 0.004 -0.051

3938 Contig55771_RC -0.047 -0.005 -0.088

6615 NM_004496 HNF3A -0.216 -0.120 -0.312

8786 NM_006113 VAV3 -0.170 -0.107 -0.232

18817 AL161983 -0.015 0.007 -0.037

17540 NM_016613 LOC51313 -0.002 0.022 -0.026

1723 AL133074 -0.078 -0.033 -0.123

23117 Contig14284_RC -0.324 -0.209 -0.440

57 Contig56678_RC -0.205 -0.135 -0.274

18904 NM_000125 ESR1 -0.312 -0.215 -0.409

6709 Contig57480_RC LOC51028 -0.021 0.009 -0.051

6105 NM_005113 GOLGA5 -0.046 -0.024 -0.067
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Figure 1 Our 20-gene signature separates the training data set into poor-prognosis and good-prognosis groups (A, red = high
expression, green = low expression) with differences in survival (B), a negative correlation between prognosis score and survival time
(C) and differences in mean survival time (D).

Figure 2 Our 20-gene signature separates the validation data set into poor-prognosis and good-prognosis groups (A, red = high,
green = low) with differences in survival (B), negative correlation between prognosis score and survival time (C), and differences
mean survival time (D). E) A randomly generated 20-gene signature does not correlate prognosis score to patient survival.
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Table 2 Predictive ability of the Aurora kinase A, 20-gene signature, and 70-gene signature.

Test Aurora kinase A (NKI dataset) 20-gene (151 validation set) 70-gene (NKI dataset)

Predictive accuracy 0.64 0.67 0.61

Specificity 0.6 0.66 0.66

Positive predictive value 0.4 0.38 0.4

Table 3 Gene ontology of the 20-gene signature

ID# Systemic_name Symbol Biological Process

10855 D43950 KIAA0098 Protein folding/Response to virus

19769 U96131 TRIP13 Double stranded break DNA repair/Meosis I/Spermatogonial Development/Oocyte maturation/Pachytene (cell
cycle)/Meotic recombination/Transcription from RNA Pol II promoter

14841 NM_014865 KIAA0159 N/A

15318 Contig55725_RC N/A

12548 AF047002 ALY Interspecies interaction between organisms/Intronless viral mRNA export from nucleus/mRNA export from
nucleus/mRNA processing/Transport

3342 NM_004111 FEN1 DNA repair/DNA replication/Double stranded break DNA repair/UV protection/Phosphoinositide mediated
signaling

3493 NM_004153 ORC1L DNA replication/DNA dependent DNA replication

8204 NM_004631 LRP8 Cytokine mediated signaling pathway/Endocytosis/Hippocampus development/Layer formation in the cerebral
cortex/Lipid metabolic process/Positive regulation of kinase activity/Proteolysis/Signal transduction

3838 NM_002794 PSMB2 Anaphase-promoting complex-dependent proteosomal ubiquitin dependent protein catabolic process/
Interspecies interaction between organisms/Negative regulation of ubiquitin ligase activity involved in mitotic
cell entry/Positive regulation of ubiquitin ligase activity involved in mitotic cell entry/Proteolysis involved in

cellular protein catabolic process

3938 Contig55771_RC N/A

6615 NM_004496 HNF3A Branching morphogenesis of a tube/Chromatin remodelling/Epithelial cell differentiation/Prostate gland
development/Glucose homeostasis/Hormone metabolic process/Lung development/Multicellular organismal
development/Negative regulation of survival gene product/Negative regulation of transcription fro RNA pol II

promoter/Neuron fate specification

8786 NM_006113 VAV3 Angiogenesis/Apoptosis/Cell Migration/Induction of apoptosis by extracellular signals/Integrin mediated
signaling pathway/Lamellipodium assembly/Positive regulation of cell adhesion/Positive regulation of PI3
kinase activity/Regulation of GTPase activity/Regulation of Rho protein signal transduction/Small GTPase

mediated signal transduction/Vesicle fusion

18817 AL161983 Regulation of translation/Translation initiation

17540 NM_016613 LOC51313 N/A

1723 AL133074 Apoptosis/Cell cycle arrest/Induction of apoptosis/Response to stress

23117 Contig14284_RC N/A

57 Contig56678_RC N/A

18904 NM_000125 ESR1 Androgen metabolic process/Antral ovarian follicle growth/Epithelial cell development/Epithelial cell
proliferation involved in mammary gland duct elongation/Estrogen receptor signaling pathway/Male gonad
development/Mammary gland alveolus development/Mammary gland branching involved in pregnancy/

Neuroprotection/Osteoblast development

6709 Contig57480_RC N/A

6105 NM_005113 GOLGA5 Golgi organisation/Golgi vesicle transport/Protein amino acid phosphorylation/Retrograde transport, vesicle
recycling within golgi
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the 70-gene signature has previously been tested on the
NKI dataset, which allowed us to make model compari-
sons on the same patients. The 70-gene signature is also
used clinically and thus represents a “gold standard”
against which to compare predictive accuracy of gene
signatures which predict breast cancer patient outcome
[9]. We observed that our model had a slightly higher
overall predictive accuracy than either the Aurora kinase
A expression model or the 70-gene signature, and all
three models had comparable specificities and positive
predictive values (Table 2). Importantly, these observa-
tions demonstrate that our algorithm produces predic-
tion models with comparable accuracy to other feature
selection techniques while having generally better acces-
sibility and useability for biological research scientists.
To this end, we’ve begun using our algorithm to gener-
ate gene expression based prediction models of breast
cancer cell sensitivity to commonly used anti-cancer
therapies.

Conclusion
Here, we present an algorithm to generate gene signa-
tures with predictive potential. It is noteworthy that our
algorithm was developed using Microsoft Excel™ and
tested using GraphPad Prism5™, commonly available
software that should significantly increase its use.
Importantly, the signature developed using our method
had comparable predictive accuracy to either the Aurora
kinase A expression or 70-gene MammaPrint™ models
[2,8]. Our methods represent a novel and broadly
applicable technique to generate predictive gene signa-
tures that we anticipate will prove useful to the molecu-
lar biological research community.
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Appendix 1
Supplementary methods
Survival analysis
Survival analysis was completed using Graphpad Prism
5™ software’s “survival” option. Time to endpoint or
time to study censorship was included as the indepen-
dent variable (x-axis column) and death or survival
(denoted 1 = death, 0 = survival) was included on the y-
axis column. Independent y-axis columns were used for
each group (good or poor prognosis). Statistical analyses
(Log-rank test) was accessed and completed using the
Graphpad analyze tab.
Linear regression
Linear regression was completed using Graphpad Prism
5™ software’s “XY” option. The survival score was
plotted as the independent variable (x-axis column),

whereas survival time or time to death was plotted in
the y-axis column. Statistical analyses to confirm corre-
lation was completed using the Graphpad analyze tool.
Survival time mean
Survival time mean comparison was completed using
Graphpad Prism 5™ software’s “column” option. The
survival or time to death times for both the good and
poor prognosis groups were plotted in independent col-
umns. A t-test was used to compare the means between
the groups, and was completed using the Graphpad ana-
lyze tool.
ROC analysis
The ROC analysis to determine optimal cut-off score
was complete using Graphpad Prism 5™ software’s “col-
umn” option. The survival scores for the good and poor
outcome groups were plotted in independent columns.
The ROC analysis tool (accessed through the Graphpad
analyze tool) was used determined the sensitivity and
specificity of each possible cut-off score. The cut-off
score yielding the highest sum of specificity and sensitiv-
ity was then used to divide the patients into good and
poor outcome groups.
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