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ABSTRACT
Background: Mucus dehydration and impaired mucus clearance are common features of cystic fibrosis
(CF) and chronic obstructive pulmonary disease (COPD). In CF, inhaled hypertonic saline (HS) improves
lung function and produces sustained increases in mucociliary clearance (MCC). We hypothesised that
administration of HS (7% NaCl) twice daily for 2 weeks would improve clinical outcomes and produce
sustained increases in MCC in COPD subjects with a chronic bronchitis (CB) phenotype.
Methods: Twenty-two CB subjects completed a double-blinded, crossover study comparing inhaled HS to
a hypotonic control solution (0.12% saline) administered via nebuliser twice daily for 2 weeks. Treatment
order was randomised. During each treatment period, symptoms and spirometry were measured. MCC
was measured at baseline, shortly after initial study agent administration, and approximately 12 h after the
final dose.
Results: HS was safe and well tolerated but overall produced no significant improvements in spirometry or
patient-reported outcomes. CB subjects had slower baseline MCC than healthy subjects. The MCC rates
over 60 min (Ave60Clr) in CB subjects following 2 weeks of HS were not different from 0.12% saline but
were slower than baseline (Ave60Clr was 9.1±6.3% at baseline versus 5.3±6.9% after HS; p<0.05). Subgroup
analyses determined that subjects with residual baseline central lung clearance (14 subjects) had improved
spirometry and symptoms following treatment with HS, but not 0.12% saline, treatment.
Conclusions: Inhaled HS appeared to be safe in a general CB population. A specific phenotypic subgroup
may benefit from HS but requires additional study.
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Introduction
Chronic obstructive pulmonary disease (COPD) with chronic bronchitis (CB), primarily caused by cigarette
smoking, is characterised by cough, and sputum production, with or without airflow obstruction [1].
Mucociliary clearance (MCC) rates are reduced in CB [2–4] in association with reduced lung function [5]
and increased tobacco exposure [2, 6]. As MCC declines, CB patients are predisposed to disease
exacerbations. To date, mucolytic therapies designed to improve MCC and symptoms in CB have generally
proven ineffective [7].

Patients with cystic fibrosis (CF) also exhibit impaired MCC from airway surface liquid depletion and
mucus hyper-concentration [8]. Consequently, inhaled hyperosmotic solutions are routinely used to
hydrate mucus and accelerate MCC [9–11]. Both single [12] and repetitive [11] dosing of inhaled 7%
hypertonic saline (HS) have prolonged effects on MCC in CF and likely mediated the reduction in
pulmonary exacerbation rate in a long-term study of HS in CF [13].

We recently reported that CB secretions are moderately hyper-concentrated, with increased sputum %
solids and total mucin concentrations [5, 14], and that central lung MCC negatively correlated with lower
airway mucus sample concentrations [5]. Although the magnitude of hyper-concentration in CB (∼3.5%)
is substantially less than in CF (∼8% solids) [15, 16] we hypothesised that chronic HS treatment might
also benefit CB patients. HS has been shown to acutely stimulate MCC in CB subjects [17, 18], but the
duration of this effect and its impact on clinical outcomes have not been assessed. We, therefore,
performed a study to determine the effects of HS on MCC, lung function, and symptoms in this
population. Comparative baseline MCC measurements in healthy, nonsmoking adults were used to define
MCC defects observed in CB subjects.

Methods
Patient recruitment
Inclusion criteria included COPD with CB symptoms [19], age 40–80 years, airways obstruction (forced
expiratory volume in 1 s (FEV1)/forced vital capacity (FVC)<0.70) and FEV1 35–80% of predicted. Both
former and active smokers (⩾10 pack-years) were included. Significant exclusions included a clinical
history of asthma or bronchodilator reversibility at screening; daytime oxygen or chronic prednisone
(>10 mg·d−1 or equivalent corticosteroid dose) requirement; and recent changes in respiratory medications
or health status within 4 weeks prior to study enrolment.

Thirty-three healthy, nonsmoking control subjects underwent a single MCC scan. These data were recently
reported but are provided for comparison purposes [20, 21].

Study design
CB subjects meeting enrolment criteria were randomised to a treatment sequence in a double-blinded,
crossover study. Each treatment period was 2 weeks in duration, with an intervening 2–4-week washout
period. Randomisation was performed by the investigational pharmacy in a combined block of four and
block of six pattern.

Study agents included inhaled HS (7% NaCl×4 mL) and HS (0.12% NaCl×4 mL) delivered via a PARI LC
Star nebuliser with Pari PRONEB® Ultra Compressor twice daily (figure 1). The control hypotonic solution
was selected to provide a low osmotic load that was less likely to acutely enhance MCC than isotonic
saline [22], while also avoiding the deleterious effects (e.g. bronchospasm) that may occur after inhalation
of distilled water [23]. MCC and cough clearance (CC) were measured via gamma scintigraphy at: 1)
baseline; 2) 20–25 min after the first dose of the assigned study treatment; and 3) ∼12 h after the last dose
of study treatment (figure 1). A dose of albuterol (four puffs of 90 µg each via metered dose inhaler with
spacer) was administered during spirometry, approximately 60 min before each MCC/CC study. Patients
were instructed to use albuterol prior to HS or control treatment at home.

FIGURE 1 Study design. MCC:
mucociliary clearance.
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Safety/tolerability
The acute tolerability of each study treatment was assessed by monitoring symptoms, physical exam, pulse
oximetry, and spirometry (pre-dose and 2 h post-dose) around the first administered dose. Adverse events
were noted at all visits and a phone contact during each treatment. Adverse event severity was graded
using the Common Terminology Criteria for Adverse Events version 3.0, with grade 3 or higher events
considered as severe.

Clinical end-points
Spirometry was performed according to American Thoracic Society standards [24] before administration
of study medications at each visit. The St. George’s respiratory questionnaire for COPD (SGRQ-C) [25]
and cough and sputum questionnaire (CASA-Q) [26] assessed patient-reported outcomes. A 6-min walk
test was completed before and after each 2-week treatment period.

Mucociliary/cough clearance
A Co57 transmission scan was performed prior to radioaerosol inhalation to outline lung margins and
generate the central (C) and peripheral (P) regions of interest (ROIs) [27, 28] used to assess initial particle
deposition (C/P) and subsequent clearance.

Radiolabelled (Tc99m-sulfur colloid) aerosols were inhaled with a SILP (slow inhalation (80 mL·s−1), large
particle (9.5 μm mass median aerodynamic diameter)) methodology [20, 21]. To adjust for the smaller
ventilated volume in CB and to reduce dyspnoea during this very slow inspiratory manoeuvre, a 6-s
inhalation time was used in CB subjects, rather than the 10-s inhalation previously used in healthy
subjects [20, 21]. After tracer inhalation, serial 2-min particle retention images were acquired via gamma
scintigraphy. Subjects were asked to refrain from coughing until the 60–90 min imaging interval, when 20
voluntarily coughs were performed during each 10-min interval. Subjects returned the following day to
assess 24-h tracer clearance (± 4 h) (24 h Clr).

Serial measurements of radioactive counts (decay and background corrected) over time in the right lung
characterised whole, central, and peripheral lung clearances as a fraction of initial deposited counts. The
average rate of clearance through 60 min (AveClr60) in the whole right lung was calculated using clearance
values at 10-min intervals [21]. Cough-dominated clearance (60–90 min; Ave60–90Clr) and regional
clearance rates were similarly calculated.

Baseline MCC studies in CB subjects were compared to those recently performed in healthy,
never-smoking adults with normal lung function (n=33) [20, 21]. The identical SILP deposition method
was utilised in both studies, except for the above-mentioned differences in inhalation times. Ave60Clr for
MCC was used as the primary outcome for this comparison, as controlled coughing during the 60–90-min
period was not included in the healthy adult study.

Sputum percentage solids
Spontaneous sputum samples were collected prior to each MCC measurement and stored frozen. Wet and
dry weights were used to calculate sputum percentage solids content [29].

Statistics
The prespecified primary study outcome was the change in whole lung AveClr60 between baseline and end
of treatment. Secondary outcomes included changes in spirometry, patient-reported outcomes, and other
MCC outcomes. From previous repeated MCC measures in CB subjects, 24 subjects were determined to
sufficiently provide 80% power to detect a 3.75% absolute change in AveClr60 with α set at 0.05 using a
paired, two-sided t-test.

Data were analysed using a repeated measure ANOVA per treatment using subjects as a random effect,
with visit and treatment period as fixed effects. Comparison between treatments were analysed with paired
t-tests if visit was a significant effect. The relationship between specific outcomes was determined by
Pearson’s correlation. Comparisons between CB and healthy subjects were made with independent t-tests.
Subgroup comparisons were analysed with paired t-tests. A p-value <0.05 was considered significant. All
statistical analyses were conducted utilising SAS version 9.4 and JMP Pro 14 (SAS, Cary, NC, USA)
statistical software.

Study approval
The study was approved by the University of North Carolina Institutional Review Board, and subjects
provided written informed consent. The study was registered at Clinical Trials.gov (NCT01792271).
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Results
Subject disposition and demographics
Twenty-five subjects were enrolled at a single academic centre between March 2013 and March 2016
(Supplement figure 1). The study was stopped after meeting enrolment goals. Twenty-four subjects
received more than one dose of study drug and 22 completed the study. One subject withdrew consent
due to fatigue related to spirometry. Two subjects withdrew early; one due to chest tightness and oxygen
desaturation during the HS test dose, as described below, and one was lost to follow-up due to
incarceration.

Demographics for the evaluable CB (n=22) and healthy study populations are shown in table 1. The
majority of CB subjects were classified as Gold II by Global Initiative for Chronic Obstructive Lung Disease
COPD criteria, were current smokers, regularly produced sputum, and exhibited moderate mucus
hyper-concentration. The majority of subjects used one or more controller medications (long-acting beta
agonist, long-acting anti-muscarinic, or inhaled corticosteroid); 32% regularly used no controller medication.

Safety assessments
No significant FEV1 changes were observed 2 h after the first dose of either study treatment (table 2) and
no individual subject exceeded the predefined stopping criteria of a 20% relative decrease in FEV1. One
subject reported chest tightness and experienced oxygen desaturation after the initial HS dose, which
quickly reversed after two puffs of albuterol, and was withdrawn from the study. No serious or severe

TABLE 1 Patient characteristics

Chronic bronchitis
(n=22)

Healthy volunteers
(n=33)

Age years 62.2±9.7 26.3±5.9
Female 13 (59%) 10 (30%)
Race
Black 4 (18%) 6 (18%)
White 18 (82%) 27 (82%)

Current smokers 57% 0
FEV1 % pred 57±12 99.5±12.7
GOLD classification
GOLD II 17 (77%)
GOLD III 5 (23%)

Cough and phlegm produced at least several days a
week (by SGRQ-C)

18 (82%) N/A

Baseline sputum % solids (sample in n=19) 3.6±1.3% N/A
Concomitant medications
Long-acting beta agonist 12 (55%)
Long-acting antimuscarinic 11 (50%)
Inhaled corticosteroid 14 (64%)

Data are presented as mean±SD or n (%). FEV1: forced expiratory volume in 1 s; % pred: % predicted;
GOLD: Global Initiative for Chronic Obstructive Lung Disease; SGRQ-C: St. George’s respiratory
questionnaire for chronic obstructive pulmonary disease; N/A: not assessed.

TABLE 2 Post-bronchodilator FEV1 and FEF25–75 % predicted

Baseline Acute# 2 weeks (sustained¶)

Pre-treatment Post-treatment

0.12% saline FEV1 57.9±12.6 59.2±12.3 57.6±13.6 59.4±13.3
FEF25–75 31.6±13.7 33.2±13.0 31.7±13.6 34.5±16.2

7% saline FEV1 58.9±13.2 58.0±12.6 58.0±12.5 59.2±12.9
FEF25–75 33.6±14.9 34.6±17.5 31.6±16.5 33.5±15.1

Data are presented as mean±SD. FEV1: forced expiratory volume in 1 s; FEF25–75: forced expiratory flow at
25–75% of forced vital capacity. #: acute values were measured immediately before and 2 h after first dose
of study treatment; ¶: sustained values measured ∼12 h after final dose of 2-week treatment period.
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adverse events were reported. One pulmonary exacerbation occurred during the washout period; the
patient resumed participation after returning to their clinical baseline.

Clinical end-points
No changes in spirometry values were observed after 2 weeks of either study treatment (table 2). Similarly,
there were no differences in 6-min walk distance (metres) (2.2±107.4 versus −1.1±206.6; HS and 0.12%
saline, respectively) or change in the SGRQ-C overall score (supplementary table). The SGRQ-C symptom
score subdomain exhibited a nonsignificant improvement from baseline after HS (−5.0±13.9; p=0.10), but
not 0.12% saline (1.6±15.9; p=0.65), which exceeded the accepted minimal clinically important difference
value of 4 [30]. No effects of HS or control solutions were observed on other SGRQ subdomain or
CASA-Q scores (supplementary table).

Analysis of regional MCC in CB and healthy subjects
Comparison of baseline MCC measurements in CB subjects at the beginning of periods 1 and 2 revealed
moderate intra-subject correlation (mean whole lung AveClr60% (SD): 8.4±8.2 versus 9.8±9.2, respectively;
r=0.55, p<0.01). No carryover effects were detected.

Baseline whole and central lung MCC were significantly lower in CB subjects when compared to healthy
nonsmoking adults (tables 3 and 4). In contrast, peripheral lung MCC was not different (table 4). Regional
deposition (C/P ratio) was not different between the groups and, thus, did not confound comparisons of
whole lung Ave60Clr.

To further investigate the slow C region clearance in CB, we examined the distribution of baseline Central
Lung AveClr60% values in CB (pre-HS baseline) and healthy subjects (figure 2). These distributions revealed
an overall slowing of clearance and a distinct subset of CB subjects with absent C region clearance (n=8 in the

TABLE 3 Whole lung MCC/CC and regional particle deposition indices

MCC (Ave60) CC (Ave60–90) C/P 24 h Clr

Healthy adult baseline n=33 14.3±7.2 2.30±0.36 48±9
CB period 1 baseline n=22 8.4±8.2# 2.42±1.10 50±16
CB HS (7% saline)
Baseline 9.1±6.3 11.7±11.5 2.35±0.90 51±15
Acute 9.6±9.7 10.9±10.8 2.23±0.66 51±17
2 weeks 5.3±6.9¶ 9.6±10.0 2.50±0.98 52±13

Control (0.12% saline)
Baseline 9.0±10.6 9.4±9.9 2.32±1.05 49±15
Acute 7.7±9.4 8.7±9.4 2.35±0.94 51±13
2 weeks 6.2±5.7 8.8±2.7 2.48±0.88 50±16

Data are presented as mean±SD. MCC: mucociliary clearance; CC: cough clearance; Ave60Clr: average rate
of clearance through 60 min; C/P: central/peripheral; 24 h Clr: 24-h tracer clearance; CB: chronic
bronchitis; HS: hypertonic saline. #: p<0.01 compared to healthy adult baseline by t-test.; ¶: p<0.05
compared to CB HS baseline.

TABLE 4 Regional MCC (Ave60Clr)

Central (%) Peripheral (%)

Healthy adult baseline n=33 15.9 (10.5) 12.6 (7.2)
CB period 1 baseline n=22 4.7 (11.6)# 11.2 (9.3)
CB HS (7% saline)
Baseline 5.7 (10.4) 12.3 (7.0)
2 weeks 1.5 (10.0) 8.4 (9.0)

CB control (0.12% saline)
Baseline 4.1 (15.7) 12.6 (11.3)
2 weeks 2.7 (9.6) 9.3 (7.2)

Data are presented as mean±SD. MCC: mucociliary clearance; Ave60Clr: average rate of clearance through
60 min; CB: chronic bronchitis; HS: hypertonic saline. #: p<0.001 compared to healthy adults by t-test.
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pre-HS arm) with a net accumulation of particles in the C region during the 60-min period before voluntary
coughs. As demonstrated by one CB subject, activity initially deposited in the trachea flowed retrograde into
the right lung before eventually being expelled by cough (see supplementary video). CB cohorts segregated by
baseline “absent” versus “residual” C region clearance were evaluated in post hoc analyses.

Effect of HS on mucociliary/cough clearance in CB
In CB subjects, neither 7% nor 0.12% saline inhaled 20–25 min before radioaerosol administration had an
effect on whole lung MCC or CC (figure 3 and table 3). Indices of regional deposition (C/P and 24 h Clr)
were unchanged post-treatment (table 3), indicating that altered particle deposition probably did not
account for the absence of MCC effects. Concomitant use of COPD controller medications also had no
effect on this result.

After 2 weeks of twice-daily HS treatment, a significant slowing of whole lung MCC (Ave60Clr) from
baseline (figure 3a and table 3) was observed 12 h after the last dose of HS. No slowing was observed
during the cough interval (Ave60–90Clr), suggesting that cilia, and not cough-driven clearance was
reduced by repeated HS treatment. A similar, but nonsignificant pattern of slowed whole lung MCC from
baseline was observed after 2 weeks of 0.12% saline use (figure 3b and table 3). Particle deposition indices
(C/P and 24Clr; table 3) were well matched across all visits and groups, reducing the risk that altered
radioaerosol deposition confounded clearance measurements. The slowing of MCC after HS was driven by
subjects not using COPD controller medications (mean difference: −9.9±2.4%) versus those using these
concomitant treatments (mean difference: −1.1±1.6%; p=0.006).

Post hoc subgroup analyses
The striking abnormality in C region clearance in CB subjects (figure 2) is reminiscent of observations
made in patients with primary ciliary dyskinesia [31]. We, therefore, hypothesised that ciliary dysfunction
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may also contribute to the observed MCC defect. We further hypothesised that the clinical response to HS
could depend upon whether ciliary function remained intact in CB subjects.

Indeed, CB subjects with residual (Ave60>0; n=14) C region clearance experienced small but significant
improvements from baseline in FEV1 % predicted (+2.4±4.0%; p=0.04) and SGRQ symptom scores
(−8.2±13.1; p=0.04). No improvement in FEV1 (−2.6±5.8%; p=0.24) or symptoms (+0.4±14.3; p=0.94)
were observed in the “absent clearance” group (AveClr60<0; n=8), and no improvements were seen in
either subgroup with 0.12% saline treatment. The effects of HS on spirometry and SGRQ were linearly
related to baseline C MCC (supplementary figure 2). Of note, improvements in clinical end-points in the
“residual clearance” group were not mirrored by sustained improvement in MCC. In fact, significant
slowing of MCC was observed with HS treatment in this group, as was observed in the overall group, and
as previously reported in healthy volunteers [21]. Smoking status at the time of enrolment was not
associated with the C region MCC phenotype and did not predict treatment responses. Concomitant use
of COPD controller medications did not impact the observed effect of HS on FEV1 and symptom score.

Discussion
Aerosolised HS appeared to be generally safe in CB subjects with moderate obstruction. Only one subject
demonstrated acute intolerance to HS but mean FEV1 measured 2 h after the first dose was not reduced by
HS. However, no sustained improvements in spirometry, 6-min walk distance, or patient-reported
outcomes were noted, although a trend toward an improved SGRQ symptom score, which exceeded the
minimal clinically important difference value, was observed after 2 weeks of HS.

The absence of an acute MCC effect 20–25 min after inhaling HS is consistent with our previous
observations in healthy volunteers [21], but contrasts with observations made in CF adults [12]. This
probably reflects a short duration of HS action (i.e. <20–25 min) on MCC in CB. In previous studies that
did show an acute stimulation of MCC with HS in CB, HS was administered either immediately before the
radiotracer (<5 min) [18] or afterwards [17], allowing capture of an immediate HS effect on MCC/CC.

The paradoxical slowing of MCC following 2 weeks HS administration in CB subjects was unexpected. We
previously observed slowing of MCC 4 h after a single administration of inhaled HS in healthy adults [21],
an observation speculated to reflect depletion of mobile mucus on airway surfaces by HS. This postulated
mechanism rested on studies by IRAVANI and VAN AS [32], who observed that mobile mucus was normally
transported as sparse mucus islands, rather than as a continuous mucus sheet. This model predicts that if
the density of mobile mucus islands on airway surfaces was reduced by a preceding stimulus for clearance
(e.g. HS), clearance of newly deposited tracer molecules would be slowed by increased deposition onto
mucus depleted airways. The sustained enhancement of MCC by HS observed in CF [11] may reflect the
presence of copious mucus on CF airway surfaces, providing a “reservoir” of mucus to mediate the
prolonged acceleration of tracer particles trapped in HS-rehydrated mucus [10]. The failure to observe
such an effect in COPD may reflect a lesser mucus burden. The clinical significance of MCC slowing after
HS in CB is unknown, as is the mechanism explaining why this reduction was prevented by use of COPD
controller medications.

Comparisons of the basal MCC patterns in CB and healthy subjects yielded insights into the multifactorial
processes that impair MCC in COPD. Our observation of a striking central airway clearance defect (table
4) and retrograde clearance from the trachea to central airways (supplementary video) suggested a large
airway ciliary abnormality. Preferential slowing of central airway clearance, reduced tracheal mucus
velocity, and retrograde mucus flow in CB have also been reported previously [5, 33–35]. A ciliary defect
in CB is further supported by reports of reduced numbers and dysfunctional cilia in human subjects with
COPD with chronic cigarette smoke exposure [36–39], as well as animal data from IRAVANI and VAN AS [32],
who demonstrated dyssynchronous ciliary beating and disorganised MCC in a rat model of CB. Ciliary
dysfunction, in addition to mucus hyper-concentration may, therefore, be a major contributor to abnormal
central airways MCC in COPD.

COPD has been shown to involve the small airways via histopathology, imaging, and functional
assessments [40–42]. In contrast, our data suggests that MCC is preserved in the peripheral lung ROI,
whereas significant clearance defects are seen centrally. It should be emphasised, however, that MCC is
only reported from airways where aerosolised radiolabelled tracer deposits. Our peripheral MCC rates,
therefore, probably reflect clearance from relatively “healthy” versus more obstructed, peripheral airways. A
combination of “lost” small airways with reduced large airway clearance may together explain the clinical
findings of airflow obstruction, dyspnoea, exercise limitation, and propensity for infectious exacerbations.

Finally, we investigated whether there were differential responses to inhaled HS based on MCC patterns or
other clinical features. Indeed, subjects with residual central airway mucus clearance exhibited significant
improvements both in lung function and symptoms after HS. We postulate that HS improved the
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rheologic properties of mucus via rehydration, but this was only beneficial when intact ciliary function was
present. Collectively, these findings suggest that specific CB patient populations, identifiable by baseline
MCC measurements, might benefit from inhaled HS.

We acknowledge a few limitations to this clinical study. First, our sequential treatment periods were limited
to 2 weeks duration. This design element was made to reduce variability that may confound longer crossover
studies, and to match the treatment duration utilised in our previous HS trial in CF subjects [11]. It is
possible that a longer duration trial would have substantiated the positive trends in symptom scores and
lung function seen here in a subgroup, and allowed for assessment of exacerbations as an additional
clinical end-point. Next, the small sample size reduces our ability to confidently assess the surprising
improvements in lung function and symptoms after HS in a subgroup with preserved central ROI
clearance at baseline, despite the absence of clinical benefits in the overall population. Finally, substantial
lack of sputum data also prevented us from determining whether changes in sputum hydration occurred
or predicted MCC or clinical changes.

Conclusion
In summary, MCC rates were significantly reduced in the central airways of CB subjects. Although HS use
appeared to be safe, it was not associated with improved spirometry, symptoms, or MCC in the overall CB
cohort. MCC studies, however, identified a subset of CB subjects with preserved ciliary function that had
improved spirometry and symptoms following 2 weeks of HS administration. The identification of
biomarkers that reflect ciliary dysfunction may allow personalised therapy for subjects with the highly
heterogeneous COPD syndrome.
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