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The protein-protein interaction (PPI) network offers a conceptual framework for better understanding the
functional organization of the proteome. However, the intricacy of network complexity complicates
comprehensive analysis. Here, we adopted a phylogenic grouping method combined with force-directed
graph simulation to decompose the human PPI network in a multi-dimensional manner. This network
model enabled us to associate the network topological properties with evolutionary and biological
implications. First, we found that ancient proteins occupy the core of the network, whereas young proteins
tend to reside on the periphery. Second, the presence of age homophily suggests a possible selection pressure
may have acted on the duplication and divergence process during the PPI network evolution. Lastly,
functional analysis revealed that each age group possesses high specificity of enriched biological processes
and pathway engagements, which could correspond to their evolutionary roles in eukaryotic cells. More
interestingly, the network landscape closely coincides with the subcellular localization of proteins. Together,
these findings suggest the potential of using conceptual frameworks to mimic the true functional
organization in a living cell.

roteins are basic parts of molecular machines that usually work together to perform their biological func-

tions in a living cell. For better understanding the underlying cellular architecture and functional organ-

ization of the proteome, the protein-protein interaction (PPI) network provides a conceptual framework
that depicts a global map of protein interactions in a topological space"”. This framework has proven useful in
systematical analysis of collective dynamics’, functional inference*, module identification®’, signaling pathway
modeling®’, and other clinical applications, such as biomarker findings, disease classification'®"!, and tumor
stratification'?.

In a typical PPI network, proteins and their physical interactions are usually symbolized as nodes and edges,
respectively, in a mathematical graph representation that describes entity relationships in the topological space.
Proteins often work together to carry out their molecular functions by forming complexes or to engage in
biological processes by interacting with each other in various interconnected pathways. These behaviors could
be captured in the network model to detect functional modularity and protein cooperativity via in-depth topo-
logical analysis'’. However, the inherent complexity of the biological network, which usually involves thousands
of molecular entities and relationships, could make the systematic analysis difficult>'*. For example, due to the
multi-functionality nature of proteins, a protein can play different roles and engage in a variety of biological
pathway, thus creating multiple connections to various interacting partners in different biological contexts. This
intricacy could limit the module detection and functional inference to relatively small local regions and also
hampers in-depth investigations on global collective properties of the PPI network, such as its hierarchical
structure and scale-free property, both of which are wildly conjectured on the global scale but their origins
and the development processes are still unclear'>'>'®,

In social science studies, a common way to decompose a social community is to classify its members into age
groups, based on the general observation that people of different ages also differ in their social roles, values, and
positions in the community, and may potentially exhibit different behaviors in response to a given event'”"'*. We
propose that the same approach could be applied to the biological network analysis. Since the cellular network,
just like the genome, developed through evolution'***-?, the phylogenetic grouping technique could be utilized as
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atool to decompose a PPI network. Phylogenetics suggests the evolu-
tionary relationships among species and proteins. A typical approach
to classify proteins by age is to search for orthologs for each protein in
other sequenced genomes and subsequently, the proteins can be
assigned to age categories (groups) by tracing the latest common
ancestral origin of their orthologous groups across phylogeny* .
In this study, we adopted the same strategy, and combined it with
force-directed graph simulation in the topological space, to decom-
pose the human PPI network in a multi-dimensional manner. This
approach, which we called phylogenetic decomposition (phylo-
decomposition), enabled us to associate the network topological
properties with evolutionary and biological implications.

Briefly, our work proceeded as follows: First, we addressed the
question whether proteins at different ages would play different roles
in the human PPI network. From our phylo-decomposed PPI net-
work, we observed that the ancient proteins occupied the core of the
network with high topological centrality. Next, we examined if age
homophily, a typical pattern of interaction preference in social net-
works, also existed in the PPI network. By analyzing the temporal
patterns of interaction preferences within and between age groups,
we revealed the presence of age homophily in the PPI network, which
in turn provided valuable clues about the evolutionary process of the
network. We thus proposed a hypothesis that selection pressure may
have acted on the duplication and divergence processes during the
network evolution, in which proteins with higher centrality were
selected to avoid perturbation by limiting the probability of a young
protein connecting with old ones. Further, we found that age homo-
geneity prevailed over several kinds of protein communities. These
results suggest that the cellular functional modules (e.g., protein
complexes and biological pathways) tend to be age homogeneous.
In the final part of our work, we linked the age groups to a variety of
biological annotations. We found a general consistency between
topological centrality and biological importance. For example, the
age patterns coincided with the gene essentiality, the disease suscept-
ibility, the evolutionary rates, and the specific functional roles in
typical eukaryote cells. More interestingly, the network landscape
closely mimicked the subcellular localization of the cell. Together,
these findings reveal the potential of using conceptual frameworks to
capture the true functional organization in a living cell.

Results

Overview of the phylo-decomposition of the human PPI network.
To dissect the human PPI network, we adopted a phylogenic
grouping method combined with force-directed graph simulation
in the topological space (Fig. 1, Supplementary Table S1). Briefly,
we first estimated the approximate age group for each human protein
based on protein orthology and species phylogeny. For each human
protein, its orthologous group across other genomes was identified,
and then this protein could be classified into one of the age groups
(G1-G6) based on the shared ancestral origin of its orthologous
group in the phylogeny. Next, the human PPI network, compiled
from several public PPI resources, could be projected onto a
topological space with an additional temporal dimension that
decomposed the global network into six age groups. This network
model enabled us to associate the topological characteristics with
evolutionary and functional implications.

Age-dependent core-periphery structure and network centralities.
The first key question we addressed was whether proteins at different
ages play different roles in the PPI network. From the phylo-
decomposed human PPI network shown in Fig. 2a (see also
Supplementary Fig. S1), a core-periphery structure can easily be
identified through the age-group dimension, in which ancient
proteins occupy the core of the network whereas young proteins
tend to reside on the periphery (normalized heat maps are
provided in Fig. 2b). The core is the central part of the network,

typically providing the structural basis and topological essence of
the entire network®””. Indeed, topological analysis also suggested a
positive correlation between protein ages and a variety of network
centrality measures (Fig. 2c). The network centrality quantifies a
node’s relative importance within the network'®. For example, the
degree centrality quantifies the interaction neighbors of a node,
reflecting the node’s connectivity and immediate impact; the
betweenness centrality of a node quantifies the relative frequency
of all-paired shortest paths that rely on the given node, reflecting
its potential controllability on the information flows; the closeness
centrality quantifies how close in distance a given node is to other
reachable nodes in the network, reflecting how fast the information
can spread from the node, and the stress centrality of a node
measures the number of shortest paths that can pass through it,
reflecting the potential information traffic load on the node. All
these centrality measures can be used as proxy quantifiers of node
importance inside the network with different contexts.

Age homophily and network evolution models. Age homophily is a
sociology term that describes the tendency of individuals to associate
and bond with similar-aged peers. Since this tendency was found to
be prevalent in various types of social networks**~*, we expected the
PPI network may also possess this property. To this end, we
computed the interaction density within and between age groups
and estimated the interaction preferences using network
randomization procedures (see Methods). Surprisingly, while a
slightly heavier interaction density was observed for each age
group toward the ancient groups (Fig. 3a), the preference pattern
showed a strong tendency for each age group to interact with closely-
aged groups, especially with the group itself (Fig. 3b). Furthermore,
this pattern revealed a proclivity of proteins to gradually avoid
interacting with aged proteins (Fig. 3b). Together, these results
suggested the presence of age homophily in the human PPI network.

The interaction preference profile across age groups may provide
further clues to understand the evolutionary process of the human
PPI network. Preferential attachment was shown to be the general
mechanism used to generate a scale-free network®. In this model, a
new node enters the network with a preference to establish new
connections to an existing node that already has many interaction
partners inside the network, eventually leading to a scale-free struc-
ture. In the evolution of the PPI network, it has been proposed that
the gene duplication-and-divergence process can achieve preferen-
tial attachment implicitly because proteins with more existing inter-
action neighbors are more likely to gain new links from randomly
duplicate genes'*°. Accordingly, the recruitment of new duplicates
eventually accumulates a power-law degree distribution during net-
work growth and thus results in a scale-free network structure.
However, this canonical model does not seem to coincide with our
results. As previously shown in Figure 3b, ancient proteins, though
typically possessing high connectivity, were not preferentially
attached by young proteins; on the contrary, proteins with similar
ages preferred to interact with each other and generally avoided
interacting with aged proteins. Indeed, the canonical duplication-
and-divergence model was also found to be incompatible with the
observations from the yeast PPI network®. Together, these results
suggested a limited role of the canonical duplication-and-divergence
model in explaining the evolution of PPI networks®>**.

The observed tendency for proteins to interact with similar-aged
neighbors but not with aged ones suggests a possible perturbation
avoidance behavior in the network growth process. Given the result
that the aged proteins typically possessed high centrality in the net-
work, their duplicates may induce greater perturbation throughout
the PPI network, and thus become potential threats to cellular home-
ostasis. For example, the dosage effect could be widely spread and
thus more deleterious when the newly formed duplicate was derived
from a high connectivity protein. Therefore, to prevent unfavorable

| 4:7153 | DOI: 10.1038/srep07153

2



Human

Proteome
f—+——+—+—+—+—+—+—+—+—+—Fungus .G1
—t—+—+—Nematode
1 F!Llwtfiy‘ Gz
Search for Ly ! t——+—+—+—+—Mosquito
orthologs 1500Mya \ [T p—A————+—+—+—+—+—+—2Zebrafish [ G3
! (T TR T BN T (B ————— Chicken -G4
Cattle
Dog G
Rat 5

310 Mya

3D Decomposition

Downstream
Analysis

Figure 1| Schema of the phylo-decomposition of the human PPI network. Upper part: classification of human proteins into six age groups (represented
in different colors) according to protein orthology and species phylogeny. The phylogeny tree and the estimated divergence time (Mya, millions of years
ago) were based on NCBI Taxonomy and literature. Branch lengths are not proportional to time. Also note that the age group assignment only reflects the
approximate conservation level of proteins, not necessarily corresponding to the estimated divergence time frames. Lower part: decomposition of the
human PPI network based on the protein topological relationships and age group annotations. Force-directed layout arranged the nodes into two
dimensional topological spaces, based on graph theoretic distance. Then, the global network was decomposed into six subnetworks by introducing an
additional dimension based on the protein age group annotations. See main text and Methods for details.

perturbations, these types of high centrality duplicates may undergo
higher pressure to be selectively removed or to rapidly and largely
diverge. We tested the plausibility of a perturbation avoidance model
by simulating the duplication process for an additional hypothetical
age group (Group 7). Figure 3c illustrates the simulated interaction
density patterns for the novel hypothetical age group (G7) using a
random duplication model and a perturbation avoidance model. The
pattern generated from the random duplication model (Fig. 3c, left)
exhibits the preferential attachment mode, in which new duplicates
densely connect to ancient proteins. This pattern is quite inconsistent
with the true network pattern (Fig. 3a). In contrast, the pattern
generated from the perturbation avoidance model (Fig. 3c, right)
closely mimics the true network pattern (Fig. 3a), suggesting that
perturbation avoidance could be a potential strategy adopted in the
evolution of the human PPI network.

To further evaluate the plausibility of the perturbation avoidance
model, we then performed a network growth simulation to examine
whether the scale-free property could be acquired based on the pro-
posed model. Briefly, a small random network was initialized to grow
following a perturbation avoidance strategy until the total number of
nodes reached a scale comparable to the human PPI network. The
strategy applied stochastic constraints on node duplication and
divergence events by setting the event probabilities inversely propor-
tional to the node degree (see Methods for details). As expected, the
final simulated network exhibits approximate scale-free property
globally and locally across the temporal groups (Supplementary
Fig. S2). This suggested that perturbation avoidance could be a valid

strategy to grow a small random network into a sizeable scale-free
network.

The perturbation avoidance model also implies the inequality of
retained paralogs among different age groups. Paralogs are the
homologous genes that were created by duplication events within
the genome. Since the perturbation avoidance model assumes that
high centrality genes are less likely to retain duplicates in the genome
(most of them should have largely diverged or been rapidly
removed), the ancient proteins should retain less paralogous genes
than young proteins in the current genome. Figure 3d shows the age
composition of paralogous genes in the human genome. In agree-
ment with the assumption, most of the paralogous genes originated
from young proteins. This tendency revealed the expected inequality
of retained paralogs among age groups.

Age homogeneity prevailing over protein communities. As shown
in the last section, the observed tendency for proteins to interact with
similar-aged neighbors suggests that age homogeneity could prevail
over protein communities. Here, we use the term “community” to
refer to a group of closely-related proteins, for example, the members
in a protein complex or a PPI module (physically-interacted) or in a
biological pathway (functionally-related). We started with the PPI
dyad, the smallest unit of a protein group that comprises only two
interlinked proteins. Overall, most of the human PPI dyads were in
the same or similar-aged groups (70%, empirical P < 1 X 1073
permutation test), especially those PPI dyads inside protein
complexes (82%, empirical P < 1 X 107° permutation test)
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Figure 2 | Phylo-decomposed human PPI network and centrality measurements. (a) Decomposed subnetworks from G1 to G6 (shown in different
colors). Node size reflects protein degree (connectivity). Edges are omitted for clarity. (b) Density heat map shows the protein localization density inside
the network for each age group. (c) Network centrality measurements for proteins in each age group. Values are group means. Color intensity (red-to-
green) reflects the relative magnitude of the cell values in each row (high-to-low).

(Fig. 4a). Noting that the presence of a PPI also implies functional
similarity between the two paired proteins®, we were therefore
curious whether the age homogeneity would also reflect on the
degree of functional similarity. Indeed, the patterns of degree of
functional similarity among the PPI dyads suggested a correlation
between age homogeneity and functional similarity, in which
similar-aged PPI dyads tended to have a higher degree of
functional similarity (Fig. 4b).

Age homogeneity prevailed over PPI dyads as well as larger groups
of proteins. For a given group of proteins, we calculated the standard
deviation (SD) of its members’ ages as a proxy for estimating the
degree of age homogeneity. In a PPI network, a pivot node that has
relatively high connectivity can be defined as a network hub'*. Each
hub together with its most proximate neighbors defined a local group
in the PPI network, termed a hub-spoke community. As expected,
the hub-spoke communities in the human PPI network generally
selected age homogeneity over randomly chosen groups, even with
different degree cutoffs for hub protein definitions (Fig. 5a).
Interestingly, the distribution of the age SD of the hub-spoke com-
munities seemed to center at 1.0. We thus separated the network
hubs into two classes: the school hubs and the office hubs, by setting
the separate point of age SD at 1.0. The school hubs are those network
hubs interacting in age-homogenous communities (age SD < 1.0),
given the name because children typically form peer groups in
school***. In contrast, the office hubs are those network hubs inter-
acting in relatively age-heterogeneous communities (age SD = 1.0),
which are analogous to ordinary offices in which the colleagues are
different ages. Most of the high-degree hubs were office hubs

(Fig. 5b). This could be due to the fact that their community sizes
were more similar to the universal population size. However, we
found the communities of school hubs were slightly more functional
homogeneous compared with the office hubs, regardless of the
degree cutoffs (Fig. 5¢). Since the interacting communities of school
hubs were age homogeneous by definition, this result implied a link
between age homogeneity and functional homogeneity. Indeed, the
proteins engaging in the common biological pathways were found to
be age homogeneous as well (Supplementary Fig. S3). Together, these
results suggested that the cellular functional modules tend to be age
homogeneous.

Age-dependent functional landscape. The age-dependency of
topological centrality suggested that age groups may play distinct
roles in cellular functions. To elucidate the typical functional roles
of different age groups, a series of functional analyses were
conducted. First, since the aged proteins generally possessed high
centralities in the PPI network, they may be more important to cell
viability. Indeed, proteins with high degree centrality were more
essential for yeast survival®®. In agreement with that, we found that
protein age could be associated with gene essentiality (Supple-
mentary Fig. S4a) and disease susceptibility (Supplementary Fig.
S4b,c): the older the proteins, the higher the essentiality and
disease susceptibility. Gene essentiality could also have imposed
constrains on the gene evolutionary rates. We therefore examined
the human-mouse evolutionary rates for orthologous proteins.
Unsurprisingly, age-dependency also reflected in the evolutionary
rates (Supplementary Fig. S4d), in which aged genes were under a
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Figure 3 | Interaction density and preference across age groups. (a) The interaction density within (upper row) and between (indexed grid) age groups.
Color intensity (red-to-green) reflects the relative magnitude of cell values (high-to-low). (b) The interaction preference (empirical Z scores, estimated by
network randomization) within and between age groups. (c) Interaction patterns for a new hypothetical age group (Group 7) under the random
duplication model (left) versus the perturbation avoidance model (right). Perturbation avoidance was implemented by setting the duplicate retention
probability of a node inversely proportional to its degree centrality. (d) Composition of paralogous genes in the human genome. A total of n = 211

paralogous groups were extracted from NCBI HomoloGene.

higher pressure of purifying selection than young proteins. A similar
observation has been reported previously”. We also checked the
chromosome distribution of the age groups, and found that a high
ratio of young genes resided on human chromosomes 19, X, and Y
(Supplementary Fig. S5). Consistently, genes on these chromosomes
generally showed higher divergence rates (Supplementary Fig. S6). It
was estimated that the differentiation of X-Y chromosomes occurred
shortly after the divergence of the mammalian and avian lineages™.
In addition, genes on human chromosomes 19 and Y were reported
to have high divergence rates®*. The high divergence rates of genes
on human chromosome 19 were previously associated with high GC
contents’; however, we found this association was not maintained
on chromosome Y, on which the genes typically had low GC contents
(Supplementary Fig. S6). Moreover, we found no global correlation
between the divergence rates and GC contents. Unexpectedly,
beyond the genes on chromosomes 19, X, and Y, genes on
chromosome 1 also showed high divergence rates (Supplementary
Fig. S6), which failed to correspond to its uniformly distributed age
group composition (Supplementary Fig. S5). Further research is
needed to elucidate the evolutionary force acting on chromosome 1.

Functional analysis also revealed high specificity of enriched bio-
logical processes and pathway engagements among age groups (Fig. 6
and Supplementary Table S2). This functional specificity seemed to
correspond to group-specific evolutionary roles in the eukaryotic
cell. For example, the eukaryote-conserved proteins (G1) were
enriched in basal cellular functions such as translation, RNA proces-
sing, oxidation reduction and protein localization; the metazoan-
conserved proteins (G2) were enriched in neuron development,
embryonic morphogenesis, transport, and signaling cascade; the
vertebrate-conserved proteins (G3) were enriched in organ develop-
ment, apoptosis, and signaling transduction; the mammal-conserved
proteins (G5) were enriched in sensory perception, sexual reproduc-
tion, and immune response, and the primate-conserved proteins
(G6) were enriched in defense response, transcriptional regulation,

and keratinization. Keratinization genes were recently found to be
positively selected in primates, revealed by a comparative genome-
wide sequencing of primate exomes*.

More interestingly, the subcellular localization of proteins closely
coincided with the core-periphery structure of the PPI network. As
shown in Figure 7, the ancient proteins typically reside at the core of
the cell, that is, the nucleus, the cytoplasm, and the organelles. In
contrast, young proteins are largely located at the cell periphery,
namely, the cell membrane and extracellular area. Notably, besides
the extracellular area, the primate-specific proteins (G6) were also
slightly enriched inside the nucleus. This implies that many G6 pro-
teins could be transcription factors or engage in transcriptional regu-
lation, as shown in Figure 6. Together, these findings suggested the
potential of the conceptual framework to mimic the true functional
organization in a living cell.

Discussion

Decades of network science research have made considerable pro-
gress and numerous discoveries. One of the most striking findings is
that though they differ largely in basic elements, many network
systems share similar collective dynamics and structured organiza-
tions, which only emerge in the systematic view. Since the general
principles behind this theme are not yet fully understood, the sim-
ilarities in the collective dynamics and structured organizations
could be important areas to explore in future research.

In this study, we made an attempt to utilize phylogenetic informa-
tion in an analysis of the human PPI network. A temporal dimension
was introduced to decompose the network structure and functional
organization of the PPI network. Our results suggest a consistent
pattern that the node centrality generally increases with age; in other
words, aged proteins are more likely to act as pivot nodes inside the
human PPI network. Notably, these patterns are generally in agree-
ment with previous observations in the yeast PPI network, in which
the degree centrality also increased with the age of the protein®.
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Figure 4 | Age homogeneity and functional similarity of PPI dyads.

(a) Composition of PPI dyads classified by the difference in age between
the two paired proteins. All PPIs: all PPI dyads from the human PPI
network; Complex PPIs: the PPIs within protein complexes. (b) Profile of
functional similarity among PPI dyads. Cell values indicate the median.
Color scheme (red-to-green) represents the magnitude of similarity degree
(high-to-low). GOBP/GOMEF: similarities based on the Gene Ontology
namespace of the Biological Process/Molecular Function.

Another recent study also reported the tendency of aged proteins to
have higher connectivity®.

Our results also suggest the presence of age homophily in the
human PPI network. It is also of great interest to know whether
the same tendency can be observed in other species. In fact, the
patterns of interaction density between age groups have been studied
in the yeast®*” and human PPI networks®; however, inconsistent
patterns were revealed in these studies. In the yeast PPI network,
heavier interaction density was found between similar-aged
groups™*’, whereas in the human PPI network, all groups possessed
heavier interaction density toward ancient groups®®, which was sup-
ported by our interaction density results (Fig. 3a). Nevertheless, we
noticed that this inconsistency could be resolved by estimating the
interaction preference instead of the density (Fig. 3b). Indeed, we
found that the pattern of interaction preference coincided with the
tendency found in the yeast, that is, proteins tend to interact with
other similar-aged proteins. Therefore, we propose the possibility
that this tendency might be a universal principle that was also applied
in the evolution of PPI networks in other species.

The observed tendency for proteins to interact with similar-aged
neighbors but not with aged ones suggests a possible perturbation
avoidance behavior in the network growth process. Notably, this
behavior was also suggested in the yeast PPI network, in which the
proteins with a high degree of connectivity typically had low duplic-

ability*’. Moreover, similar observations were reported in the yeast
genetic interaction network, in which the genes with many genetic
interactions were found less responsive to environmental changes*.
It is possible that the low responsiveness could result in avoidance of
large-scale perturbation on genetically linked partners because these
perturbations could ultimately trigger severe effects on fitness. Taken
together, these results also suggest that perturbation avoidance could
be a general principle applied in the evolution of cellular networks.

Methods

Phylogenetic decomposition of the PPI network. We adopted a similar strategy that
has been applied in previous studies*****” to estimate the approximate evolutionary
age for each human protein. Specifically, we searched for protein orthologs from
other genomes for each human protein, and then the protein was assigned to an age
group based on the shared ancestral origin of its orthologous group across species
phylogeny. Under this strategy, human proteins could be approximately classified
into six age groups (G1-G6). G1 contained those proteins well-conserved in fungi and
animals (oldest group); G2 contained those proteins broadly conserved in animals but
no orthologs were found in fungi; other groups were assigned using the same logic.
Note that G6 was the youngest group, which included human-specific or primate-
only proteins. Protein orthology was obtained from NCBI HomoloGene (release 67,
Dec 2012)* and species phylogeny was from NCBI Taxonomy and from literature*.
A total of 20 species were listed in HomoloGene, and 18 of them (fungi and animals)
were included in this study (two plant species were excluded). The 18 included species
were (alphabetical order): Anopheles gambiae, Bos taurus, Caenorhabditis elegans,
Canis lupus familiaris, Danio rerio, Drosophila melanogaster, Eremothecium gossypii,
Gallus gallus, Homo sapiens, Kluyveromyces lactis, Macaca mulatta, Magnaporthe
oryzae, Mus musculus, Neurospora crassa, Pan troglodytes, Rattus norvegicus,
Saccharomyces cerevisiae, and Schizosaccharomyces pombe. We choose HomoloGene
as the orthology source because a previous study reported that HomologGene showed
the best performance in the phylogenetic tests over seven other orthology projects and
methods®. Another reason was that HomoloGene could provide distant ortholog
inferences covering most of the model organisms across fungi and animals, which was
a prerequisite for this study. Nevertheless, the limited number of species available from
current databases still restricted the resolution and accuracy of the age group
assignment. For example, potential gene loss events in some species could have
misguided the age group assignment and could not be corrected if no other species
were available for that clade, though this kind of inaccuracy seldom exceeded one
intergroup range. Also note that this method was based on sequence conservation, not
necessarily reflecting the exact timeframe of the functional origin of a given protein in
the natural history, because it is possible that some proteins have a common functional
origin but have diverged extensively in sequence in each lineage. A potential area for
future improvement would be on the sequence alignment algorithms. For example, a
recent study showed that it is possible to achieve higher sensitivity in the case of coiled-
coil protein homologs detection by adjusting domain-specific substitution matrices for
sequence alignment*. The anticipated advancement in this area would improve the
accuracy of homologs detection and thus benefit our methodology in the future.

The human PPI network was compiled from several public PPI resources (HPRD,
DIP, IntAct, BioGRID, and MINT), downloaded from the PrePPI database*’. Only
physical interactions were considered in this study. Note that this dataset integrated
all kinds of physical PPIs derived from various experiment techniques, thus con-
taining both direct and indirect physical interactions between proteins. Our network
analysis pipeline involved two steps. First, we used Cytoscape* to visualize and
analyze the graph topology of the PPI network. Spring-embedded algorithm® is a
classic force-directed graph layout algorithm that simulates the physical dynamics of
the spring force between nodes in the system. This algorithm positions the nodes
(proteins) in a two-dimensional topological space using an iterative process that
minimizes the free energy of the system, and it generates optimized spring lengths
that approximate theoretical graph distances, which makes it ideal for decomposing a
network with a core-periphery structure. Next, an additional temporal dimension was
introduced to the network based on the age group annotation of proteins, by which
the global PPI network could be decomposed into six subnetworks. Each subnetwork
corresponds to one specific age group, and the PPIs could thus be classified into two
classes: one as intra-group PPIs and the other as inter-group PPIs. Downstream
topological and functional analysis were performed with in-house Python scripts and
NetworkAnalyzer®, a Cytoscape plugin that computes specific parameters for net-
work topology.

Interaction density and Z scores. The interaction density was defined as described
before®**. Specifically, given two age groups m and #, the interaction density D, ,,
between them was calculated as

DmJl = m,n/Em,n

m=n

Eym { Nu(N,—1)/2,

N,y XN,, m#n

where I,,,, is the number of edges between the two groups m and n; E,,, ,, is the
maximum number of edges that can possibly exist between the two groups; and N,
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Figure 5 | Age homogeneity in hub-spoke communities. (a) Hub-spoke communities were homogeneous in age. Different degree threshold

(top 20%, 10%, and 5%; n denotes the number of hubs under that criterion) were used to test the consistency of age homogeneity (all with P<1 X 107",
two-tailed Mann-Whitney U test). Hubs were divided into two types: school hubs and office hubs, based on the degree of age homogeneity.

(b) Composition of hub types. Each pie chart corresponds to the criterion adopted in (a). (c) Comparison of functional homogeneity between different
types of hubs using a two-sample KS-test. ECDF: empirical cumulative distribution function.

and N, are the number of nodes in the group m and n, respectively. The interaction
density is always a number between 0 and 1. The empirical Z scores of the interaction
density were estimated from network randomization procedures 10,000 times. The
procedures randomly rewired all edges in the PPI network while preserving its
characteristic degree sequence. The empirical Z scores could thus be estimated from
the background distributions of the interaction densities generated from the 10,000
randomized PPI networks. All homodimer interactions were removed before
performing the analysis.

Network growth simulation. While the simplest form of the canonical duplication-
and-divergence model assumes random duplication followed by a constant
divergence rate®, the perturbation avoidance model sets the duplication and the
divergence rates inversely proportional to the node degree centrality. The simulation
started from a random network with # = 100 nodes and probability p = 0.1 for edge
creation (namely, an Erdés-Rényi graph with parameters n = 100 and p = 0.1). Then,
the initialized network started to grow following the perturbation avoidance strategy,
until the total number of nodes reached n = 10,000. An additional heteromerization
parameter that controls the probability of two duplicates to link can be optionally
included in the model to strengthen the hierarchical structure of the network>**,
though it appeared not necessary for the emergence of the scale-free property. In
addition to the Erdés-Rényi graph, we also ran the simulation on other choices of
initial networks, such as Watts-Strogatz small-world graph and Barabadsi- Albert
scaling graph. For Watts-Strogatz graph, we set initial node number = 100, each node
connecting to 5 nearest neighbors, and 0.1 probability of rewiring each edge. For
Barabasi- Albert graph, the initial node number was set to 100 nodes, and the number
of edges to attach from a new node to existing nodes was set to 5.

Age homogeneity and functional similarity. For PPI dyads, age homogeneity was
defined by the age difference between the two paired proteins of a given PP, as
illustrated in Figure 5a. To test if most of the PPI dyads tend to be of similar age,

Monte Carlo procedures were used to calculate empirical P values. The procedures
randomly rewired the PPI network while maintaining a constant global degree
sequence. Annotated protein complexes were obtained from the CORUM database®'.
Functional similarity was measured using GOSemSim®, an R package for estimating
GO sematic similarities between two genes or two gene clusters. Default parameters
were applied in all measurements.

For the hub-spoke communities, three stepwise degree thresholds were used to
define the hub proteins, namely, the top 20%, 10%, and 5% degree rank, respectively.
Under each threshold, corresponding randomized communities were generated by
resampling from the entire PPI network. The functional homogeneity of a protein
comunity was defined as the median of the pairwise semantic similarities of a given
protein group. KEGG pathways were obtained from the NCBI BioSystems database®.

Gene essentiality. Two distinct sources for the gene essentiality annotations were
adopted in this study. The first source was from mouse phenotype data. Specifically, a
gene knock-out in mice resulting in any lethality phenotype was defined as an
essential gene, and its corresponding human ortholog was thus assumed essential.
This strategy to predict the essentiality of a human gene from mouse phenotype
information has been widely adopted™*°. Mouse phenotype data were downloaded
from MGI”. The second source for gene essentiality was from the COLT-Cancer
database, which was based on a genome-scale pooled shRNA screening for essential
genes in human cancer cell lines*.

Human-mouse evolutionary rates. The human-mouse evolutionary rates (dN, dS
and dN/dS) for human protein-coding genes were obtained from Ensembl BioMart
(release 72). We selected only one-to-one orthologs between human and mouse in
this analysis.

Analysis and visualization of functional enrichment. Functional enrichment
analysis was performed using DAVID 6.7%° (GO enrichment analysis, pathway

| 4:7153 | DOI: 10.1038/srep07153



Cell cycle

g NTuron Embryonic at
evelopment 0 ohogenesis d Organ development ® e 4

~ .
Proteolysis % / Regulation of
P — cell cycle

Translation

a
Regulation of
transcription

.\0 Phosphorylation Response to

Bhansport  Signaling organic substance

cascade Cell motion

&/,r" Cell adhesion

==
Lipid biosynthesis lon transport V
5 g &

Protein localization

Mitochondrion * Immune systs

development

Sensory
. e o . '»,‘\ ‘\\0 perception @
$ e DNA packaging
Grou i . . -
B Oxidation reduction Regu;:znd"f trarcljscrtlptlon N
! PODOE @ dependen Immune response
Sexual

Edge width: overlap coefficient Keratinization % Defense response reproduction
Node size: gene set size

Figure 6 | Enrichment map of biological processes across phylogenetic groups. Nodes represent enriched biological process terms from Gene Ontology.
Edges represent the associations between two enriched processes. Highly connected terms were grouped together and were annotated manually by a
shared general term. Given two associated gene sets A and B, the overlap coefficient (OC) was defined as OC = |ANBI/min(/Al, IBI).

Plasma membrane

Endoplasmic reticulum

Nucleus

)

1 8
gy
Mitochondrion Cytoplasm Enrichment
Score
\e'\\é(\

‘@6

g B ¢

2 8 ' Qe @e,\ow

.w’ \_, &
Extracellular .

Figure 7 | The subcellular localization and age group composition of human proteins. Annotations of protein subcellular localization were according to
Gene Ontology. The enrichment score was defined as —log(P value). The enrichment P values were reported using DAVID.

SCIENTIFIC REPORTS | 4:7153 | DOI: 10.1038/srep07153 8



enrichment analysis, functional domain enrichment analysis). Default parameters
were used in all types of analyses in DAVID. Functional landscape was visualized
using Cytoscape®® and its plugin Enrichment Map®.
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