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ABSTRACT
A new family of non-autonomous retrotransposons with self-cleaving hammerhead ribozymes, the so
called retrozymes, has recently been found encoded in diverse plant genomes. These retroelements can be
actively transcribed, and their RNAs accumulate in the cells as abundant non-coding circular RNAs
(circRNAs) of small size (600–1000 nt). Related circRNAs with self-cleaving ribozymes had already been
described in plants, and belong to a group of infectious RNA agents with an uncertain origin: the viroids
and viroid-like satellites of plant RNA viruses. These pathogenic circRNAs show many structural similarities
with retrozyme circRNAs, and both have been found to occur in flowering plants as heterogeneous RNA
molecules of positive and negative polarities. Taking all these data together, we hypothesize that circRNAs
encoded by genomic retrozymes could have given origin to infectious circRNAs with self-cleaving
ribozymes. Moreover, we propose that retrozymes in time could have evolved from the ancient family of
Penelope-like retroelements, which also harbour hammerhead ribozymes. Putative retrozyme sequences
with hammerhead ribozymes have been detected as well in metazoan genomes, opening the door to a
common occurrence of circRNAs with self-cleaving motifs among eukaryotes.

Abbreviations: circRNA, circular RNA; HHR, hammerhead ribozyme; LTR, long-terminal repeat; PBS, primer binding
site; PPT, polypurine tract; RT, retrotranscriptase; SMART, small LTR retrotransposon; TRIM, terminal-repeat retro-
transposon in miniature; TSD, target site duplication
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Introduction

With the discovery of catalytic RNAs or ribozymes more than
30 y ago1,2 we started to become aware of the hidden capabili-
ties of the RNA molecule in biology. Moreover, the ribozymes
strongly supported the hypothesis of a prebiotic RNA world
where the first living entities would have been based on RNA as
both the genetic material and as catalyst.3-5 Only a few of those
ancient ribozymes are believed to have remained in extant
organisms, carrying out essential functions such as tRNA matu-
ration by the RNAse P,2 mRNA splicing by the spliceosome,6

and even protein translation by the ribosome.7 Among the sim-
plest ribozymes described so far, there is an enigmatic family of
small self-cleaving RNAs composed of 9 different classes: ham-
merhead (HHR),8,9 hairpin (HPR),10 human Hepatitis-d
(HDV),11 Varkud-satellite (VS),12 GlmS,13 twister,14 twister sis-
ter, hatchet and pistol15 ribozymes. The HHR was the first dis-
covered and is one of the best-known members of this family.
It is composed of a catalytic core of 15 conserved nucleotides
surrounded by 3 double helixes (I to III), which adopt a
g-shaped fold where helix I interacts with helix II through ter-
tiary interactions required for efficient in vivo activity.16-18

There are 3 possible circularly permuted topologies for the
HHR, named type-I, -II or -III, depending on the open-ended

helix (Fig. 1). Originally described in the genomes of infectious
circular RNAs (circRNAs) of plants, such as some viroids and
viral satellite RNAs, the HHR catalyzes a self-cleaving transes-
terification that is required during the rolling-circle replication
of these molecular replicons. A few HHRs were also exception-
ally described in the DNA genomes of some unrelated eukar-
yotes,19-23 and mostly associated with repetitive sequences. In
2010, we reported the widespread occurrence of HHR motifs in
genomes from bacteria to eukaryotes,24 including humans.25

These observations were confirmed and extended by other lab-
oratories,26-28 revealing the HHR as a ubiquitous catalytic RNA
motif in all life kingdoms.29 Other small self-cleaving RNAs,
such as the HDV30 and twister ribozymes,14 have also been
found widespread in DNA genomes, which corroborates that
small catalytic RNAs are much more frequent than previously
thought. Although the precise biologic roles of these genomic
ribozymes are not well understood, a tight connection with
mobile genetic elements such as retrotransposons has been
reported in diverse eukaryotes.31-34 Retrotransposons are major
components of most eukaryotic genomes, and can be classified
in autonomous and non-autonomous. Autonomous retrotrans-
posons encode the protein factors required for their own mobi-
lization, which includes a retrotranscriptase (RT) responsible
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for cDNA synthesis from an RNA transposition intermediate.
Eukaryotic genomes can also contain many copies of small
non-autonomous retroelements, which do not encode any pro-
tein and whose genomic mobility depends on the autonomous
retrotransposons.35

Hammerhead ribozymes in plant genomes are part of
a new family of non-autonomous retroelements: The
retrozymes

We previously reported the presence in some plant genomes of
HHR motifs, which in some cases occur as tandem repeats of a
few hundred base pairs.24 More recent and deeper bioinfor-
matic searches have extended these observations to the
genomes of more than 40 plant species.34 Comparative geno-
mic analysis revealed that the tandem HHR motifs were
embedded within the sequence of what constitutes a novel fam-
ily of non-autonomous retroelements, the retrozymes (retro-
transposons with hammerhead ribozymes). These
retroelements have sizes that range from around 1 to 1,5 kb,
and show almost no sequence homology among distant plant
genomes. All retrozymes, however, do display a similar struc-
ture: they are delimited by 4 bp target-site duplications (TSDs),
with the HHRs embedded in direct long-terminal repeats
(LTRs) of »300–400 bp delimiting a unique central region
(»300–600 bp), and flanked by the primer binding site or PBS
(complementary to the tRNAMet sequence) and a poly-purine
tract (PPT), both sequences required to prime DNA synthesis
during the mobilization of LTR-retrotransposons36 (Fig. 2A,
top). Retrozymes are similar to other non-autonomous retro-
elements of plants such as TRIMs37 and SMARTs38 (Fig. 2B) in
that they rely on the machinery encoded by autonomous retro-
transposons for their mobilization, most likely of the Ty3-gypsy
family in the case of retrozymes.34 Plant retrozyme RNAs
showed high self-cleaving activity in vitro, whereas northern
blot hybridizations of RNAs from different plant tissues
revealed abundant levels of circular and linear RNAs of the pre-
cise size encompassed by the HHRs,34 which is an indication of

self-processing activity during in vivo transcription (Fig. 2A).
Despite the lack of sequence identity between most retrozymes
(with the exception of the short PPT, PBS and HHR motifs),
secondary structure predictions for these circRNAs show a sim-
ilar compact architecture with high stability (Fig. 3A), suggest-
ing a selection pressure at this level. A final feature of
retrozymes is their occurrence in vivo as heterogeneous RNA
sequences of both the positive and negative polarities, which
suggests that retrozyme circRNAs could be undergoing RNA-
to-RNA replication through a rolling-circle mechanism, similar
to the ones described for viroids and viral RNA satellites.34

The multiple connections between retrozyme and
viroidal circRNAs

The first circRNAs reported in the literature were discovered in
the 70s and called viroids.39,40 Based on different features, these
small (240–470 nt) infectious non-protein coding circRNAs
have been classified in 2 different families: Avsunviroidae and
Pospiviroidae.41 Although a detailed description of the biology
of these minimal plant pathogens can be found elsewhere,42

here we will summarize the major attributes of these 2 families.
Members of the family Avsunviroidae (4 species, Table 1) are
characterized by the presence of HHR motifs in both polarity
strands and show no sequence similarity between them,
whereas their RNA secondary structure can be either rod-like
or highly branched (Fig. 3B) depending on the viroid size. On
the other hand, members of the family Pospiviroidae (28 spe-
cies) do not possess HHRs but several conserved sequence
motifs, and show a rod-like secondary structure. In the 80s, a
second group of infectious circRNAs with HHRs was found
encapsidated in helper plant RNA viruses and called viroid-like
satellite RNAs.43 The 9 known species of viroid-like satellites
share many similarities with viroids (Table 1), such as being
composed of a small (220–460 nt) circular RNA with a high
degree of base pairing (Fig. 3C), replication through an analo-
gous rolling-circle mechanism, and lack of protein-coding
capacity (although an extraordinary case has been reported

Figure 1. Representation of the possible hammerhead ribozyme (HHR) topologies. The conserved nucleotides of the HHR are boxed. Loop-loop interactions are also indi-
cated. Dotted and continuous lines refer to non-canonical and Watson-Crick base pairs, respectively. The most typical lengths of the helix stems for each HHR type are
drawn. N stands for any nucleotide, whereas R stands for purines (A or G), Y for pyrimidines (U or C) and H for either A, U or C.
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recently44). Furthermore, as observed for the Avsunviroidae,
viroid-like satellites show very little sequence similarity among
them and all encode HHR self-cleaving motifs in one or both
polarity strands. In this regard, retrozyme RNAs fit well the
general description of viroidal RNAs with HHRs (either viroids,
viral satellites, or other viroid-like RNAs. Table 1). Genomic
retrozymes are transcribed into self-processing circRNAs of
slightly larger sizes (600–1000 nt), which are also predicted to
have a stable branched secondary structure with a high degree
(above 70%) of self-pairing (Fig. 3A). Moreover, the circRNAs
of both retrozyme and viroidal RNAs with HHRs show a long
stem containing the self-cleaving HHR motif paired with a
highly complementary sequence (Fig. 3), which most likely
helps to prevent self-cleavage of the circRNA. RNAs from most
retrozymes and viroid-like sequences show similar higher G-C
content (»55%, Table 1), with guanine as the most frequent
nucleotide (»30%), and adenine and uracil around 22% each.
A final point in common between retrozymes and viroidal
RNAs with HHRs is the efficient in vitro circularization of the
linear double self-cleaved RNAs by plant tRNA ligases, which
suggests that both types of elements would require this enzyme
for in vivo circRNA synthesis.34,45

Looking for the origin of viroidal RNAs: Escaped
introns, transposons or relics from the RNA world?

Since their discovery, infectious circRNAs have been consid-
ered as the lowest step of the biologic scale (so-called subvi-
ral agents) due to their minimal genome size and extreme
simplicity as autonomously replicating entities. Regarding

their possible origin, the first discovered viroids were pro-
posed to be escaped spliceosomal introns as a result of
some sequence similarity with snRNAs.46 The discovery and
analysis of more viroid-like sequences led to propose a
hypothetical origin from different retrotransposable ele-
ments based again on primary sequence similarities with
either Ty-1 retrotransposons47 or Group I introns.48 With
the landmark discovery of ribozymes as the most ancient
biocatalysts, a latter hypothesis for the origin of the infec-
tious circRNAs in the frontier of life posited that they
might be “living fossils” from the primordial RNA
world.49,50 Among the reasons supporting this idea are that
the first entities of the RNA world should also have been
small RNA replicons, most probably circular, with no pro-
tein-coding capacity but having simple self-processing ribo-
zyme activities like the HHR.51 The monophyletic origin
proposed for viroidal RNAs also lends support to the pri-
mordial origin hypothesis,52 although, due to the extremely
small and fast-evolving genomes of these pathogens, such a
common evolutionary origin should be regarded with cau-
tion.53 Nevertheless, the assumption of viroidal RNAs as
survivors of the RNA world raises different questions diffi-
cult to explain,54 particularly, the identification of a reason-
able evolutionary path accounting for the presence of these
putative RNA fossils only in flowering plants (originated
»200 million years ago) but their absence in any ancestor
of these plants, from algae to prokaryotes (4,100 million
years ago). However, this direct connection between the
RNA world and infectious circRNAs has been favored in
the literature50,51,55,56 over the less fascinating hypothesis of
escaped retroelements and/or introns. In this regard, the
recent discovery of the widespread occurrence of small self-
cleaving RNA motifs, such as the HHR or the HDV ribo-
zymes, in viral, bacterial, archaeal, and eukaryotic genomes
indicates that small ribozymes are not restricted to subviral
RNA agents, such as viroidal RNAs with HHRs or the
human Hepatitis-d agent, but are very frequent components
of DNA genomes. Furthermore, the discovery of a new fam-
ily of retroelements with HHRs that spread through circR-
NAs, precisely in the genomes of flowering plants, as well
as their structural similarities with infectious circRNAs,
opens a more likely scenario where viral satellites and
viroids with HHRs may have emerged de novo from the
population of abundant retrozyme circRNAs present in
plant transcriptomes. In this respect, it seems plausible that
the circRNAs encoded by genomic retrozymes may be
encapsidated by RNA viruses during plant infection in a
similar way as reported for other host RNAs derived from
Ty3-gypsy retroelements.57 Viral encapsidation of a retro-
zyme circRNA would be the first step in the biogenesis of a
viroid-like satellite RNA, which would subsequently require
the acquisition of recognition signals for the viral RNA
polymerase to be replicated and, eventually, a second ribo-
zyme in the opposite polarity (Table 1). On the other hand,
de novo appearance of a HHR viroid from retrozyme circR-
NAs seems also feasible and would entail the acquisition of
recognition motifs for plant RNA polymerases (a signal that
may be already present, see before and34) and cell-to-cell
movement, as well as the appearance of a second HHR in

Figure 2. Sequence features of genomic retrozymes. (A) Schematic representation
(top) of a full genomic retrozyme element. Target Site Duplications (TSDs) delimit-
ing the retrozyme are shown in gray. Long terminal repeats (LTRs) are shown in
blue. The positions of the primer binding site (PBS), the polypurine tract (PPT) and
the hammerhead ribozymes (HHR) are indicated. The self-cleavage sites (SC) delim-
iting the retrozyme RNA are indicated with arrows. The resulting self-cleaved retro-
zyme RNA after transcription (middle) and circularization (bottom) are indicated.
(B) Schematic representation of 2 examples of plant small non-autonomous LTR-
retrotransposons such as TRIMs (top) and SMARTs (bottom) retroelements.
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the negative polarity. In this regard, the architecture of ret-
rozyme circRNAs showing a highly self-paired HHR already
offers a quasi-HHR sequence in the opposite polarity
(Fig. 3). Viroidal RNAs with HHRs would not be the first
infectious agents for which a cellular origin is suspected.
The discovery of a novel class of cellular RT genes present
in all major taxonomic groups but absent from selfish ele-
ments indicated that retrovirus evolved from genomic LTR
retrotransposons rather than in the other way around.58,59

In view of all these data, an in planta origin for viroidal
RNAs with HHRs would seem to us as a more realistic
hypothesis than being ancient relics of precellular evolution.

Discussion

As recently reported, genomic retrozymes with HHRs show
a patchy distribution among flowering plants, occurring
numerously in different species, but being absent in some
others.34 “Canonical” retrozymes (which contain HHRs,
PBS and PPT motifs) seem to be mostly restricted to dicots,
although the presence of putative retrozyme sequences with

the characteristic tandem HHR copies have also been
detected in primitive land plants (such as the spikemoss
Selaginella moellendorfii), algae (such as Chlamydomonas
reinhardtii), and even protists (such as oomycetes),24 as
well as in many metazoans,24-29,34 suggesting that genome-
encoded circRNAs with HHRs could occur in eukaryotes
other than angiosperms. This scenario allows to propose a
much simpler evolutionary path for small infectious circR-
NAs with HHRs of plants, which may have come by chance
from the abundant reservoirs of retrozyme circRNAs pres-
ent in plant transcriptomes. An obvious counter-argument
is that retrozymes themselves could have originated from
viroidal RNAs. Although this possibility cannot be ruled
out, a better answer to this question can be found in the
ancient family of the Penelope-like elements or PLEs.60

PLEs are a large family of retrotransposons found in many
eukaryotes (including diatoms, algae and primitive land
plants such as sellaginellas), which show phylogenetic con-
nections with prokaryotic self-splicing introns and are
believed to predate telomerases and most eukaryotic retro-
transposons.60,61 Interestingly, PLEs show in their LTRs the

Figure 3. Minimum free energy secondary structure predictions for (A) a retrozyme circRNA of Jatropha curcas (Entry KX273075.1), (B) the avsunviroid PLMVd (Entry
M83545.1) and (C) the Nepovirus satellite RNA sTRSV (Entry M14879.1). HHR sequences are shown in purple (positive polarity) and green (negative polarity), and the PBS
and PPT motifs of the retrozyme are shown in orange and blue, respectively. The corresponding structures of the HHRs motifs are shown under each circRNA structure
and, with the exception of PLMVd HHRs, dotted lines indicate putative tertiary interactions between HHR loops. Self-cleavage sites are indicated with arrows. Kissing-
loop interaction of PLMVd is also shown. Numbering for each circRNA starts at the self-cleavage site of the positive polarity HHR.
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presence of conserved HHRs, which are most likely
involved in the self-processing of the RNA transposition
intermediates of the retroelement.31 Consequently, genomic
HHRs and retrozymes present in modern angiosperms
could derive evolutionarily from PLEs and other related
genomic HHR-sequences present in primitive selaginella
plants. This possibility offers a more parsimonious path to
the origin of retrozymes in higher plants, which could be
regarded as simpler genomic parasites descended from
PLEs, and consisting primarily of HHRs and cis signals for
their recognition and genomic replication by the machinery
of autonomous retrotransposons of the plant. Reduction of
size and complexity are well-known trends in the evolution
of parasitic and endosymbiotic genomes, and in this line,
viroids (»300 nt) would represent a step further in this
genome reduction from retrozymes (»700 nt). Of course,
our proposed origin of current viroidal RNAs with HHRs
from plant retrozymes does not totally rule out the primor-
dial origin proposed by Diener.49 However, while there is

no reported evidence of viroidal RNAs present in cyanobac-
teria or any other prokaryotes, the de novo origin of viroids
and viroid-like RNA satellites seems the most plausible the-
ory, which would also imply that future threats of this type
may be originated in plants at higher frequency than
expected.

Concluding remarks

It has been long known that circular DNAs are common
molecules in the biosphere, from prokaryotic plasmids to
the genomes of most bacteriophages, bacteria, archaea and
plastids. Circular RNAs, however, have been regarded as
rare in biology until the recent confirmation that numerous
life forms express stable circRNAs of different origins.
Among them, it is noteworthy the finding of a myriad of
splicing-derived circRNAs in eukaryotes with potential
functions in transcription, splicing, or the biogenesis of
small RNAs (for a review see62). In this regard, genome-
encoded circRNAs with self-cleaving ribozymes represent a
new level of complexity, whose study will offer functional
clues as well as biotechnological applications in the fast-
growing field of circular RNA molecules.
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