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Sex chromosomes undergo rapid turnover in certain taxonomic groups. One of the mechanisms of sex chromosome turnover

involves fusions between sex chromosomes and autosomes. Sexual antagonism, heterozygote advantage, and genetic drift have

been proposed as the drivers for the fixation of this evolutionary event. However, all empirical patterns of the prevalence of

multiple sex chromosome systems across different taxa cannot be simply explained by these three mechanisms. In this study, we

propose that female meiotic drive may contribute to the evolution of neo-sex chromosomes. The results of this study showed

that in mammals, the XYY, sex chromosome system is more prevalent in species with karyotypes of more biarmed chromosomes,

whereas the X1X;Y sex chromosome system is more prevalent in species with predominantly acrocentric chromosomes. In species

where biarmed chromosomes are favored by female meiotic drive, X-autosome fusions (XYY, sex chromosome system) will be

also favored by female meiotic drive. In contrast, in species with more acrocentric chromosomes, Y-autosome fusions (X1X;Y sex

chromosome system) will be favored just because of the biased mutation rate toward chromosomal fusions. Further consideration

should be given to female meiotic drive as a mechanism in the fixation of neo-sex chromosomes.

KEY WORDS: Centromere, female meiotic drive, multiple sex chromosome, speciation, X1X;Y, XY1Y>.

Sex chromosomes can undergo rapid turnover, that is, sex-linked
chromosomes differ between closely related species or popula-
tions (White 1973; Charlesworth and Mank 2010). Sex chro-
mosome turnover can occur via several mechanisms, such as
the transposition of an existing sex-determination gene to an
autosome (Woram et al. 2003), de novo evolution of a sex-
determination gene on an autosome (Kondo et al. 2006; Tanaka
et al. 2007; van Doorn and Kirkpatrick 2007; Hediger et al.
2010), and fusions between an autosome and a sex chromo-
some (White 1973; Charlesworth and Charlesworth 1980; Kitano
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et al. 2009; Kaiser and Bachtrog 2010; Kitano and Peichel 2012).
Although sex chromosomes are considered stable in some taxo-
nomic groups, such as mammals, genomic data indicate that such
sex chromosomes have undergone chromosomal fusions with au-
tosomes during their evolution (Wilcox et al. 1996; Charchar
et al. 2003; Kohn et al. 2004; Charlesworth et al. 2005). Be-
cause turnover of sex chromosomes may play a substantial role
in phenotypic divergence (Roberts et al. 2009) and reproductive
isolation between incipient species (Kitano et al. 2009), elucida-
tion of the forces driving sex chromosome turnover is essential to
better understand the mechanisms of sex chromosome evolution
and speciation.

A centromeric fusion between an autosome and a sex
chromosome is one of the mechanisms by which neo-sex

© 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.
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Figure 1. Proposed mechanisms of the evolution of multiple sex chromosome systems. Chromosome shapes during the first meiotic
division are shown. (A) From a simple XY sex determination system, a fusion between an X chromosome and an autosome or between a Y
chromosome and an autosome creates an XY1Y; or an X1X;Y sex chromosome system, respectively. (B) From a simple XY sex determination
system, a centromeric fission of an X or a Y chromosome creates an X1X;Y or an XYY, sex chromosome system, respectively. Autosomes,
X, and Y chromosomes are indicated by white, red, and blue colors, respectively.

chromosomes evolve. Most vertebrate species with sex chromo-
somes have a simple male heteromorphic (XX female/XY male)
or a simple female heteromorphic (ZW female/ZZ male) system.
In species with the XY system, a centromeric fusion between an
autosome and a Y chromosome creates an X;X,Y sex chromo-
some system (White 1973) (Fig. 1A), in which males have one
neo-Y chromosome (a fused chromosome), one ancestral X chro-
mosome (X;), and one neo-X chromosome (X;; a free copy of
the autosome involved in the fusion), whereas females have two
pairs of X chromosomes (two X; chromosomes and two X, chro-
mosomes). A fusion between an autosome and an X chromosome
gives rise to an XYY, sex chromosome system, in which males
have one neo-X chromosome (a fused chromosome), one ances-
tral Y chromosome (Y), and one neo-Y chromosome (Y>; a free
copy of the autosome involved in the fusion), while females have
one pair of neo-X chromosome (Fig. 1A). Although such multiple
sex chromosome systems can be also derived from centromeric
fissions (Fig. 1B), centromeric fusions are considered to be the
main mechanisms in most cases of multiple sex chromosome sys-
tems in fishes and mammals (see references in Table 1 and Kitano
and Peichel 2012): there is only one mammalian case (Wallabia
bicolor) with an XYY, sex chromosome system that was likely
derived from a fission of a Y chromosome (Toder et al. 1997).
Three mechanisms to promote the fixation of fusions between
autosomes and sex chromosomes have been proposed. First, the
presence of sexually antagonistic genes (i.e., genes with alleles
that have differential fitness effects in males and females) on
an autosome may drive the fusion of that autosome to an ex-
isting sex chromosome (Charlesworth and Charlesworth 1980).

If a sexually antagonistic allele is present on an autosome, this
allele will not easily spread within a population because of op-
posing selection pressures on that one allele between two sexes
(Rice 1984). A translocation of the sexually antagonistic allele
to a sex chromosome, either X or Y, can resolve the intralo-
cus sexual conflict because males and females can have different
alleles at the sexually antagonistic locus (Rice 1984). Second,
in an inbreeding population, the presence of an autosomal lo-
cus with heterozygote advantage may promote a fusion of that
autosome to sex chromosomes (Charlesworth and Wall 1999).
When autosomal loci with heterozygote advantage are moved
onto an X chromosome or a Y chromosome, the resulting male
progeny can be heterozygous at that locus and would be favored.
Third, genetic drift may promote fixation of fused chromosomes
in small isolated populations (Lande 1979, 1985). Centromeric
fusions often exhibit a heterozygote disadvantage (Lande 1979;
King 1993) and are selected against when they are in the minority,
but they would be rather favored when they are in the majority.
Once genetic drift brings fused chromosomes into the majority,
the derived fusions become a majority, so the fusions become
more likely fixed than the ancestral karyotype. This mechanism,
however, requires a very small population size (Lande 1979).
In the former two mechanisms, theoretical models predict that Y-
autosome fusions (X; X, Y sex chromosome systems) will be more
common than X-autosome fusions (XYY, sex chromosome sys-
tems) (Charlesworth and Charlesworth 1980; Charlesworth and
Wall 1999). Our previous studies in fish demonstrated that X; X, Y
sex chromosome systems (35/38) are more common than XYY,
sex chromosome systems (3/38) (Kitano and Peichel 2012).
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Figure 2. Female meiotic drive. (A) During the first meiotic divi-
sion of female, only one pair of chromosomes is transmitted to
the egg, whereas another pair is transmitted to the polar body.
(B) A proposed mechanism of centromere-associated female mei-
otic drive. When the eggs have stronger spindles than the polar
bodies (e.g., mice), chromosome pairs with more centromeres are
more likely to be transmitted to the eggs (left panel). When the
polar bodies have stronger spindles than the eggs (e.g., humans),
chromosome pairs with less centromeres are more likely to be
transmitted to the eggs (right panel).

However, XY Y, and X;X;Y sex chromosome systems are
equally common in mammals (White 1973). Thus, additional
mechanisms might also have contributed to the fixation of multi-
ple sex chromosome systems in mammals.

Here, we propose that female meiotic drive serves as an-
other mechanism for the fixation of sex chromosome—autosome
fusions. During female meiosis, only one of the four meiotic
products develops into an egg. Therefore, any bias in the segre-
gation of homologous chromosomes between the eggs and the
polar bodies during the first meiotic division can have a sub-
stantial influence on the genetic composition of the progeny
(Fig. 2A) (Pardo-Manuel de Villena and Sapienza 2001b; Burt and
Trivers 2006; Fishman and Saunders 2008). For example, female
meiotic drive may play a substantial role in mammalian kary-
otype evolution (Pardo-Manuel de Villena and Sapienza 2001a).
Pardo-Manuel de Villena and Sapienza (2001a) compiled the
karyotypes of 1170 mammalian species across disparate taxa
and found that the frequencies of acrocentric chromosomes ex-
hibit bimodal distribution patterns: species with almost exclu-
sively biarmed chromosomes and species with almost exclusively
acrocentric chromosomes are more common than expected by
chance (Fig. 3A). They hypothesized that this pattern can be ex-

3202 EVOLUTION OCTOBER 2012
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Figure 3. Histogram of the percentages of acrocentric chromo-
somes. (A) Karyotypes of 1170 mammalian species reported in
Pardo-Manuel de Villena and Sapienza (2001a) are compiled. Two
peaks are observed at the ends. (B) Mammalian species with XY1Y>
sex chromosome systems have more biarmed chromosomes than
acrocentric chromosomes. (C) Mammalian species with X{X;Y sex
chromosome systems have more acrocentric chromosomes than
biarmed chromosomes.

plained by the centromere drive (Pardo-Manuel de Villena and
Sapienza 2001a). In this hypothesis, different number of cen-
tromeres in homologous chromosomes can cause nonrandom seg-
regation (Pardo-Manuel de Villena and Sapienza 2001a) (Fig. 2B).
In heterozygous carriers of centromeric fusions, transmission fre-
quencies of the fused chromosomes (i.e., biarmed chromosomes)
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into eggs or polar bodies during the first female meiosis can sub-
stantially diverge from the 1:1 ratio (Pardo-Manuel de Villena
and Sapienza 2001a,b). In some species, such as the mouse (Mus
musculus), eggs have preference for chromosomes with more
centromeres than polar bodies, so acrocentric chromosomes with
two centromeres are more likely to be transmitted to the eggs
than to polar bodies (Fig. 2B) (Pardo-Manuel de Villena and
Sapienza 2001a). In other species, such as humans, polar bodies
have preference for chromosomes with more centromeres than
eggs, and thus fused biarmed chromosomes, which have fewer
centromeres than the two acrocentric chromosomes, are more
likely to be transmitted to the eggs than to polar bodies (Fig.
2B) (Pardo-Manuel de Villena and Sapienza 2001a,b). Reflecting
the differences in the shape of chromosomes preferentially trans-
mitted into eggs, all chromosomes are acrocentric in the mouse,
whereas most chromosomes are biarmed in the human (Pardo-
Manuel de Villena and Sapienza 2001a). Furthermore, they pro-
posed that this bias may be caused by difference in the efficiency of
centromere capture between the meiotic spindles from eggs and
polar bodies (Fig. 2B) (Pardo-Manuel de Villena and Sapienza
2001b).

Female meiotic drive could potentially affect the fixation of
X chromosome—autosome fusions, as they would be more easily
fixed in species with preferential transmission of fused biarmed
chromosomes into eggs (right panel of Fig. 2B) than in species
where fused chromosomes are preferentially transmitted to polar
bodies (left panel of Fig. 2B). Even when X-autosome fusions
occur in males, the fused X chromosomes will be transmitted to
the daughters, because the sons never inherit an X chromosome
from the father. This study thus hypothesizes that X-autosome fu-
sions (XYY, sex chromosome systems) occur more frequently
in species with more biarmed chromosomes than in species with
more acrocentric chromosomes. In contrast, Y-autosome fusions
(X1X,Y sex chromosome system) occur exclusively in males and
are never influenced by female meiotic drive. However, because
acrocentric chromosomes, but not biarmed chromosomes, are a
source of centromeric fusions, Y-autosome fusions may occur
more frequently in species with acrocentric chromosomes than
in species with biarmed chromosomes. Although the biased mu-
tation rate may also favor X-autosome fusions in these species,
fused chromosomes are unlikely to be transmitted to the eggs due
to the female meiotic drive. Thus, while X-autosome fusions will
be rarely fixed, Y-autosome fusions can accumulate in species
with more acrocentric chromosomes. Thus, this study predicts
that the X;X,Y sex chromosome systems would be more preva-
lent in species with more acrocentric chromosomes. To test these
hypotheses, we compiled cases of X;X,Y and XYY, sex chro-
mosome systems in mammals and investigated the association of
the two multiple sex chromosome systems with the percentages
of acrocentric chromosomes.

Materials and Methods

DATA COLLECTION

Several cases of XYY, sex chromosome systems and X;X,Y
sex chromosome systems in mammals have been previously re-
ported by White (1973). In this study, we searched the Web
of Science database using several keywords, such as “XY;Y>,”

9

“X1X2Y,” “neo-sex chromosome,” “multiple sex chromosome,”
“X-autosome fusion,” and “Y-autosome fusion.” The original pa-
pers were gathered and the references therein were also checked.
For calculation of the percentages of acrocentric chromo-
somes, chromosome shapes were classified according to Levan’s
classification (Levan et al. 1964). Although there are several
terms of chromosome shapes, we followed the terminology used
in Pardo-Manuel de Villena and Sapienza (2001a) to be con-
sistent with their previous work: subtelocentric and telocentric
chromosomes were classified as acrocentric chromosomes, while
metacentric and submetacentric chromosomes were classified as
biarmed chromosomes (i.e., nonacrocentric chromosomes). The
karyotype data of species with multiple sex chromosome systems
were taken from the papers listed in Table 1. The frequencies of
acrocentric chromosomes were calculated on the basis of female
karyotype, and analysis of the male karyotype generated the same
conclusions (data not shown). For comparison, the karyotype data
of 1170 mammalian species were also compiled from the supple-
mentary table of Pardo-Manuel de Villena and Sapienza (2001a).

DATA ANALYSIS
The association between the percentages of acrocentric chro-
mosomes and the sex chromosome systems was first tested in
the species listed in Table 1 using the Mann—Whitney U-test.
However, shared evolutionary history will likely produce correla-
tion between karyotypes and sex chromosome systems; thus, all
species are not phylogenetically independent (Felsenstein 1985).
Therefore, we performed phylogenetic correction. Data were an-
alyzed from nine phylogenetically independent pairs of species,
including one species with an XYY, sex chromosome system
and another with an X;X,Y sex chromosome system. Tests with
phylogenetically independent pairs ensure that any change in each
pair reflect an independent evolutionary event (Felsenstein 1985).
For phylogenetic correction, a phylogenetic tree (Fig. 4)
was generated using published literatures on the interorder tree
(Nishihara et al. 2006), the Artiodactyla tree (Hassanin and
Douzery 2003), the Rodentia tree (Jansa and Weksler 2004;
Lecompte et al. 2008), and the Diprotodontia tree (Cardillo et
al. 2004). The nine phylogenetically independent pairs exam-
ined are shown in Figure 4. Because the pairs 3, 5, and 9
diverge more than other pairs, these pairs may contain more
events of transition than other pairs. However, the purpose of this
study is not to estimate the transition rate, but to investigate the

EVOLUTION OCTOBER 2012 3203



K. YOSHIDA AND J. KITANO

Chiroptera

Artioda

Soricomorpha

la

Primates

__Pilosa

_|

Diprotodontia

Mesophylfa macconnelli

Artibeus jamaicensis
Artibeus lituratus
Artibeus toffecus

Carolia subrufa
Carolia perspicillata

Choeroniscus godmani
Herpestes auropunctatus
Tragelaphus strepsiceros

Gazella granti
Gazella gazella
Gazella dorcas
Gazella spekei
Gazella leptoceros
Gazella subgutturosa

Muntiacus muntjak

Sorex araneus
Sorex gemelleus

Mus minitoides
Mus musculoides
Vandeleuria oleracea

Tatenilus arenanus
Taterillus petteri
Taterillus pygargus
Taterillus tamieri
Taterillus sp. 1
Taterillus sp. 2

Deltamys kempi

Aotus azarae
Aotus bicliviensis
Aotus inflatus
Aotus trivirgatus
Aotus sp.
Alouatta belzebul
Alouatta fusca
Alouatta palliata

Choloepus hoffmanni

Lagorchestes conspicillatus

Wallabia bicolor

Potorous tridactylus

System % Acrocentric

X XY

s
XY, Y,
XY, Y,

XY, Y,
XY, Y.

XN
X, XY
X, XY

XY, Y.
s
XY,Y,
XY, Y,
XY,Y,
XV.Y

XY,Y,

XY,Y,
XY, Y,

XX,
XY, Y,
X, XY

XY,Y,
XY, Y,
XY, Y,
XV Yz
XYY,
XY, Y,

oy

XN
X, XoY
S
X, XY
X, XY
XN
Xy
X, XY

X, X,Y
X, X,¥
WV
XY, Y.

1.00

0.33
0.33
0.33

0.40
0.40

0.60
0.44
0.19

0.06
0.29
0.06
0.18
0.18
0.06

0.33

0.09
0

1.00
0
0.59

0.80
0.44

0.27
0.18

0.17
0.29

1.00

0.52
0.72
0.68
0.70
0.52
0.60
0.64
0.56

0.82
1.00
0.20
0.17

Pair 2

| Pair 1
4
-+

)

Pair 4
Pair 3

{ t

s

l Pair 6

Pair 5

Pair 7

‘___—-'

I Pair8 | Pair9

Figure 4. Multiple sex chromosome systems and the percentages of acrocentric chromosomes mapped on a mammalian phylogenetic
tree. The XY1Y; and X1X,Y sex chromosome systems are indicated by blue and red, respectively. The nine phylogenetically independent
pairs examined in this study are indicated on the right side of the tree. The branch lengths do not reflect their divergence time.

correlation between the frequency of acrocentric chromosomes
and the type of multiple sex chromosome system in phylogenet-
ically independent contrasts. Therefore, we included these three
pairs for our analysis. Multiple species with the same sex chromo-
some systems are often monophyletic and cluster at the tip of the
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phylogenetic tree. For example, the genus Gazella consists of six
species with the XYY, sex chromosome system. In such cases,
we performed the following two analyses. First, we calculated the
average percentage of acrocentric chromosomes within that clus-
ter. For example, in Gazella, the average value was determined to
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be 0.138. Second, only one species was randomly picked from the
cluster and the association between the percentages of acrocentric
chromosomes and the sex chromosome systems of the nine phy-
logenetically independent pairs was tested using the Wilcoxon
signed-rank test. The random sampling was repeated 100 times.

Results

We found that 23 species across five orders have an XYY, sex
chromosomes system and 19 species across seven orders have an
X1X5Y sex chromosome system (Table 1; Fig. 4). The percent-
ages of acrocentric chromosomes of the species with the X;X,Y
sex chromosome system (Fig. 3C) were significantly larger than
those of the species with the XYY, sex chromosome system
(Fig. 3B) (Mann—Whitney U-test, U = 25.5, Z = —4.88, P <
107%). Compared to the histogram of the percentages of acro-
centric chromosomes of 1170 mammalian species compiled by
Pardo-Manuel de Villena and Sapienza (2001a) (Fig. 3A), the
distribution of mammals with the XYY, sex chromosome sys-
tem was skewed to the left, while the distribution of mammals
with the X; X,Y sex chromosome system was skewed to the right.

Species belonging to the same genus, such as Artibeus,
Carolina, Gazella, Sorex, Taterillus, Aotus, Alouatta, had the
same type of multiple sex chromosome system within the genus
(Fig. 4), suggesting the importance of phylogenetic correction.
The results of the analysis of the nine phylogenetically indepen-
dent pairs did not change our conclusion. When we used the
average percentages of acrocentric chromosomes for the genus
with the same sex chromosome system, the percentages of acro-
centric chromosomes in species with the X; X,Y sex chromosome
system was significantly higher than those with the XYY, sex
chromosome system (Fig. 5) (Wilcoxon signed-rank test, S = 0,
P = 0.0039). When we used randomly picked species from the
genus with the same sex chromosome system, the percentage of
acrocentric chromosomes was significantly higher in the species
with the X;X,Y sex chromosome system than in the species with
the XYY, sex chromosome system (mean + SE of the P-value
of Wilcoxon signed-rank test with 100 iterations = 0.0048 =+
0.0016).

Discussion

DRIVING FORCES FOR THE EVOLUTION OF MULTIPLE
SEX CHROMOSOME SYSTEMS

Our data support the hypothesis that female meiotic drive can
contribute to the fixation of X-autosome fusions in mammals. In
species with more biarmed chromosomes than acrocentric chro-
mosomes, X chromosomes fused with autosomes may exhibit a
greater likelihood of transmission to eggs than to polar bodies
during female meiosis due to female meiotic drive, resulting in
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Figure 5. Percentages of acrocentric chromosomes of nine phy-
logenetically independent pairs of species with X1X;Y and XY Y3
sex chromosome systems.

the prevalence of the XYY, sex chromosome systems in these
species. In contrast, in species with more acrocentric chromo-
somes, the higher number of acrocentric chromosomes could in-
crease the probability of centromeric fusions. However, even if
X-autosome fusions occur in these species, fused chromosomes
are likely to be excluded from the eggs during female meiosis
due to the female meiotic drive. In contrast, Y-autosome fusions
occur exclusively in males and are not influenced by female mei-
otic drive. Thus, Y-autosome fusions can accumulate, whereas
X-autosome fusions are rarely fixed in species with more acro-
centric chromosomes.

The importance of female meiotic drive in mammalian X-
autosome fusions does not exclude the contribution of the other
three mechanisms. Rather, a combination of multiple mechanisms
should influence the fixation of X-autosome fusions. For exam-
ple, many cases of neo-sex chromosomes have been reported
in small isolated populations of insects (Charlesworth and Wall
1999), supporting the hypothesis that genetic drift or heterozy-
gote advantage may promote the fixation of sex chromosome—
autosome fusions in these species. In addition, sexually antagonis-
tic genes or genes controlling sexually dimorphic traits have been
reported on neo-sex chromosomes in sticklebacks and cichlids
(Kitano et al. 2009; Roberts et al. 2009), suggesting that sexu-
ally antagonistic selection may also play a role in turnover of sex
chromosomes (Charlesworth and Charlesworth 1980; van Doorn
and Kirkpatrick 2007; Veltsos et al. 2008), although we cannot
exclude the possibility that the presence of sexually antagonis-
tic alleles on neo-sex chromosomes is a consequence rather than
the mechanism for the formation of neo-sex chromosomes. Con-
sistent with the models of sexual antagonism and heterozygote
advantage, X;X,Y sex chromosome systems are more common
than XYY, sex chromosome systems in fish (Kitano and Peichel
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2012). However, in mammals, XYY, sex chromosome systems
are nearly as common as X; X, Y sex chromosome systems (White
1973; this study). These differences between fish and mammals
may reflect taxonomic differences in the relative importance of
each driving force and/or patterns of female meiotic drive. Further
studies on the patterns of multiple sex chromosome systems and
female meiotic drive across diverse taxa will contribute to a better
understanding of the mechanisms underlying the variation in the
prevalence of different multiple sex chromosome systems.

FEMALE MEIOTIC DRIVE AS AN EVOLUTIONARY
FORCE

Understanding the contribution of female meiotic drive to
sex chromosome—autosome fusions is important because sex
chromosome turnover may promote phenotypic divergence and
the establishment of reproductive isolation between species. First,
abnormal segregation of fused chromosomes during male meiosis
can cause hybrid sterility (King 1993). In addition, sex chro-
mosomes can play special roles in speciation, because sex chro-
mosomes have several unique characteristics of transcriptional
regulation (Ohno 1967; Vicoso and Charlesworth 2006), such as
dosage compensation (Wu and Xu 2003; Livernois et al. 2012)
and inactivation of X chromosomes during early spermatogenesis
(Presgraves 2008), and the efficacy of selection (Rice 1984;
Vicoso and Charlesworth 2006). Although empirical data demon-
strate that established sex chromosomes may play a special role
in speciation (Coyne and Orr 2004; Presgraves 2008; Qvarnstrom
and Bailey 2008), little is known about the roles of neo-sex
chromosomes in speciation, except in a few cases (Kitano et al.
2009). Further studies on the role of neo-sex chromosomes in
phenotypic divergence and reproductive isolation across diverse
taxa will lead to the elucidation of the roles of sex chromosome
turnover in speciation.

Female meiotic drive can play an important role in many
evolutionary processes in addition to the turnover of sex chro-
mosomes. Female meiotic drive can also contribute to karyotype
evolution of autosomes (Pardo-Manuel de Villena and Sapienza
2001a), and divergence in karyotype of autosome can contribute
to reproductive isolation between species (King 1993). In species
with ZW sex chromosomes, female meiotic drive can cause sex
ratio bias (Rutkowska and Badyaev 2008). The fixation of su-
pernumerary chromosomes (B chromosomes) may also be influ-
enced by female meiotic drive (Bidau and Marti 2004; Palestis
et al. 2004). Although centromere drive is one of the proposed
mechanisms of female meiotic drive (Henikoff et al. 2001; Malik
and Bayes 2006; Fishman and Saunders 2008), little is known re-
garding the molecular mechanisms of female meiotic drive. The
elucidation of the molecular mechanisms of female meiotic drive
is imperative for a better understanding of sex chromosome evo-
lution and speciation.
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Conclusions

Female meiotic drive plays an important role in the evolution
of X-autosome fusions in mammals. Because sex chromosome—
autosome fusions can contribute to important evolutionary pro-
cesses, such as speciation, further molecular studies should be
conducted to elucidate the mechanisms of female meiotic drive.
The relative contribution of female meiotic drive and patterns of
female meiotic drive may vary between taxa. It is, thus, imperative
to investigate the prevalence of different multiple sex chromosome
systems and patterns of female meiotic drive across diverse taxa
for a better understanding of neo-sex chromosome evolution in
animals.
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