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Abstract: Selective IgA deficiency (sIgAD) is the most common primary immunodeficiency disease
(PID), with an estimated occurrence from about 1:3000 to even 1:150, depending on population. sIgAD
is diagnosed in adults and children after the 4th year of age, with immunoglobulin A level below
0.07 g/L and normal levels of IgM and IgG. Usually, the disease remains undiagnosed throughout the
patient’s life, due to its frequent asymptomatic course. If symptomatic, sIgAD is connected to more
frequent viral and bacterial infections of upper respiratory, urinary, and gastrointestinal tracts, as well
as autoimmune and allergic diseases. Interestingly, it may also be associated with other PIDs, such
as IgG subclasses deficiency or specific antibodies deficiency. Rarely sIgAD can evolve to common
variable immunodeficiency disease (CVID). It should also be remembered that IgA deficiency may
occur in the course of other conditions or result from their treatment. It is hypothesized that allergic
diseases (e.g., eczema, rhinitis, asthma) are more common in patients diagnosed with this particular
PID. Selective IgA deficiency, although usually mildly symptomatic, can be difficult for clinicians. The
aim of the study is to summarize the connection between selective IgA deficiency and atopic diseases.

Keywords: atopic diseases; atopy; allergy; selective IgA deficiency; primary immunodeficiency

1. Introduction

Primary immunodeficiency diseases (PIDs) are a heterogeneous group of congenital
diseases with various clinical manifestations and different models of inheritance (X-linked,
AR, polygenetic), caused by the impairment or loss of at least one function of the immune
system. They weaken the body’s defenses, increasing the frequency of infections as well as
the risk of autoimmune and proliferative diseases, including cancers [1].

PIDs can affect various elements of the immune system. As a result of next-generation
sequencing and a better understanding of the molecular and immunological mechanisms,
which affect the immune system, researchers can identify new genes and disorders. Ac-
cording to the latest data, ten basic types of PID can be distinguished: humoral and cellular
response deficiency, PID’s with associated or syndromic features, predominantly anti-
body deficiencies, immune dysregulation, congenital defects of phagocyte number and/or
function [2].
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Early diagnosis is of major importance and might be life-saving in patients with some
PID. Recurrent or severe infections should raise a suspicion for immunodeficiency. The
National Primary Immunodeficiency Resource Center developed a list of ten warning signs
of PID [3]. Besides, Cunningham-Rundles et al. developed an immunodeficiency-related
(IDR) score to assess the likelihood of finding immunodeficiency [4]. According to the
recent work of Bahrami et al. the mean diagnostic delay among primary immunodeficient
patients was 2.05 ± 1.7 years [5]. This delay is especially prominent in antibody deficiency
defects and therefore requires special attention.

An unusual and challenging disease in the group of antibody deficiencies is selective
IgA deficiency (sIgAD). Selective IgA deficiency is the most common primary immunodefi-
ciency disease with an estimated occurrence from about 1:3000 to even 1:150, depending
on the population, diagnosed more often in males [6,7]. The course of the disease is very
varied, as most cases are asymptomatic, but recurrent infections, allergies, autoimmune
diseases, and an increased risk of cancer may occur [7,8]. Besides the decreased level of
serum IgA, patients with sIgAD suffer also from a deficiency of secretory IgA [9]. This
facilitates the passage through the mucosal barrier for aeroallergens and food antigens,
which makes these patients prone to develop allergies. Sometimes allergies can be even
the first presentation of sIgAD. Aghamohammadi and colleagues reported that 40.5% of
patients had allergic symptoms as the first manifestation of the disease [10]. Therefore, the
suspicion of sIgAD should raise not only patients with recurrent infections but also with
other clinical manifestations.

2. IgA—Structure

IgA is a class of immunoglobulins characterized by the presence of an alpha heavy
chain. The daily synthesis of immunoglobulin A exceeds the total production of all other
immunoglobulins [11]. In the human body, there are two subclasses of this immunoglobu-
lin: IgA1 and IgA2. The most important difference between them lays in the structure of
their hinge region and the number of the glycosylation sites [12].

In serum, IgA1 is predominant, accounting for as much as 90%, while in mucosal tis-
sues, both subclasses are more evenly distributed, comprising 40% IgA1 and 60% IgA2. [13].
In human blood, IgA occurs mostly in monomeric form, while secretory IgA (SIgA) present
on the surface of mucous membranes usually occurs in the form of dimers, much less often
as trimers and tetramers [14,15]. Dimeric SIgA antibodies, covalently linked by a J-linking
chain, are secreted onto the mucosal surface with their characteristic secretory complement
(SC) [15].

3. IgA—Function

The majority of total IgA in the human body occurs in the mucosal tissues with a
proven great role in the immune response. Serum level of IgA is 2–3 mg/mL, and it is the
second most prevalent circulating immunoglobulin after IgG. However, until recently, the
role of plasma IgA was still unclear. Now, we have some evidence that serum IgA has
some immunological functions, which are independent of the role of secretory IgA.

Serum monomeric immunoglobulin A acting through Fc alpha receptor I (FcαRI) has
important immunomodulatory functions [16,17]. FcαRI is expressed on cells of the myeloid
lineage, including monocytes, neutrophils, eosinophils, some macrophages, intestinal
dendritic cells, and Kupffer cells [18]. Its role is associated with activation of different
signaling pathways, immunoreceptor tyrosine-based activation motif (ITAM), and ITAM
inhibitory (ITAMi) [19]. Once a multimeric ligand binds FcαRI, activation of an inflam-
matory response through ITAM signaling takes place. On contrary, monovalent ligand,
like monomeric IgA, acts through ITAMi signaling, which results in an anti-inflammatory
response (Figure 1).
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Figure 1. Regulation of immune responses by FcαRI, including ITAM-induced activation and ITAMi-control. 
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tory cytokines such as IL-6 [24–26]. Moreover, IgA activates complement only in a limited 
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(MBL) results in complement activation, which is a part of antimicrobial defense [33]. 
SIgA may act as a competitive blocker of IgG-mediated complement activation [30]. A 
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quate stimulation of the immune system and, as a result, the ability to maintaining an 
appropriate balance between the cellular and humoral response. 
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Instead, secretory IgA due to such a numerous representation within the mucous
membranes is considered the body’s first line of defense against harmful external fac-
tors [20]. It has been proven that they can eliminate pathogens, for example, by adsorption
of food antigens, agglutination of bacteria, inhibition of epithelial adhesion to mucous
membranes [16,18,21]. Reports indicate the ability to neutralize and inhibit the release
of viral and bacterial particles, neutralize toxins and enzymes produced by numerous
pathogens [22,23].

IgA has been shown to exert an anti-inflammatory function by inducing the expression
of anti-inflammatory cytokines such as IL-10 and inhibiting releasing pro-inflammatory
cytokines such as IL-6 [24–26]. Moreover, IgA activates complement only in a limited
amount, but this class of immunoglobulin can block the activation of the complement
mediated by IgG [21,27]. It is known that IgA silences some responses after bacterial cell ac-
tivation, like for example, oxidative burst activity, phagocytosis, as well as chemotaxis [28].
Effector functions of IgA are complex. As mentioned before, IgA may interfere directly
with immune cells of the myeloid lineage using FcαRI. After the interaction of IgA with
monocyte-derived dendritic cells, antigen presentation, maturation, and production of
IL-10 may occur [29]. Monocytes also have the ability to produce IL-10 after IgA ligation
and to inhibit the production of IL-6 and TNF-alfa [30]. SIgA is important in eosinophil
activation and degranulation and is more potent at stimulation of the release of reactive
oxygen species than IgE, as well as it regulates oxidative burst and cytokine release by
human alveolar macrophages [31,32]. Moreover, binding IgA with mannan-binding lectin
(MBL) results in complement activation, which is a part of antimicrobial defense [33].
SIgA may act as a competitive blocker of IgG-mediated complement activation [30]. A
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significant aspect influencing the proper development of humoral immunity is an adequate
stimulation of the immune system and, as a result, the ability to maintaining an appropriate
balance between the cellular and humoral response.

4. Pathogenesis of IgA Deficiency

The pathogenesis of the disease is not yet fully understood. It is possible that sIgAD
can be caused by the overlap of some of these mechanisms [34].

One of them, which has been widely described, is the presence of errors in the differen-
tiation of IgA+ plasmablasts causing a low number of IgA-secretory cells, difficulties with
switching IgA to SIgA, and a low number of mRNA in B-cells producing IgA [7,35–38].
Another mechanism concerns cytokines that are involved in IgA production (IL-10, IL-4,
IL-6, IL-12, IL-21) and is caused by dysregulation of their pathways, especially in secondary
lymphoid organs [8,9,39–44]. In patients with sIgAD, IL-10 is proven to be crucial in the
differentiation of the B cells to IgA-secreting cells. Furthermore, it has a synergic effect
with IL-4 [43,45]. Another cytokine that causes IgA production is TNF-B, it also possesses
the ability to act as an isotype “switch” factor for IgA production [46,47]. Lowered level
of TGF-B may lead to a low IgA level in patients with sIgAD [9]. Il-21 stimulation is
even more effective in inducing IgA production than IL-4 and IL-10, as well as it prevents
CD19 + B cells spontaneous apoptosis [39]. This increased apoptosis could cause a reduc-
tion in survival of B cells and, therefore, decreased production of normal levels of IgA
immunoglobulin [48]. Additionally, it is possible that T-cells impairment is connected with
sIgAD. Soheili et al. suggest a direct association between decreased level of T regulatory
(Treg) and the severity of clinical presentation of sIgAD [49]. In this study, patients were
divided into two groups—G1 with a lower-than-cut-point Treg value, where there was a
higher risk of developing autoimmunity and class switching recombination defects, and
G2 with a higher Treg value, where only one person had autoimmunity and no one had the
described antibodies defect. The link between Treg cells and IgA production is complex
and multifaceted. Treg cells colonize the intestinal mucosa where they produce TGF-beta
and IL-10, which are essential in the production of IgA. Reduced amount of Treg negatively
affects the amount of IgA+ B lymphocytes, and restoration of the correct amount of Treg,
consequently, restores normal IgA production in the intestines [50–52] Interestingly, ac-
cording to the meta-analysis by Bronson et al. there is a multiple gene linkage between
the “Intestinal Immune Network for IgA production” and “Treg” [53]. Besides, the highest
levels of APRIL (a proliferation-inducing ligand), which is connected with IgA-synthesis
as a compensatory mechanism, are observed in patients with sIgAD [20,54]. It has been
proved that there is a genetic background to sIgAD [55–57].

Moreover, level of these immunoglobulins may be influenced by drugs that are often
used in everyday practice—non-steroid anti-inflammatory drugs (NSAIDs), angiotensin
convertase enzyme inhibitors (ACEI), several anti-epileptic drugs, or drugs used in rheuma-
tology. They can even trigger iatrogenic isolated sIgAD [58,59]. Moreover, some of the viral
infections, e.g., EBV, hepatitis type C may induce post-infection IgA deficiency [60,61].

5. Clinical Presentation of sIgAD

Based on clinical presentation, sIgAD patients can be classified into different pheno-
types. Yazdani et al. [8] in their work from 2015 divided these phenotypes into five main
categories: asymptomatic, minor infections, autoimmunity, allergy, severe. It was reported
that there is no correlation between serum IgA levels and clinical phenotype and disease
severity [34].

Diagnosis of sIgAD is a diagnosis of exclusion. Immunologists should take into con-
sideration infection-induced or drug-induced IgAD, as well as drug-induced IgAD/IgG2
subclass deficiency [62–64]. Important factors in establishing the diagnosis of IgA de-
ficiency are family background and other laboratory parameters, which are relevant in
order to differentiate sIgAD from CVID (lowered IgA/IgG and sometimes IgM levels),
secondary hypogammaglobulinemia (moderately low levels of IgA), single-gene primary
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immunodeficiencies, hypoglobulinemia due to the protein loss as the result of enteropa-
thy or nephrotic syndrome and malignancies such as thymoma, myeloma, and chronic
lymphocytic leukemia [64,65].

5.1. Asymptomatic

Most of the patients are asymptomatic. The estimate number is 60% [8], but it varies
in different studies. These patients might develop some clinical manifestations; therefore,
they should undergo regular evaluations [34]. A 22-year study based on a cohort of
184 pediatric SIgAD patients, performed by Lougaris et al. [66] shows how the clinical
presentation of the disease can vary with time. They assessed laboratory parameters and
long-term health status of patients, 62% of whom had symptoms at the time of diagnosis.
Allergic complications during follow-up were additionally developed in 16%, autoimmune
diseases excluding celiac disease in 9%, and celiac disease developed in 11% of previously
disease-free patients. During the follow-up period, 4% of patients achieved age-appropriate
IgA levels, 9% of patients achieved partial IgA deficiency diagnosis and 2% of patients
developed CVID.

5.2. Minor Infections

Children with recurrent and severe infections present a diagnostic challenge [67]. Four
or more ear infections and two or more serious sinus infections or episodes of pneumonia
within one year are warning signs for primary immunodeficiencies in children [68].

Secretory IgA plays an important role in maintaining the equilibrium of the body, as it
takes part in the mucosal immune system and serves as the interface between the body and
the microbiome. In the human body, the largest mucosal systems are the gastrointestinal
tract and respiratory system, and therefore, decreased level of IgA will affect mostly them.

Symptomatic patients with minor infection usually present recurrent upper respiratory
tract infections (40–90%), mainly viral, less frequently bacterial (with encapsulated bacteria
etiology, such as Streptococcus pneumoniae, Hemophilus Influenzae) [7,8,69,70]. Bacterial
bronchitis and pneumonia are much less common, but these infections may be complicated
by bronchiectasis [71]. Infections of the ear, sinuses, conjunctiva, nose, and throat mucosa
may occur. Most often, these infections are mild, not requiring hospitalization and their
treatment does not differ significantly from the treatment of a patient without sIgAD. It was
found that patients with sIgAD have a compensatory increase in secretory IgM level [9,72],
however, these IgM cannot replace all functions of IgA [73]. In the intestines of sIgAD
patients, there is 65–75% of Ig-containing plasma cells with the ability to produce IgM in
comparison to about 6% in healthy volunteers, possibly due to the homology in structure
and function between those two isotypes [74–77]. Besides, patients with sIgAD suffer
from urinary tract infections (UTI) and gastrointestinal tract infections with viruses and
bacteria. Moreover, intermittent or chronic diarrhea due to Giardia Lamblia is common,
because the attachment and proliferation of this parasite on the gastrointestinal mucous
are facilitated due to lack of IgA [78,79]. It is important to mention that in patients with
recurrent UTI, bronchitis and pneumonia, defects in the urinary and respiratory systems
should be excluded.

The diagnosis of selective IgA deficiency mostly does not significantly influence the
therapeutic management of patients. Treatment of infections should be adequate to their
etiology, patient’s age, and clinical condition. Treatment of comorbidities and prevention
of complications remain the basis. There are no clear guidelines that would suggest the
need for longer and more aggressive antibiotic therapy in this disease than in patients
without sIgAD. There is also no consensus on the use of antibacterial prophylaxis in this
immunodeficiency, but its usage was suggested in more severe cases, at least periodi-
cally [34,48,80]. Vaccinations play a significant role in minimizing the risk of infections [48].
It is advisable to extend the standard calendar with vaccination against S. pneumoniae,
N. meningitidis, H. influenzae, and annual vaccination against influenza [34]. It is not typ-
ically recommended to initiate IgG (i.v, s.c) replacement therapy in patients without the
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coexistence of other immune-related diseases, acute, severe infections, or coexistence of
specific antibodies deficiency [81]. According to one of the latest meta-analyses covering
the effects of oral probiotics, parabiotics, and synbiotics on immunoglobulin levels, it
has been shown that their supplementation increases significantly salivary IgA secretion,
without a significant effect on the level of other immunoglobulins and with no effect on
the serum IgA [82]. In addition, there are reports of an increase in the amount of IgA+

cells in the intestines of lamina propria in mice after oral ingestion of Lactobacillus-based
preparations [83,84]. One prospective, randomized study demonstrated the validity of the
use of oral immunomodulator bacterial extract (OM-85 BV) in patients with sIgAD and/or
IgG subclass deficiency, resulting in a lower one-year infection rate [85]. A suggestion has
been made to use oral IgA in patients with sIgAD, since this deficiency is associated with
dysbiosis and chronic inflammation, and the present inflammation is inversely correlated
with systemic anticommensal IgG response, which acts as “second line of defense” [86,87].

The importance of the IgA was raised again because of the ongoing global pandemic
of coronavirus disease 2019 (COVID-19). When looking for the reasons for the varied
course of the disease, questions arose on whether deficiency of IgA could be the reason
for disease severity, vaccine failure, and prolonged viral shedding [88]. As mentioned
above, the prevalence of sIgAD differs in various countries and the same was found for
COVID-19. Naito et al. compared the number of cases of COVID-19 with the prevalence of
selective IgA deficiency in different countries [89]. They found “a strong positive correlation
between the frequency of sIgAD and the COVID-19 infection rate per population”. It was
then concluded that one of the factors contributing to the low death rate from COVID-
19 infection in Japan could be the low incidence of sIgAD in the country. As primary
immunodeficiencies are a group of rare diseases, there is little data on the coexistence
of sIgAD and COVID-19 infection. Nevertheless, literature data showing an extremely
significant effect of class A immunoglobulins on early protection against SARS-CoV-2 virus
also suggest a potentially more severe/complicated course of the disease [88,90]. This thesis
is supported by the aforementioned literature data: a positive correlation between a high
number of COVID-19 infections and a high incidence of sIgAD has been demonstrated, and
an inverse relationship was observed in the extreme example of Japan [88]. In Israel, during
two “so-called” waves, 20 patients with PID were affected by COVID-19 and none of them
was diagnosed with sIgAD [91]; importantly, the relationship between the development
of autoimmune diseases in the course of COVID-19 in patients with sIgAD—AIHA and
Guillain-Baree syndrome [92]. Researchers also point to the risk of a poor response against
SARS-CoV-2 after immunization in this group of patients [88].

5.3. Autoimmunity

There is an association between IgA deficiency and a higher prevalence of autoimmune
disease [93,94]. Based on extended research in that field, the prevalence of autoimmune
disease in this group rises to 31.7% [95]. According to Azizi et al. the median age of the onset
of the first episode of autoimmunity was 7 [95]. Among diseases with higher prevalence in
sIgAD subjects, we differentiate systemic lupus erythematosus, hypo- and hyperthyroidism,
type 1 diabetes mellitus, Crohn’s disease, ulcerative colitis, rheumatoid arthritis, juvenile
idiopathic arthritis, ankylosing spondylitis, and vitiligo. Whereas other diseases like
scleroderma, celiac disease, autoimmune hepatitis, immune thrombocytopenic purpura,
and autoimmune hemolytic anemia, occur less often but still with higher prevalence than
in the general population [96].

The mechanism of autoimmunity in sIgAD is still not fully understood. There are
six hypotheses that try to explain these phenomena, each based on a different mode of
autoimmunity, such as human leukocyte antigen, cytogenic, monogenic, molecular mimicry,
lingering inflammation and immune complexes, dysregulation of molecular pathways [96].
Some studies suggest that various mechanisms are likely to play concurrently. It has been
found that there is also a higher incidence of autoimmunity in first-degree relatives of
sIgAD patients [97].
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In a recent case reported by Pfeuffer et al., authors stated that the presence of other
acute diseases could induce autoimmunity in SIgAD patients [98]. In their case, it was
Guillain-Barré syndrome induced by COVID-19.

5.4. Allergy

Allergy has long been a component of immune deficiency; however, allergic burden
differs in different types of immunological disorders. Both PID and allergy are associated
with impaired reactions of the immune system. In the case of PID, malfunctioning of some
of its components will lead to infectious susceptibility. Atopy, on the other hand, is a
hypersensitivity reaction of the immune system and a form of misdirected immunity.

The true prevalence of allergy among patients with sIgAD is still under debate since
studies from different countries present inconsistent results. Therefore, it suggests that
the prevalence varies depending on the ethnic background. There is even controversy in
the scientific world whether the coexistence of IgA deficiency and allergic diseases is, in
fact, true. Most publications support the relationship between sIgAD or low-IgA levels
and allergic diseases [10,99–103], but some researchers deny it [104,105]. This connection
has been the subject of medical research for over 50 years. In 1975, Buckley suggested that
about half of the patients with sIgAD presented atopic diseases and related findings have
been published later by Kemola [106,107]. A similar observation has been done in Ankara
more recently, in 2017, where 45.7% of the patients diagnosed with sIgAD presented one of
the following: asthma, rhinitis, eczema, atopic dermatitis, and interestingly the prevalence
of allergy in a close family of this patients rose up to 43.2% [101]. Aghamohammadi, in
his study on Iranian patients, revealed that allergy was observed in 84% of patients with
sIgAD [10]. In a study from China, 17.6% of patients had allergic symptoms, however,
most of them were allergic reactions to drugs (mostly penicillin) [108]. These results were
inconsistent with typical allergies reported in other countries, such as asthma, rhinitis, food
allergy, and atopic dermatitis [108]. On the other hand, there is a study with a prevalence
of allergy in children with sIgAD on the percentage of 13% [70].

Many clinicians point out the frequent coexistence of IgA deficiency with bronchial
asthma, allergic rhinitis, and atopic dermatitis in everyday practice but it is unclear whether
it is the immunoglobulin A deficiency that promotes an allergic reaction, or the allergic
reaction weakening the mucous membranes and consequently leading to a secondary IgA
deficiency. There are plenty of possible explanations of this phenomenon. The connection
between IgA deficiency and allergies may be caused by increased levels of circulating
antigens, due to increased permeability at mucosal surfaces. It could also be a result of
the inability to induce ITAMi signaling, due to decreased level of monomeric serum IgA,
which, consequently, causes overactivation of the immunological system [79,109]. Another
hypothesized mechanism is the deficiency of TGF-beta response. TGF-beta has properties
to induce IgA synthesis, as well as inhibiting proliferation of Th2-cells. Th2-response is
involved in the pathogenesis of atopic diseases [110–112]. Interestingly, there are allergen-
specific A immunoglobulins, but their role in the pathogenesis of allergic diseases is
unclear [113]. We do not know whether they are responsible for exacerbation or silencing
the symptoms, but what we know is that they are observed in healthy people without
allergic symptoms and low or undetectable IgE-levels [114,115]. Moreover, children with
a tendency to allergic diseases have a more pronounced physiological IgA deficiency in
the neonatal period and the lower these concentrations are, the greater is the severity of
symptoms (although they usually remain within the reference values for age).

The American Academy of Allergy, Asthma & Immunology (AAAAI) and the Ameri-
can College of Allergy, Asthma & Immunology (ACAAI) developed practice parameters to
guide the management of primary immunodeficiencies [116]. It is stated there that atopic
diseases should be treated aggressively in patients with sIgAD. Since allergic inflammation
facilitates the development of respiratory tract infections, it is crucial to treat allergy using
all standard modalities, like avoidance of allergens, medication, and immunotherapy [116].
Our clinical experience shows that treating atopic diseases in patients with immunodefi-
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ciency is difficult and requires special attention and scrupulousness. In addition to the
commonly used anti-histamine drugs, beta-mimetics, and glucocorticosteroids, in the case
of treatment-resistant atopic diseases, biological drugs such as omalizumab and dupilumab
might be helpful. Omalizumab is an anti-IgE antibody that is FDA approved for the treat-
ment of moderate to severe allergic asthma, while dupilumab is an IL-4 receptor blocking
antibody and is FDA approved for the treatment of moderate to severe atopic dermatitis in
patients with the refractory disease [117–119]. The use of omalizumab in a young adult pa-
tient diagnosed with CVID, who suffered from chronic spontaneous urticaria, and did not
respond either to an immunoglobulin substitution in immunomodulatory doses, anti-H1
and anti-H2 antihistamines, as well as leukotriene receptor antagonists, has been described.
Only the inclusion of omalizumab resulted in a significant improvement in the condition of
the skin and quality of life [120]. However, data suggest that such treatment could carry a
risk of possible side effects—Banh et al. described a case of a 24-year-old patient diagnosed
with asthma and CVID, where treatment with omalizumab might have increased the level
of white blood cells and elevated myeloid cell count. Serious disorders, e.g., malignancy or
severe infections were excluded. Importantly blood test results returned to normal levels
shortly after drug discontinuation [121]. The use of dupilumab has been described in the
context of a patient with CVID suffering from severe skin lesions such as erythematous-
squamous and generalized infiltrated rash with exacerbation in sun-exposed zones and
severe recurrent infections, in whom no improvement in skin condition was observed after
treatment with glucocorticoids or cyclosporine. The introduction of dupilumab resulted
in a reduction in the severity of skin lesions and the addition of IgG replacement ther-
apy lowered the frequency of infections [122]. In our opinion, based on experience from
other immunodeficiencies with predominantly antibody deficiency, it is possible to use the
above-mentioned monoclonal antibodies in the treatment of severe allergic complications
in patients with SIgAD.

5.4.1. Food Allergy

The prevalence of food allergy in patients with PIDs was examined using the US
Immunodeficiency Network (USIDNET). Surprisingly, it was lower than that in the general
population. However, for some specific types of PID, like sIgAD, the prevalence was
increased and it was found to be 25% [123], but there were only four patients with sIgAD
in the registry. It is consistent with the study performed by Aghamohammadi et al.
where the prevalence of food allergy among patients with sIgAD was 22% [10]. Across
all studies in this review, the prevalence of food allergy among patients with SIgAD is
presented in Table 1. Another study reports an increased risk of parentally reported food
hypersensitivity at 4 years of age among children with sIgAD [124]. Moreover, the authors
did not find any association between IgAD and increased levels of specific IgE, which
could suggest that hypersensitivity in IgAD children is not IgE-mediated [124].

The majority of patients with deficiency of secretory IgA have substitution with
secretory IgM. However, it might not guarantee proper mucosal protection and might
allow food antigens to pass through the gastrointestinal mucosa and predispose to develop
a food allergy. Another possible explanation connected with eczema and food allergy is the
hypothesis that, due to the IgA-deficiency to gastrointestinal antigens in the gut, there is
no antigen immunological-exclusion, which consists of antigen binding to SIgA at the level
of the mucosal surface, and, consequently, blocking the absorption of the antigen [9,125].

Recent years showed that there is a strong connection between microbiota and al-
lergy development. For example, in 2009, researchers found that children with allergy not
only had lower salivary SIgA levels but also less differentiated bacterial microenviron-
ment [126,127]. A study from 2018 focused on the effects of IgA deficiency on human gut
microbiota composition [128]. They found out that patients with sIgAd have an altered
gut microbiota composition compared to healthy patients. Moreover, the secretion of IgM
cannot fully compensate for the lack of SIgA. It is therefore suggested that IgA plays a
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critical role in controlling stable gut microbial community. A different study from the same
year showed only mild loss in microbial diversity in sIgAD subjects [129].

It was also found that serum IgA plays a role in suppressing IgE-mediated food
allergy. IgE-mediated food allergy is a common cause of enteric disease, and, in the
study conducted by Strait et al. concerning IgE-mediated systemic anaphylaxis induced
by ingested allergens, it has been found that both serum antigen-specific IgG and IgA
antibodies can protect against severe IgE-mediated allergic reaction [130]. This suggests
that decreased serum IgA antibody levels might predispose to increased intestinal mucosal
permeability and absorption of ingested antigens, therefore, increasing the risk of severe
food allergy [131].

Table 1. Food allergy and sIgAD.

Year Country Sample Size Disease Prevalence
among SIgAD (%) Reference Diagnostic Tools

2009 Iran 37 22 [10]
The allergy status was evaluated by skin

prick test, using 14 common standard
allergen extracts

2012 Spain 330 4.2 [132] Retrospective study of patients records

2017 Turkey 81 1.2 [101]
Skin prick tests + serum IgE measurements.
Food allergy diagnosis was confirmed with

an oral food challenge test.

2020 Iran 166 3.6 [133] Data about clinical presentations were
collected based on a detailed questionnaire

5.4.2. Asthma

Asthma is a chronic inflammatory disease of the respiratory system characterized by
bronchial hyperresponsiveness and reversible airflow obstruction. It is one of the most
common chronic illnesses in childhood and its etiology in this group is vastly associated
with atopy. Some studies report that asthmatic patients are more likely to have a diagnosis
of sIgAD/CVID than non-asthmatic individuals [134]. In a study on an Iranian group, the
prevalence of asthma among sIgAD patients was 51% [10], while in the general Iranian
population it is 22–23% [135,136]. In the study on a Spanish group, asthma was observed
in only 12.4% patients [97]. On the other hand, no difference in prevalence was found com-
paring sIgAD patients and control group in the case-control study of Jorgensen et al. [137].
The prevalence of asthma among patients with SIgAD is presented in Table 2.

Papadopoulou et al. state that the insufficient protection provided by the respiratory
mucosa deprived of IgA in children with sIgAD makes them prone to develop bronchial
hyperresponsiveness and consequently asthma [138]. In a different study, a high number of
IgA-specific salivatory antibodies has been connected to a lower risk of late-onset wheezing
in sensitized infants [139]. Furthermore, sIgAD may be connected with TNFRSF13B gene
variants as one of the genetic susceptibilities. This gene encodes the transmembrane
activator and calcium modulator and cyclophilin ligand interactor (TACI), which is the
tumor necrosis factor receptor (TNFR) expressed on activated B cells and macrophages
and is involved in isotype class switching to IgA [54,140,141]. Moschese et al. investigated
the prevalence of TNFRSF13B mutations in 56 patients with absolute and partial sIgAD
reporting 20% prevalence in this group [142]. Furthermore, researchers suggest that the
mutation in these genes increases the risk of asthma development up to 2.5 fold, despite
the IgE levels [69]. Moreover, the studies on the mice model proved that treating with
antigen-specific IgA may protect animals from hyperresponsiveness as well as eosinophilic
inflammation in airways [143]. Additionally, since mice do not express FcαRI [144], studies
on human FcαRI transgenic mice were used in studies on the asthma model. It was
found that by targeting FcαRI, IgA has been established as a strong inhibitor of asthma
development [145].
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Some studies reported a higher prevalence of respiratory tract infections among
patients with sIgAD and allergy compared to those with sIgAD without any manifestation
of allergy disease [99,133,146]. It suggests that allergic patients are more susceptible to
respiratory tract infections.

Table 2. Asthma and sIgAD.

Year Country Sample Size Disease Prevalence
among SIgAD (%) Reference Diagnostic Tools

2008 Brazil 126 48.4 [79] Diagnostic criteria of allergic diseases were
not defined in the paper

2009 Iran 37 51 [10]
Lung function was evaluated according to
the American Thoracic Society guidelines,
using a computerized pneumotachograph

2010 Israel 63 23.8 [99] Retrospective study of patients records

2012 Spain 330 12.4 [132] Retrospective study of patients records

2013 USA 39 23 [134] Asthma status was determined based on
predetermined criteria for asthma

2013 Iceland 32 18.8 [137]
Self-administered questionnaire + interview
performed by physician + lung function tests

using spirometry

2017 Turkey 81 34.6 [101] Asthma status was determined based on the
Global Initiative for Asthma guidelines

2019 Italy 103 10.7 [142]

Patients’ clinical data were collected at
enrolment and every 6–12 months for 5 years.
Diagnostic criteria for allergic diseases were

not defined in the paper

2020 Iran 166 6.6 [133] Data about clinical presentations were
collected based on a detailed questionnaire

5.4.3. Atopic Dermatitis

A variety of primary immunodeficiencies have cutaneous manifestations. In the case
of sIgAD, nonspecific cutaneous finding is eczematous dermatitis. Here, similarly to other
allergic manifestations, there is a huge variety in the prevalence reported in different
studies, which could be caused by ethnic diversity and, also, by different algorithms for
atopic dermatitis diagnosis. Therefore, in a study performed by Aghamohammadi, the
prevalence was 52% [10], but in the study of Magen, it was only 4.6%, however, it was still
higher than in the control group [147]. The prevalence of atopic dermatitis among patients
with SIgAD is presented in Table 3.

Moreover, Orivari et al., showed that the levels of secretory IgA in breast milk were
inversely associated with the development of atopic dermatitis up to 2 and 4 years [148]
among breastfeeding children. In a different study, though, such connection was not
found [149].

Moreover, people with higher IgA levels and Staphylococcus aureus colonization in
the gastrointestinal tract are less susceptible to the development of eczema [150].
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Table 3. Atopic dermatitis and sIgAD.

Year Country Sample Size Disease Prevalence
among SIgAD (%) Reference Diagnostic Tools

2008 Brazil 126 2.4 [79] Diagnostic criteria of allergic diseases were not
defined in the paper

2009 Iran 37 49 [10]
The allergy status was evaluated by skin prick

test, using 14 common standard
allergen extracts

2010 Israel 63 3.2 [99] Retrospective study of patients records

2012 Spain 330 3.6 [132] Retrospective study of patients records

2015 Italy 102 57.84 [151] Diagnosis was based on Hanifin-Rajka criteria
and on skin biopsies where applicable

2017 Turkey 81 11.1 [101] Diagnosis was based on Hanifin-Rajka criteria

2017 Israel 347 4.6 [147]

Retrospective study of patients records.
Criteria for diagnosis of chronic spontaneous
urticaria according to EAACI, GA2LEN, EDF

and WAO guidelines

2019 Italy 103 12.6 [142]

Patients’ clinical data were collected at
enrolment and every 6–12 months for 5 years.
Diagnostic criteria for allergic diseases were

not defined in the paper

5.4.4. Allergic Rhinitis and Conjunctivitis

Serum IgA level in children under the age of 4 with positive skin-prick test was
significantly lower than in healthy population, also allergic rhinitis and eczema were
connected with a low level of salivary IgA [152]. The frequency of allergic rhinitis among
patients with sIgAD in a study performed in Turkey was 27.2% [101], while the prevalence
of allergic rhinitis in Turkish school-age children was 16.9% [153]. The presence of allergic
rhinitis was only accepted if it was diagnosed by a physician. Furthermore, in a different
study, the prevalence of allergic-rhinoconjunctivitis tended to be increased in the sIgAD
group and was reported to be 37.5% [137]. Across all studies in this review, the prevalence
of allergic rhinitis and conjunctivitis among patients with SIgAD is presented in Table 4.

Table 4. Allergic rhinitis/conjunctivitis and sIgAD.

Year Country Sample Size Disease Prevalence
Among SIgAD (%) Reference Diagnostic Tools

2008 Brazil 126 53.2 (AR) [79] Diagnostic criteria of allergic diseases were not
defined in the paper

2009 Iran 37 40 (AR/C) [10]
The allergy status was evaluated by skin prick

test, using 14 common standard
allergen extracts

2010 Israel 63 12.7 (AR) [99] Retrospective study of patients records

2012 Spain 330 9 (AR) [132] Retrospective study of patients records

2013 Iceland 32 37.5 (AR/C) [137] Self-administered questionnaire + interview
performed by physician + skin prick tests

2017 Turkey 81 27.2 (AR) [101] Presence of allergic rhinitis was only accepted
if it was diagnosed by a physician

2019 Italy 103 18.4 (AR)
9.7 (C) [142]

Patients’ clinical data were collected at
enrolment and every 6–12 months for 5 years.
Diagnostic criteria for allergic diseases were

not defined in the paper
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5.5. Severe

As opposed to other primary immunodeficiencies, sIgAD rarely presents with se-
vere manifestations. Therefore, differential diagnosis with other possible immunological
disorders should be performed.

Patients with this phenotype suffer from recurrent and severe infections even in lower
respiratory tracts [8]. One of the severe complications of severe respiratory infections is
bronchiectasis. In such cases, it is crucial to eliminate other immunodeficiencies such as
IgG2subclass, specific antibody deficiencies, and mannan-binding lectin deficiency [79].

Patients with this phenotype should be provided with extra care. In case of recur-
rent infections, prophylactic antibiotics should be considered, especially during autumn
and winter [8]. The usage of IVIG replacement therapy in these patients is extremely
controversial [116,154]. Usually, this treatment is recommended for individuals with both
IgA deficiency and concomitant IgG2 subclass deficiency [155,156]. To determine if this
treatment would be beneficial, the IgG antibody responses to protein and polysaccharide
vaccines should be evaluated first [116].

6. Complications

In a prospective cohort study that examined mortality among patients with sIgAD
turn out that they have an increased risk of death in the first 10 years after diagnosis [157].
Afterward, the mortality is similar to that of the general population. The most common
causes of death include malignancy and cardiovascular diseases. There are a few life-
threatening complications of sIgAD. Even if their prevalence is not high, they should be
known for physicians to provide proper help for their patients. Among those included
in the literature, we differentiate progression to CVID, transfusion-related anaphylaxis,
and malignancy.

6.1. IgA Deficiency and CVID

Common variable immunodeficiency (CVID) is an immune disorder characterized
by decreased serum levels of both IgG and IgA, with or without a decreased level of IgM,
and poor antibody vaccine response or low switched memory B cells less than 70% of
age-appropriate normal [158]. CVID most often presents with recurrent infections of the
respiratory and gastrointestinal tract [159]. Symptomatic sIgAD and CVID have many
similar features, moreover, some patients with sIgAD progress to CVID, especially if
autoimmunity or IgG subclass deficiency is observed [149–164].

In patients with sIgAD, there is a significantly lower number of class-switched memory
B cells and transitional B cells [165]. Preprint of another study showed an increased
percentage of naive B cells and decreased percentage of switched memory B cells. Only one
parameter correlated with the severity of the disease—CD21low cells. They were increased
in patients with severe SIgAD as compared to those with mild severity [166]. Increased
level of CD21low was previously described but without correlation to clinical status [167].

In CVID, there is a classification based on B-cell phenotype, which divides CVID
patients into B − group and B + group, depending on the CD19 expression (lower or
higher > 1%). B + patients may be further divided into groups smB + or smB-, based
on a proportion of switched memory B-cell percentage (lower or higher >2%). Recently,
an increase in transitional B cells and CD21low B-cells is used as a base to subdivide
groups [168]. Some of the B-cell phenotype findings are similar between CVID and SIgAD.
There is an interesting observation of an increased CD21low cells number in patients with
severe sIgAD; a higher level of those cells in CVID patients is connected with autoimmune
phenomena [169,170].

The major histocompatibility complex (MHC) represents the most common genetic
susceptibility locus for CVID. However, non-MHC-associated single-gene mutations have
been identified. These include the genes for ICOS, BAFF-R, TACI, CD19, CD21, CD81,
CD20, LRBA, PKC-Delta, NF-kB1, NF-kB2, IL-21 [171]. Defects of these genes represent
only approximately 2–10% of patients with CVID [172]. Some authors state that a common
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genetic basis for IgAD and CVID can suggest that at least in some cases, IgAD and CVID
may be part of a spectrum of diseases caused by a common genetic factor—for example,
a mutation in the TACI—transmembrane activator CAML (calcium modulator and cy-
clophilin ligand) [173]. Another, slightly different thesis is the presence of autoantibodies
against BAFF, APRIL, or IL21 as a common ground for CVID and sIgAD [174]. Both in
CVID and sIgAD, there are reports of an increased level of BAFF and APRIL [175]. In-
creased apoptosis is also one of the mechanisms reported for both of these disorders [48].
An interesting observation indicating a similar genetic background of both diseases is their
coexistence in families [176].

Besides, the relation between human leukocyte antigen (HLA) A1, B8, DR3, DQ2, or
any part of this haplotype and IgA deficiency could indicate progression to CVID [159,161].
In patients with severe clinical manifestations, HLA typing could be helpful for the pre-
diction of progression to CVID [160]. Moreover, in sIgAD subjects with simultaneous Ig
subclass deficiency and bronchiectasis, the presence of hematologic autoimmunity could
be another predictor of progression to CVID [94].

6.2. Transfusion Selective IgA Deficiency

One of the most dangerous complications of sIgAD is an anaphylactic transfusion
reaction. It has been found that some patients with sIgAD are sensitized, which means that
there are anti-IgA antibodies (IgG or IgE) present in their blood [34,177–179]. These auto-
reactive antibodies were found in 20–40% of patients with sIgAD [180]. After transfusion of
blood containing IgA in such individuals, there is a risk of anaphylactoid reaction mediated
by these immunoglobulins.

Rachid and Bonilla reviewed the articles reporting reactions to immunoglobulin prod-
ucts in patients with sIgAD [181]. The severity of adverse reactions with anti-IgA antibodies
depends among others on the isotype (IgG or IgE), its specificity and serum concentration,
the method of measurement. IgG anti-IgA antibodies are found in approximately one-third
of sIgAD patients [181]. But only a few studies have reported anaphylactic transfusion reac-
tion associated with IgE class. It has been also reported that IgE anti-IgA is less frequently
studied than IgG anti-IgA. However, when both have been studied together, anti-IgA of
the IgE class occurs much less frequently than IgG [182]. Burks et al. reported two patients
(one with CVID and another with sIgAD) with IgE anti-IgA and IgG anti-IgA [177]. One
of them had anaphylaxis with IVIG and another with IgA-deficient plasma. Ferreira et al.
found IgE anti-IgA1 in a patient with CVID, which also had IgG anti-IgA [183].

The diagnosis of IgA-related anaphylaxis is made after transfusion-related anaphy-
laxis by measuring the levels of IgA and anti-IgA. The mechanism of anti-IgA production
remains unexplained [184] and the clinically significant threshold of anti-IgA is still un-
known [185]. However, the incidence of anaphylactic blood transfusion reactions is not
very high and it occurs in one in 20,000–50,000 transfusions [186]. Moreover, some studies
suggest that transfusion reactions occur less commonly than previously thought [187].
Only 17.5% of all blood samples coming from patients after transfusion reactions contained
an IgA antibody, which indicates the presence of some other triggers [188].

There are no evidence-based guidelines regarding the proper approach while per-
forming transfusion to patients with sIgAD. It is evident that patients with a history of
anaphylactic transfusion reactions should not receive IgA-containing blood products [96].
These patients can receive blood products coming from donors with IgA deficiency, washed
red blood cells, or platelet components. It is performed to remove residual plasma be-
fore transfusion and to decrease the risk of anaphylactic transfusion reactions in such
patients [189]. There are also some cases that illustrate successful desensitization to IgA
using IgA-enriched immunoglobulin preparations as a source of antigen [190].

6.3. Malignancy

There is a relationship between the occurrence of immune disorders and the overall
risk of malignancy. This relationship is evident in some immunity disorders such as
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CVID [191,192]. It has been shown that the risk of malignant lymphoma among these
patients is increased by 30 times, while the risk of gastric cancer is 47 times higher [193].
In the case of IgA deficiency, the association with the incidence of cancer is not that clear.
There are studies that report the different incidences of malignancies among patients
with sIgAD, especially adenocarcinoma of the gastrointestinal tract, and lymphomas.
Such studies require a long-term follow-up to diagnose this kind of evolution, therefore
there are not much data regarding this topic. In a review of 330 patients, the authors
report a 1.5% prevalence of malignancy, and five patients who presented neoplasms had
Hodgkin lymphoma, acute lymphoid leukemia, Wilms tumor, Burkitt lymphoma, and
ganglioneuroma [132]. Another study that included 63 children from Israeli reports a much
higher frequency of malignancy (4.8%) [99] and the following malignancies were present:
astrocytoma, adenocarcinoma of the colon, Hodgkin’s lymphoma, neuroblastoma. On the
other hand, a combined Danish and Swedish study including 386 patients with sIgAD did
show an elevated incidence of cancer compared to a healthy cohort, however, this increase
was non-significant [194]. In 2015, Ludvigsson et al. performed a prospective nationwide
population-based cohort study with 2320 individuals with IgA deficiency [195]. They
concluded that there is a moderately increased risk of cancer, especially gastrointestinal
one, and that the risk is highest after diagnosis of sIgAD.

7. Atopic Diseases in Other PIDs

Tuano et al. described the prevalence of asthma, allergic rhinitis, atopic dermatitis, and
food allergy in a cohort of 2923 patients with PID in US population [123]. Atopic dermatitis
and food allergy were most common in patients with CVID, combined immunodeficiency
(CID), and hyper IgE syndrome. Patients with CID and sIgAD presented a higher per-
centage of food allergy symptoms than the healthy population; 33.3% in CID and 25% in
SIgAD [123]. In CVID the prevalence rates of asthma, rhinitis, and documented food allergy
have been established as 37.5%, 55.5%, and 11.25% respectively [196]. In the case of patients
with hypogammaglobulinemia, prevalence rates of asthma, rhinitis, and atopic dermatitis
were established at 20%, 22%, and 9% respectively. Interestingly, Szczawinska-Poplonyk
assessed the incidence of food allergy as 74% in the pediatric population [131,197,198].

8. Conclusions

sIgAD is an antibody deficiency and it usually remains undiagnosed throughout
the patient’s life, due to its frequent asymptomatic course. If symptomatic, sIgAD is
connected to more frequent viral and bacterial infections of upper respiratory, urinary, and
gastrointestinal tracts, as well as allergic and autoimmune diseases. It was suggested that
allergic diseases (e.g., eczema, rhinitis, asthma) are more common in patients diagnosed
with this particular PID, however, the prevalence and severity of allergic manifestations
can be associated with ethnic background.

Since there is a controversy in the scientific world whether the coexistence of IgA
deficiency and allergic diseases is in fact true, further studies on a large group should be
carried out. Atopy in sIgAD subjects is common, but is also possible that it is overlooked.
Therefore, it is necessary to follow diagnostic criteria to make a diagnosis of any atopic
disease. The possible reasons for different prevalence which is observed in different studies
could be caused by different diagnostic criteria or inclusion of patients based on parentally
reported symptoms in the children population.

Moreover, these patients can present with simultaneous atopic and infectious mani-
festations which can intensify the symptoms; therefore, atopic diseases should be treated
aggressively in patients with sIgAD. It is necessary to provide these patients with a proper
multi-disciplinary team of physicians.

Moreover, it is important to emphasize that the course of the disease may change and
there are some serious complications of this disorder, among which there are progression
to CVID, transfusion-related anaphylaxis, and malignancy. Although they do not happen
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very often, sIgAD remains the most common PID disease, therefore physicians should be
aware of all possible complications to provide the best care for their patients.
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