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INTRODUCTION

The field of evolutionary developmental biology has contributed to identifying the mechanisms
by which the toolkit genes shape the embryo and the organism’s body plan by generating
spatio-temporal patterns (Gerhart and Kirschner, 2007). These genes, which control the organism’s
embryonic development, are ancient and highly conserved across the animal kingdom. Most of
them are components of signaling networks encoding the production of transcription factors
(TFs), cell adhesion proteins, cell surface receptor proteins andmorphogens. Moreover, these genes
function as master regulators by orchestrating other regulatory genes which regulate target/core
genes involved in anatomical and physiological processes in the developing embryo. Core genes
are defined as target genes having biologically interpretable roles in pathophysiology (Boyle et al.,
2017; Liu et al., 2019). The deviations of core genes’ regulation can contribute to variation in
the developing embryo. However, these deviations are predominantly due to the mechanisms by
which the toolkit genes precisely regulate the core genes’ expression in space and time (Carroll,
2008). Moreover, single nucleotide polymorphisms (SNPs) in these regulatory regions can impact
TF-DNA interactions and play a crucial role in regulating core gene expression.

Numerous Systems Biology approaches (e.g., clustering, classification and dynamic regulatory
network analysis) and -omics data sources are available to analyse of time-series gene expression
data (Bar-Joseph et al., 2012). Currently, molecular systems approaches are contributing to
reconstruct the regulatory activities in stimulus-response, developmental and cell cycle studies
(Bar-Joseph et al., 2012). Dynamic Regulatory Event Miner (DREM) (Schulz et al., 2012), a unique
approach, integrates disparate-omics data and time-series gene expression data (Ernst et al., 2007;
Schulz et al., 2012, 2013) to identify target genes regulated by TFs. Thus, contributing to the
capture of time and region-specific gene regulation in developmental studies such as human
brain development.

Currently there are spatio-temporal brain gene expression resources available to study the
dynamics of gene expression in developing human and mouse brains. Although some human gene
expression dynamics have been published, the regulatory dynamics of TFs and miRNAs have not
been investigated. As TFs can have a global impact on brain development, the regulatory trajectories
can provide valuable insights into gene regulation of the developing brain.

BrainDevo is an interactive database containing TFs/miRNAs and target genes involved in
human brain development. The database consists of TF/miRNA regulations of genes from prenatal
to postnatal stages of brain development in 16 brain regions. This interactive tool can be used
to study the transcription factors regulating key stages of brain development. Genes identified
from various brain development disorders can be interrogated using the interactive map of gene
regulatory trajectories of the developing brain.
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MATERIALS AND METHODS

Primary Data Collection and
Pre-processing
The spatio-temporal brain gene expression data was obtained
from BrainSpan (Miller et al., 2014) (http://www.brainspan.org/).
It consists of developmental transcriptome data (RNA-seq data;
N > 52,000 transcripts) from post-conception to adulthood in 16
brain regions (Brainspan, 2013). Each time point for each brain
region is represented by either a male or female depending on
the availability of post-mortem samples. Moreover, the samples
are represented by deceased individuals from diverse ancestry
(Allan Brain Atlas, 2013). The transcripts include protein-coding
genes, miRNA and LncRNAs. The prenatal time points include
8, 9, 12, 13, 16, 17, 19, 21, 24, 25, 26, 35, and 37 weeks
and postnatal time points include 4 months, 10 months, 1,
2, 3, 4, 8, 11, 13, 15, 18, 19, 21, 23, 30, 36, 27, and 40
years. The 16 brain regions are listed in Supplementary Table 1.
The regions are classified based on stages of development
(i.e. Stage 1: 4–7 weeks; Stage 2A: 8–9 weeks; Stages 2B: 11
week−10 to 40 years). There were no data for stage 1. Stage
2A regions were merged with stages 2B-11 regions based on
how stage 2A brain regions differentiated into various mature
brain regions from stage 2B. Each time point in the analysis
was represented by a single sample as, most time points
in each brain region had expression data generated from a
single individual.

Gene regulatory data was obtained from RegNetwork-
Regulatory Network repository (http://www.regnetworkweb.
org/) (Liu et al., 2015), miRWalk (Sticht et al., 2018)
and miRTarBase (https://mirtarbase.cuhk.edu.cn/) (Chou et al.,
2018).

Generating Spatio-Temporal TF/MiRNA
Regulatory Trajectories in Human Brain
Development
We used iDREM for integrated analysis of time-series gene
expression data and static regulatory interaction data to
reconstruct dynamic developmental activities regulated by TFs
andmiRNAs (Ding et al., 2018). This incorporates developmental
transcriptome data obtained from post-conception to adulthood
(i.e., prenatal and postnatal) in 16 brain regions.

The temporal gene expression files for each of the 16
brain regions were extracted from the BrainSpan dataset.
TF-gene interaction file was derived from the RegNetwork
database. The default gene annotation sources provided
by iDREM were used. A human gene cross-reference file
was used to map synonymous gene names. The RNA-seq
expression data were log normalized before the analysis using
iDREM. The miRNA brain gene expression data were also log
normalized before the analysis. The miRNA-gene regulatory
data provided by iDREM was used to predict the miRNAs
involved in spatio-temporal brain development. The miRNAs
with no expression data were filtered out. The default filter
options were used and for search options, the recommended
parameters for Convergence Likelihood %: 0.01 and Minimum

Standard Deviation: 0.2. The default parameters were used
for gene ontology annotations and analysis. The analysis was
conducted in a high-performance computing cluster and
it took 2–3 weeks per brain region. TFs with a p < 0.001
were listed as significant regulators. The users can use the
significant regulators (p < 0.001) in every brain region to
map to the disease-associated TFs/miRNAs obtained from the
genome-wide significant GWAS loci of psychiatric and other
brain disorders.

BRAINDEVO DATA AVAILABILITY AND
USAGE

BrainDevo Data Deployment
We have developed and deployed a data source to identify
transcriptional and post-transcriptional regulators in
16 brain regions during human brain development.
There was a significant similarity of TFs involved in
human brain development across all brain regions
(see Figure 1). Moreover, we observed substantial gene
regulatory activities during the prenatal stages of brain
development. While TFs are shown to be involved in
bifurcation points miRNAs are shown to be regulating
paths between bifurcation points. We provide a resource
comprising TFs and miRNAs regulating 16 brain regions
at various brain developmental stages. These results
could lead to studies of gene regulation in healthy brain
development and other neurodevelopmental disorders
(Supplementary Table 1).

The User Interface
The interactive visualization interface for each brain region
was generated using iDREM during the analysis. The interface
(see Supplementary Figure 1) for the predicted model for each
of the 16 brain regions are available at https://doi.org/10.
48610/5f24ed4 (Periyasamy and Mowry, 2021). The installation
will require uncompressing the downloaded file and opening
idrem_results.html under each directory representing a brain
region. The installation of iDREM is not required for visualizing
the interface, as idrem_results.html will dynamically generate
an interactive visualization interface to interrogate transcription
factors and genes. For detailed functionalities, please refer
iDREM user manual. The users could identify key TFs and
miRNAs responsible for each bifurcation point from the
interface. By clicking a node, the users could identify the
downregulated, upregulated and non-expressed regulators (see
Supplementary Figure 2). By clicking a node (after selecting
the “genes assigned to the path” option under the global
config panel), the users could observe the gene list assigned
to a path (see Supplementary Figure 3). The users can use the
regulatory panel to investigate a TF of interest in human brain
development (see Supplementary Figure 4) and the expression
panel to investigate the gene expression path and pattern during
brain development.
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FIGURE 1 | Regulatory gene overlap analysis across all brain regions. (A) The color key represents the odds ratios and the significant p-values are superimposed on

the grids. The odds ratio and p-values indicate that there is strong association of gene regulators across brain regions. (B) The color key represents the Jaccard index

and the significant p-values are superimposed on the grids. The Jaccard index measures the similarity of gene regulators across brain regions. MGE_STR, Medial

ganglionic eminence_Striatum; DFC, dorsolateral prefrontal cortex; OFC, orbital frontal cortex; VFC, ventrolateral prefrontal cortex; MFC, medial prefrontal cortex;

M1C, primary motor cortex; URL_CBC, upper rhombic lip_Cerebellar cortex; PCx_S1C, parietal neocortex_Primary somatosensory cortex; PCx_IPC, parietal

neocortex_Inferior parietal cortex; HIP, hippocampus; AMY, amygdaloid complex; DTH_MD, dorsal thalamus_Mediodorsal nucleus of thalamus; OCx_V1C, occipital

neocortex_Primary visual cortex; TCx_A1C, temporal neocortex_Primary auditory cortex; TCx_ITC, temporal neocortex_Inferolateral temporal cortex; TCx_STC,

temporal neocortex_Superior temporal cortex.

Applications of BrainDevo
TF and miRNAs identified in various genetic studies such
as rare or common variant association studies, can be

interrogated using BrainDevo. The users will be able to
identify the timepoint at which a TF of interest impacts
brain development. This repository will also be useful
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for brain developmental biologist, interested in identifying
TF/miRNAs and their target genes at a particular time point
and brain region.

CONCLUSION

A data resource to identify transcriptional and post-
transcriptional regulators in 16 brain regions during human
brain development has been deployed for investigating
psychiatric and brain developmental disorders.
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