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Abstract

The rapidly increasing biomedical literature calls for the need of an automatic approach

in the recognition and normalization of disease mentions in order to increase the preci-

sion and effectivity of disease based information retrieval. A variety of methods have

been proposed to deal with the problem of disease named entity recognition and normal-

ization. Among all the proposed methods, conditional random fields (CRFs) and diction-

ary lookup method are widely used for named entity recognition and normalization re-

spectively. We herein developed a CRF-based model to allow automated recognition of

disease mentions, and studied the effect of various techniques in improving the normal-

ization results based on the dictionary lookup approach. The dataset from the

BioCreative V CDR track was used to report the performance of the developed normaliza-

tion methods and compare with other existing dictionary lookup based normalization

methods. The best configuration achieved an F-measure of 0.77 for the disease normal-

ization, which outperformed the best dictionary lookup based baseline method studied in

this work by an F-measure of 0.13.
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Introduction

The importance of extracting disease related information

mapped to a standardized vocabulary is increasing with

the yearly increase of published biomedical literature (1). It

is revealed that in 2011, over 20 million documents were

available in PubMed alone with an average of 4% increase

per year with keywords relating to diseases being the se-

cond most common user search query (1). A PubMed

query using the keywords ‘disease OR diseases OR dis-

order OR disorders’ in early 2016 resulted in over 6.5 mil-

lion documents revealing an average of 6% yearly increase

from 2000 to 2014 (Figure 1). Comparable trends can also

be observed in specific disease categories such as cancer

and cardio vascular diseases. Because of this increase in

available literature, researchers are now faced with the

challenge of identifying biomedical documents relevant to

them (2,3). Medical subject headings (MeSH) terminology

was developed by the National Library of Medicine to

speed up and increase the precision of biomedical literature

retrieval (4). Where possible, documents in PubMed are

indexed with relevant disease specific keywords using

MeSH terminology. Manually assigning disease specific

MeSH terms to documents is a labor- and time-intensive

process which would require monetary investment as well.

Text mining techniques can be employed to assist in over-

coming these challenges (5).

Over the years, various methods have been proposed to

extract disease related information (6–9). Typically, these

methods include two broad stages: (i) extracting disease

mentions from free text–a task referred to as disease named

entity recognition (DNER) and (ii) normalizing the recog-

nized mentions to standard controlled vocabularies such as

MeSH–a task referred to as disease name normalization

(DNORM). However, performing DNER and DNORM is

not straightforward and often complex (7, 10). Past issues

that have been observed include limitations in the size and

annotation of the corpora used for developing DNER and

DNORM systems (9, 11). Disease mentions are also

observed to be highly ambiguous with varying terms and

definitions. Additionally, abbreviations are commonly

used to represent disease in literature. This poses a problem

since one abbreviation may represent multiple terms (11).

Among all of the proposed approaches, a probabilistic

method known as conditional random fields (CRFs) is

widely used for DNER (12–17). Similarly, dictionary

lookup method is for DNORM (11, 18, 19). The diction-

ary lookup method relies heavily on string matching,

which can either be exact or partial matching (i.e. proxim-

ity and fuzzy matching). The dictionary lookup approach

has various advantages and is known to provide competi-

tive results because the usage of disease terminology is

standardized in biomedical literature (12, 19). The major

advantage of this method is its scalability. When compared

to machine learning based DNORM, dictionary lookup is

fast and can be easily scaled to very large collections of free

text documents such as PubMed snapshots (14). In add-

ition, unlike machine learning methods such as learning to

rank for normalization, the dictionary lookup method does

not require training data which typically is annotated for a

specific purpose and domain such as gene normalization.

Dictionary lookup method which requires standard dic-

tionaries is more generic and can be easily ported to other

domains by simply switching the dictionaries. Although

the dictionary lookup approach is not effective in handling

domain specific variations, Shah et al. (20) demonstrated

that the approach could achieve competetive results in rec-

ognizing biomedical concepts when used with the right

combination of additional techniques including abbrevi-

ation resolution, enhanced dictionary (21), query expan-

sion (22, 23) and priority rules. The combined effects of

these techniques on dictionary-based DNORM are not

well explored previously. We are only aware of Kang et al.

(24) who explored the impact of using rules based on lin-

guistic information like shallow parsing and part of speech

tags. Additionally, as per our knowledge, no previous

study has compared various dictionary lookup methods for

DNORM. In light of this, we explore the impact of intro-

ducing additional techniques on the dictionary lookup

based DNORM. After comparing to other similar

dictionary-based methods, our results suggest that, with

the right combination of additional techniques we can sig-

nificantly improve the performance of the dictionary

lookup based DNORM.

Related work

Broadly, the usage of dictionary lookup in disease identifi-

cation tools and studies can be classified into two types: (i)

Figure 1. Number of publications resulting from the search query ‘dis-

ease OR diseases OR disorder OR disorders’ from 2000 to 2014.
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Both DNER and DNORM are performed using dictionary

lookup; and (ii) Just DNORM is performed using diction-

ary lookup. In the first type, the mentions (single terms or

phrases) from standard vocabularies are matched against

free text, often subjected to a few additional steps like pre-

processing and query expansion. In other words, both

DNER and DNORM happen at the same time. In the se-

cond type, DNER is initially performed using machine

learning based approaches which is followed by the dic-

tionary lookup based normalization.

Clinical Text Analysis and Knowledge Extraction System

(cTAKES), a modular system based on Unstructured

Information Management Architecture framework (UIMA)

and OpenNLP package is a good example for the first type

of disease identification tools (25). cTAKES enhances its dic-

tionaries by adding synonyms from UMLS and additional

custom entries maintained by Mayo clinic. YTEX (26) im-

proved cTAKES dictionary lookup by performing word

sense disambiguation using semantic similarities calculated

using the adapted Lesk algorithm. MetaMap is another such

tool which finds noun phrases in the text first and then per-

forms dictionary lookup after (18). MetaMap represents

strings of the noun phrase as queries and expands the

queries by generating lexical variants (not limited to spell-

ing, inflection and punctuation variants). For example, ‘an-

aesthetic’ and ‘anesthetic’ are spelling variants. MetaMap

then disambiguates concepts based on a custom score. Open

Biomedical Annotator (OBA) web service implements radix-

tree-based data structure to extract disease information

from text by performing dictionary lookup using ontologies

(20, 27). The dictionaries used for lookup in OBA are built

by pooling concepts from ontologies. In addition to diction-

ary lookup, OBA performs semantic expansion to identify

final concepts by leveraging the hierarchical and mapping

information of ontologies. BeCAS is another web service to

annotate diseases and several other entity types (28). BeCAS

uses deterministic finite automatons for dictionary lookup.

MetMap, OBA and BeCAS tools do not perform any dic-

tionary enhancements. Unlike them, cTAKES generates

non-lexical variants (variations of head and modifiers within

noun phrases) and YTEX enriches dictionaries by adding

lexical variants. Almost all the dictionary lookup based tools

perform some sort of query expansion. In terms of abbrevi-

ation resolution, to the best our knowledge, cTAKES does

not have any abbreviation resolution. BeCAS, MetaMap

and OBA are capable of resolving abbreviations by query

expansion. Please refer to Appendix 1 for more detailed

comparison of the related tools discussed.

Often researchers used tools like MetaMap, cTAKES,

BeCAS, OBA and YTEX in combination. Khare et al. (29)

used MetaMap to recognize and normalize diseases in

DailyMed drug database. Shah et al. (20) used it to

compare MetaMap’s disease DNER performance with

Mgrep (30). Patrick et al. (31, 32) used CRFs and support

vector machines (SVM) to perform DNER followed by a

dictionary lookup based DNORM in conjunction with a

few rules in clinical notes. Zuccan et al. (15) also used

CRFs to perform DNER followed by DNORM using

MetaMap. Xia et al. (33) used both MetaMap and

cTAKES together to perform DNER and DNORM. They

merged output from both tools and resolved conflicts using

a simple algorithm.

Methods

The overview of the proposed methods is illustrated in

Figure 2. The methods in this study are an extension to our

previous work as part of the BioCreative V challenge (34,

35). The named entity recognition (NER) and normaliza-

tion modules are the two main components. Initially, the

documents were pre-processed using the Stanford

PTBTokenizer (http://nlp.stanford.edu/software/tokenizer.

shtml). The modules are explained more in detail in the fol-

lowing sections.

Disease named entity recognition

The DNER task is formulated as a sequential labeling

problem using CRFs. CRFs outperformed both supervised

and unsupervised approaches in various tasks such as en-

tity recognition, speech recognition and machine transla-

tion (7, 36, 37). Thus, we choose CRFs for implementing

our DNER module. In short, CRFs are a probabilistic

framework for performing sequential labeling task.

Contrary to the classification algorithms like SVMs, CRFs

are contextual because of their Markov property. Forward

backward and Viterbi are the most commonly used algo-

rithms to infer sequence in CRFs. In this study, first order

CRFs with Viterbi algorithm for inference and Quasi-

Newton optimization from Stanford’s CRF-NER package

(38) were used.

Given an input sequence of tokens W, a linear-chain

CRF (Equation 1) computes the conditional probability

associated with its corresponding hidden labeled sequence

Y; where ZðWÞ is the normalization factor that makes the

probability of all state sequences sum to one; C is the set of

all cliques in this sentence; and c is a single clique, which

reflects the position of the current word, as displayed in

Figure 3. The function fiðYc�1; Yc; W; cÞ is a binary-valued

feature function whose learned weight is ki. Large positive

values of ki indicate a preference for such the correspond-

ing feature.
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In order to perform sequential labeling using CRFs, it is es-

sential to represent the input token sets with a suitable tag

set. BIO (B¼ beginning of an entity, I¼ inside an entity

and O¼ outside of an entity) format is the most widely

used tagging in sequential labeling. In this study, we em-

ployed BIESO (B-beginning, I-intermediate, E-end, S-single

word entity and O-outside) tagging as it has been reported

to perform better than BIO tagging (39–41). Figure 3

shows a sample sentence tagged using BIESO format. In

this sample, there are two disease entities; one multi token

entity—‘renal papillary necrosis’ and one single token dis-

ease entity ‘cancers’.

Feature extraction. The features were extracted using

the Stanford CRF-NER (http://nlp.stanford.edu/software/

CRF-NER.html) package. Features with weight (absolute

value) below the threshold of 0.05 were dropped to avoid

noisy features. We employed basic features that included

word, gazetteer, morphological and word shape features.

The features were then conjugated to obtain a new set of

features. The context information can help CRFs predict

the label of current token. Thus, we considered previous

token, current token and next token by themselves and

their part of speech information as word features. MEDIC

vocabulary (42) was used to extract gazetteer features. We

tokenized MEDIC vocabulary primary names and syno-

nyms and tagged them using BIESO format. Two features

were extracted depending on the match between token and

Figure 2. Overview of methods to extract disease information from the text.

Figure 3. Example of BIESO tagging format used in this study and graphical representation of ‘paracetamol consumption for renal papillary necrosis

or any of these cancers’ tagged as [O, O, O, B, I, E, O, O, O, O, S].
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entries in the gazetteer. One feature represented the length

of the matched entry and the other feature represented

presence of token match with an entry in the gazetteer.

Identifying lemma and affixes of a word token helps in bet-

ter understanding the underlying morpheme. We included

lemma of previous, current and next tokens as morpho-

logical features. Similarly, we also included prefixes and

suffixes (of length two to five characters) of previous, cur-

rent and next tokens as morphological features.

Disease names in general are noun phrases and thus are

represented with appropriate writing styles in literature. At

the same time, diseases are often written in short forms.

Word shape features can be used to capture the different

writing styles by employing pattern matching using regular

expressions (43, 44). Word shape features are orthographic

features with more granularity when compared to trad-

itional orthographic features. They encode structure of a

word using simple representations. They can also be used

to capture internal punctuation and Greek letters. For ex-

ample, ‘CANCER’ would become ‘XXXXXX’ and

whereas ‘Diabetes’ would become ‘Xxxxxxx’. The capital

letters are represented by ‘X’, lowercase letters are repre-

sented by ‘x’ and similarly digits with ‘d’ and Greek letters

with ‘g’. We identified numbers, punctuations, and words

in lowercase, uppercase and capitalized patterns. We ex-

tracted the word shape features for current, next and previ-

ous tokens. In situations where the word shape features

were not identified, by default they were assigned as ‘none’.

Post-processing. Before passing the recognized disease

mentions to the normalization module, we took all the rec-

ognized entities (including abbreviations) and quickly

searched the documents to check whether there were any

entities which were recognized by the NER module in one

situation or context but not recognized in the other. The

search was based on exact string matching. A few studies

have reported success in improving recall of CRF-based en-

tity recognition with this type of post-processing step be-

cause the model predict labels based on local information

only (45–47).

Disease name normalization

MEDIC vocabulary was used to map the recognized dis-

ease mentions to MeSH concepts (42). The MEDIC vo-

cabulary includes both MeSH and OMIM terminologies.

In this study, we focused on the MeSH IDs and excluded

the OMIM concepts for normalization. We formalized the

normalization problem as following. Let Q¼ {q1, q2, . . . ,

qn} be an entity recognized by our DNER module with n

terms and D¼ {d1, d2, . . . , dn} be an entry with n terms in

the MEDIC vocabulary. Instead of retrieving top k, where

k¼ {1, 2, . . ., n} entries for a given Q from the MEDIC

vocabulary based on relevance calculated using function

like Score(Q, D); which is more common; we retrieved

entries that satisfy the condition Q¼D.

In other words, the recognized disease mentions were

checked against the MEDIC vocabulary for an exact string

match. An exact match here is a string match where the

words, number and order of words is exactly the same as

an entry in the MEDIC vocabulary. Before performing the

match, both Q and D were pre-processed to convert all

terms into lower case, and punctuations and stop words

were removed. For example, assume that the DNER mod-

ule recognizes ‘Kidney Disease’ in the text and now con-

sider the potential entries from MEDIC vocabulary for a

match in Figure 4. Our method chooses the first entry

(DOCNO: 1) and MeSH concept D007674 was returned.

Abbreviation resolution. A rule-based pattern matching

abbreviation finder component was developed to identify

abbreviations and their corresponding long forms in the

text. The component used a custom lexicon of abbrevi-

ations which was developed from the training and develop-

ment sets of the BioCreative V CDR dataset and the

MEDIC vocabulary using BioText tool (48). The abbrevi-

ations lexicon included both short, long forms and occur-

rence frequency. Once our DNER module recognized

disease mentions in an article, they were processed through

abbreviations finder component for abbreviations. The

identified abbreviations were checked against the lexicon

and replaced with their long forms. For example, our

DNER recognized two entities—‘myocardial infarction’

and ‘MI’ from an abstract with a sentence ‘To evaluate the

safety of lidocaine in the setting of cocaine-induced myo-

cardial infarction (MI)’. In our lexicon MI refers to ‘myo-

cardial infarction’. Thus, we replaced MI with ‘myocardial

infarction’. In situations where there were multiple long

forms associated with a single short form; we checked

whether one of those long forms were mentioned before in

the document. If it was, then the short form was expanded

with that particular long form. If there was no long form

mentioned previously in the abstract, we assign the long

form which had highest occurrence observed during devel-

opment of abbreviation lexicon. If there was no long

form found in lexicon, the recognized entity was left

unexpanded.

Enhanced dictionary and query expansion. The MEDIC

vocabulary includes valuable information such as primary

names, synonyms, MeSH hierarchical details, definitions

and broad groups. However, from our initial experiments

we noticed that few disease mentions were expressed in

fairly simple language without much medical jargon. These

synonyms are not observed in MEDIC vocabulary but in

WordNet (https://wordnet.princeton.edu/), which is not

specific to a biomedical domain rather a generic synonyms
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database for the English language. For example, ‘Kidney

Diseases’ in MEDIC do not include synonyms ‘renal dis-

order’ and ‘nephropathy’, which are found in WordNet for

the same ‘kidney diseases’ phrase. The coverage of syno-

nyms in MEDIC can be enhanced by adding missing syno-

nyms from WordNet. Thus, every primary name phrase in

MEDIC was checked for WordNet synonyms and added

back to MEDIC, if they do not exist. Overall, 2036

WordNet synonym entries were added to 11 343 existing

MEDIC primary names. There were 63 728 synonyms for

MeSH concepts in the MEDIC vocabulary. Finally, the

MEDIC vocabulary is consistently used short forms of ab-

breviations (e.g. HIV Seroconversion) in its synonyms and

primary names. We expanded the short forms using our

previously developed abbreviations lexicon and added

them back to the dictionary.

In order to increase the recall of our normalization

module, we have employed the query expansion technique.

Query expansion refers to the process of reconstructing a

given query often by modifying the terms in a query. The

most widely used method is to replace a given term in

a term with its synonyms (49). In this study, we expanded

a query by appending with disease-related terms such

as ‘disorder, syndrome, injury, infection, abnormality’,

only when there was no match found in the MEDIC vo-

cabulary. For example, assume that our DNER recognizes

‘posterior reversible encephalopathy’ as an entity. With

exact string match setting, no concept is found from the

MEDIC vocabulary. With query expansion the identified

entity becomes—‘posterior reversible encephalopathy syn-

drome’ matching with MEDIC synonym for concept

identifier ‘D054038’ whose primary name is—‘Posterior

Leukoencephalopathy Syndrome’. This type of query ex-

pansion assists in overcoming rigid exact match where con-

cept mapping has failed due to a missing term.

Priority rules. Though exact string matching based dic-

tionary lookup was rigid and strict, we were faced with

multiple exact matches for a given query in the dictionary

because same names were found as synonyms under mul-

tiple MeSH concept IDs and the expansion of dictionaries

and queries created duplication of concept names across

multiple MeSH concept IDs. Thus, in order to overcome

this issue, we implemented few priority rules to determine

the final normalized ID. The priority rules were developed

to counter attack the negative effects of enhanced diction-

ary and query expansion, which are logically represented

in Figure 5. The highest priority is given for an exact match

between the original query, i.e. entity recognized by our

DNER module and the primary name in MEDIC. The least

priority is given to a match between expanded query and

expanded abbreviation entries in MEDIC. The priority

rules implemented to some extent limited the number of

candidate pairs. Few more rules were required to nominate

the final MeSH ID from all available candidate pairs. In

situations where there were more than one exact matches,

the entries retrieved were checked for the frequency of

MeSH concept ID in retrieved records and the MeSH ID

with highest frequency is nominated as final candidate. If

the frequency was tied, by default the first entry was se-

lected. In any other situations the recognized entity was as-

signed ‘�1’ representing no MeSH concept ID available to

match.

Results

The dataset from BioCreative V CDR Track (9) was used

in this study to develop the proposed methods. The dataset

included 1500 PubMed abstracts broken down into train-

ing, development and test sets. Both training and develop-

ment sets were used to train the CRF model. Disease

mentions in the dataset were assigned with MeSH IDs

using the MEDIC vocabulary. The standard metrics preci-

sion (P), recall (R) and F-measure (F) were used to evaluate

the performance of the developed modules by assessing

true positives (TPs), false positives (FPs) and false negatives

(FNs). For evaluating the performance of DNER and

DNORM, the outputs of the developed modules for a

given article are compared with the set of diseases within

the document annotated by human annotators. Table 1

illustrates the distribution and characteristics of the dataset.

DNER performance comparison

We compared our DNER module with BANNER (13) in

Table 2 to see how its performance compared to similar

DNER tool. BANNER was trained using the default, IOB

Figure 4. Sample dictionary entries.
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tagging format and features. In comparison to our DNER

module, BANNER demonstrated less precision. We also

noticed that the PTBTokenizer used in our DNER module

tokenizes more accurately than BANNER’s tokenizer.

Baseline methods

We implemented four dictionary lookup baseline methods

to compare the performance of the proposed methods. In

the first baseline method, we tried to find an exact string

match for each primary name in MEDIC to a term or

phrase in each document of the test. Thus, we refer to this

baseline method as the simple dictionary lookup because it

resembles the first type of the dictionary-based disease

identification method introduced in the ‘Related work’

section. For the rest, the three tools—BeCAS, MetaMap

and OBA—discussed earlier were used. They are all based

on dictionary lookup and have been widely used as base-

line systems (20, 25, 27) to compare various types of nor-

malization approaches (12, 50). For BeCAS, the BeCAS

REST web service was used to process the BioCreative V

CDR dataset. Each abstract from the dataset was sent to

the BeCAS server to annotate disorders. The server re-

turned with identified disease entities and their corres-

ponding UMLS CUIs. The UMLS CUIs were used to

obtain corresponding MeSH IDs. For MetaMap, the par-

ameters and configuration were optimized for best per-

formance. MetaMap was restricted to MeSH terminology

as source under a relaxed data model. We also used

MetaMap’s term processing, word sense disambiguation,

Figure 5. Representation of the developed priority rules.

Table 1. Summary distribution and characteristics of the training, development and test set

Training set Development set Test set

No. of documents 500 500 500

No. of sentencesa 4597 4604 4800

No. of tokens 108 378 107 668 113 290

Average word count 216.76 215.34 226.58

No. of disease mentions 4182 4244 4424

No. of MeSH IDs (excluding disease mentions without any IDs) 4252 4328 4430

No. of disease mentions without MeSH IDs 32 16 61

No. of unique disease mentions 1384 1254 1337

No. of unique MeSH IDs 664 604 645

aSentence and token stats are generated using Stanford PTBTokenizer.
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ignored word order and allowed only unique abbreviation

variants. MetaMap web application programming inter-

face (API) which interacts with MetaMap server in batch

was used. Finally, the OBA baseline method was imple-

mented using REST web service. The OBA was configured

to find concepts from MeSH terminology. MetaMap and

OBA were restricted to find concepts only from disease

related semantic types presented in Appendix 2.

DNORM performance

Table 3 illustrates the performance of all baseline methods.

OBA outperformed other baseline methods and BeCAS had

poor performance. It is interesting to find that BeCAS which

uses deterministic finite automatons, performed worse than

simple dictionary lookup. However, BeCAS has shown simi-

lar type of performance in previous studies (51, 52).

The performance of the developed method on the test

set are presented in Table 4. The first configuration is very

similar to the baseline method simple dictionary lookup,

except the mentions are recognized by our CRF model and

exact string matched with primary entries in the MEDIC

vocabulary, instead of direct string matching on the docu-

ments. The remaining configurations included improve-

ments like abbreviation resolution, enhanced dictionaries,

query expansion and priority rules. Two configurations

yielded an F-measure of 0.77. It is interesting to notice that

query expansion and priority rules improved the F-measure

from 0.73 to 0.77. The F-measure remains 0.77 after add-

ing the DNER post-processing. Overall, the post-

processing helped in increasing TPs, however it also led to

more FPs.

Execution speed

Table 5 presents the response times taken by the baseline

methods and our best configuration to process the test set

for five runs using web APIs. BeCAS, OBA and our pro-

posed methods are exposed via REST web services API,

where as MetaMap’s web API is not REST-based but

allows to interact with MetMap web-based scheduler using

batch processing. Shorter response times allow to scale the

process to larger collection of documents. Though our pro-

posed methods achieved shortest response time among all

baseline methods’ web APIs, it is important to note that

the performance of these APIs depend on the infrastructure

used to host the API servers, utility load and number of

concurrent users. Unfortunately, this information on base-

line systems is not available. Our REST server used an

Ubuntu machine with 8GB memory powered with IntelVR

CoreTM i7-3770, 3.40 GHz�8 processor and one concur-

rent user connected. Nevertheless, the results presented

here are very useful in planning experiments and resources

for researchers who want to use these publicly available

systems on larger collection of documents.

Discussion

Our experiment results demonstrate that the performance

of dictionary lookup based DNORM can be improved by

combining with the proposed enhanced dictionary and

query expansion techniques. Here, we compared our

DNORM module performance with another normaliza-

tion tool which is based on pairwise learning to rank

method (pLTR) (12). The pLTR method (TP: 1370, FP:

179, FN: 618) achieved an F-measure of 0.77 on the test

set for DNORM, which is the same with that of our con-

figuration 5. From the results, it is evindent that dictionary

lookup using exact string matching does provide compete-

tive results in automatic identification of diseases with few

minor additional improvements. Furthermore, our method

had less execution time when tested locally on the same

machine. The pLTR method locally took an average of

3 min to process the test set (500 documents with an aver-

age word count of 226.58), whereas our method took

2 min 10 s. The above results suggest that the dictionary

Table 2. Comparison of DNER module performance

Run NER Performance at mention-level

TP FP FN P R F

BANNER 3348 854 1076 0.80 0.76 0.78

Our DNER module 3351 637 1073 0.84 0.76 0.80

Our DNER module þ Post-processing 3529 811 895 0.81 0.80 0.81

The bold value signifies highest value with in the column.

Table 3. Baseline methods performance on the test set

Baseline method DNORM

TP FP FN P R F

Simple dictionary lookup 1341 1799 647 0.43 0.67 0.52

BeCAS 413 197 1575 0.68 0.21 0.32

MetaMap 1272 950 716 0.57 0.64 0.60

OBA 1219 592 772 0.67 0.61 0.64

The bold value signifies highest value with in the column.
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lookup DNROM can be easy to extend; with right combin-

ation of techniques it can achieve competitive results and

has fast execution speed and highly scalable.

Error analysis

An error analysis was manually performed to identify the

possible causes of FNs and FPs in DNORM and at the

same time understand why a few additional techniques

have not performed well. We chose 200 FPs (30%) and

FNs (70%) together randomly from our best configuration

and started analyzing those errors. A number of issues

were observed; majority of the errors were related to dicti-

nary enhancement (18%), exact string matching (26%)

and entity recognition (38%).

Errors caused by dictionary enhancement. Dictionary

enhancement is an important technique for DNORM, but

it also introduced additional issues. The use of WordNet to

generate synonyms resulted in wrong and duplicate entries.

One of the WordNet synonym for ‘Azotemia (MESH ID:

D053099)’ is ‘Uraemia’ which is also WordNet synonym

for ‘Uremia (MESH ID: D014511)’. Another issue is errors

in dictionary entries. For example, consider the query

‘Colon Cancer’, our system yields two candidate pairs with

MeSH IDs D003110 and D015179 where both concepts

included ‘Colon Cancer’ as MEDIC synonyms but

D015179 actually refers to ‘colorectal neoplasms’. Thus,

fixing these type of entries manually and enhancing the dic-

tionary is required.

Errors caused by matching methods. The major issue with

exact strict matching is that it follows very strict rules and

sometimes fails to map entities which are varying slightly and

not represented in the vocabulary. For example, our approach

assigned ‘�1’ for ‘chronic hepatitis C virus infection’ entity.

However, there is an entry for ‘hepatitis C virus infection’ in

the MEDIC vocabulary. One-way to overcome this challenge

is to employ matching methods like phrase and term matching,

which are proximity based matchings and more relaxed com-

pared to exact string matching. We implemented the above

two proximity based matching (more details can be found in

Appendix 3) and integrated them into our system. The results

are presented in Table 6. Interestingly, the improvement in the

R metric did not reflect in the P metric, which further went

down. This is mainly due to the priority rules, which failed to

nominate the right candidate from obtained candidate pairs

because of the situation when the frequency of MeSH IDs

observed in candidate pairs is a tie. We believe that these issues

can be overcome by employing similarity scores or additional

priority rules. Finally, the current scoring method was only

based on the matching between query terms with MEDIC pri-

mary name and synonyms. Embedding definition and broad

categories information into the similarity score calculation

would further improve the results.

Errors caused by entity recognition. Overall our DNER

module perform better than BANNER, however several

issues were noticed. For example, our DNER module re-

peatedly recognized ‘APC’ (adenomatous polyposis coli) as

a disease entity but sometimes failed to recognize mentions

which are abbreviated like PPH (pulmonary hypertension)

and AIN (interstitial nephritis). Our abbreviation resolution

also failed in identifying the above two abbreviations.

Table 4. Performance of proposed methods on the test set

Configuration# Configuration description DNORM

TP FP FN P R F

1 DNER þ Dictionary lookup 758 65 1230 0.92 0.38 0.54

2 1 þ Abbreviation resolution 760 65 1228 0.92 0.38 0.54

3 2 þMEDIC vocabulary synonyms 1177 105 811 0.92 0.59 0.72

4 3 þWordNet synonyms 1220 121 768 0.91 0.61 0.73

5 4 þ Query expansion þ Priority Rules 1342 158 646 0.89 0.68 0.77

6 5 þ NER post-processing 1371 184 617 0.88 0.69 0.77

Table 5. Processing speed (in seconds per document) for

publicly available DNORM systems on the test set

Run MetaMap OBA BeCAS Configuration 5

1 1.03 12.98 0.62 0.31

2 1.14 12.81 0.51 0.32

3 1.01 13.09 0.51 0.3

4 1.04 13.08 0.45 0.3

5 1.21 12.75 0.46 0.3

Average response time (s) 1.09 12.94 0.51 0.3

The bold value signifies highest value with in the column.

Table 6. Performance of proposed methods on test set

Configuration Norm

TP FP FN P R F

Configuration 5 þ Term match 1444 777 544 0.65 0.73 0.69

Configuration 5 þ Phrase match 1419 339 569 0.81 0.71 0.76
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Employing abbreviation specific features similar to gazetteer

features using abbreviation lexicon would have assisted

CRF model to recognize these abbreviated mentions more

effectively (44). Our DNER module tends to recognize men-

tions in long form. For instance, ‘Rhabdomyolysis in a hepa-

titis C virus infected’ was recognized as one entity instead of

recognizing ‘Rhabdomyolysis’ and ‘hepatitis C virus in-

fected’ as two separate entities. Another issue is that our

module failed to recognize overlapping mentions such as

‘AMI/GI bleeding’, which includes AMI—Acute Myocardial

Infarction (MeSH ID: D009203) and Gastro Intestinal

bleeding (MeSH ID: D006471). Our DNER recognized

‘bleeding’ as a disease name and as a result was mapped to

D006470 referring to bleeding as a general term while

D006471 refers to a more specific Gastrointestinal bleeding.

Finally, the post-processing step improved our performance

mainly by reducing FNs and increasing TPs. However, it

also sometimes increased FPs. For example, if our DNER

module recognized the FP disease mention ‘plasticity’ once,

which is mentioned three times in the abstract, the post-

procssing ended up increasing the FP counts by three times.

Furthermore, when there are no long forms mentioned in

documents and an abbreviation was identified by our abbre-

viation finder or DNER module, expanding long form based

on short form frequency in abbreviation lexicon is not ro-

bust. For instance, ‘secondary pulmonary hypertension

(SPH)’ was incorrectly assigned to ‘Spherocytosis, Type 1’

(MeSH ID: C567159) by our system because spherocytosis

can also be abbreviated as SPH. We also explored using the

abbreviation resolution algorithm developed by Schwartz

and Hearst (48) directly, instead of our abbreviation re-

solver but it showed similar results. Therefore, more sophis-

ticated disambiguation techniques should be applied. The

above errors caused by DNER and post-processing occupied

28 and 10% respectively against all error types. Therefore,

we believe that improving the performance of DNER would

improve the performance of DNORM.

Availability

We have shared our trained models, configuration files,

enhanced dictionaries, abbreviation files and expanded

queries employed in this study at https://github.com/

TCRNBioinformatics/DiseaseExtract. The developed meth-

ods are also available for other researchers via web services

(REST API) at the same link, together with a simple web ap-

plication demonstrating our methods.

Conclusion

In this study, we developed a CRF-based DNER module

and dictionary look up method in conjunction with

enhanced dictionary and query expansion techniques to nor-

malize disease mentions. Overall, the developed method

performed better than several baseline methods. The query

expansion improved performance of normalizing entities to

MeSH IDs. The exact string matching based dictionary

lookup, with right combination of techniques can achieve

competitive results. Dictionary lookup based normalization

is easy to extend with additional techniques, has fast execu-

tion speed and highly scalable. However, further improve-

ments must be made to improve DNORM module

performance. For example, one of the major limitations of

dictionary lookup based normalization is that it does not

consider contextual information. For example, ‘dyskinesia’

can be either mapped to D004409 (Dyskinesia, Drug-

Induced) or D020820 (Dyskinesia). Depending on the infor-

mation in the document, normalization systems should be

able to select D004409 as the context of its usage in the text

is it was drug induced. Thus, in our future work, we would

like to integrate contextual information to expand queries.

Also, we would like to focus on improving, (1) the diction-

ary enhancement technique to avoid duplicates in standard

terminologies, (2) proximity based matching for candidate

pair generation, (3) priority rules, (4) abbreviation reso-

lution and (5) DNER.
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MetaMap cTAKES OBA BeCAS

Overall Pipeline NP! Lexical variants!
String matching

(Exact & Partial)! Custom

score! Disambiguation

Norm!NP!Non-lex-

ical variants

! Partial string

matching!No

disambiguation

Mgrep! String matching

(Exact & Partial)!
Semantic Expansion>

Modules for PubMed

article fetching, Sentence

splitting! tokenization

! lemmatization! POS

tagging! chunking

! Partial matching

Dictionary Lookup

Matching Type

Partial matching using

custom score

Partial matching Partial matching using

rules and semantic

expansion

Partial matching using

deterministic finite

automatons

Abbreviation

Resolution

Yes No No Yes

Query Expansion Lexical variants generated

using SPECIALIST

lexicon and Lexical Variant

Generation (LVG) tools

Non-lexical variants

(variations of head &

modifiers within noun

phrases.)

Semantic expansion

(hierarchical and

mapping info of

ontologies)

Synonyms and

Orthographic variants

Dictionary

Enhancement

No Enriched with synonyms

from UMLS and a

Mayo-maintained list

of terms

No No

Word Sense

Disambiguation

Yes No Yes No

(Continued)
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Comparison of dictionary lookup based tools
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Appendix 2

Semantic types used for MetaMap and OBA

Appendix 1 Continued

MetaMap cTAKES OBA BeCAS

Entity Type All semantic

types in UMLS

Disorders/diseases with a

separate group

for signs/symptoms,

test/procedures,

anatomy and medica-

tion/drugs

All semantic types

in UMLS

Species, anatomical concepts,

miRNAs, enzymes, chem-

icals, drugs, diseases, meta-

bolic pathways, cellular

components, biological proc-

esses, genes, proteins and

molecular functions

Terminologies UMLS SNOMED and

RxNORM

Ontologies listed on

NCBO BioPortal

UMLS

LexEBI

JoChem

NCI Metathesaurus

miRBase

Gene Ontology

Availability Desktop,

Local Java API,

Web API,

Web Portal

Desktop REST API, Virtual

machine and Web

Portal

REST API,

Python Command line client

and

Web Portal

UMLS semantic type UMLS semantic type code UMLS semantic type acronym

Congenital abnormality T019 Cgab

Acquired abnormality T020 Acab

Injury or poisoning T037 Inpo

Pathologic function T046 Patf

Disease or syndrome T047 Dsyn

Mental or behavioral dysfunction T048 mobd

Cell or molecular dysfunction T049 comd

Experimental model of disease T050 Emod

Anatomical abnormality T190 Anab

Neoplastic process T191 Neop

Sign or symptom T184 Sosy
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Appendix 3

Comparison of exact, phrase and term matches

Exact match Phrase match Term match

Each term in the query should be present in

the dictionary entry and their

order should be strictly maintained.

Matching dictionary entry must

have only those terms mentioned in query

and no additional terms allowed.

Each term in the query should be present in the

dictionary entry and their order should be

strictly maintained. Dictionary entry may have

other terms before or after the query terms.

Each term in the query should be present

in the dictionary entry and order is not

maintained. Dictionary entry must

have at least one query term.

Example: The query ‘TORCH Syndrome’

will return ‘TORCH Syndrome’

dictionary entry.

Example: The query ‘TORCH Syndrome’ will re-

turn ‘TORCH Syndrome’ as well as ‘Pseudo-

TORCH Syndrome’ entries.

For example, the query ‘TORCH Syndrome’ will

return ‘TORCH Syndrome’ as well as ‘Pseudo-

TORCH Syndrome’ entries.

Example: The query ‘TORCH syndrome’

will return ‘TORCH syndrome’ as well

as ‘Pseudo-TORCH Syndrome’,

‘TORCH’ and ‘Syndrome’ entries.

For example, the query ‘TORCH syn-

drome’ will return ‘TORCH syndrome’

as well as ‘Pseudo-TORCH Syndrome’,

‘TORCH’ and ‘Syndrome’ entries.
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