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Abstract

Background: Typically observed at 2 y after surgical resection, late recurrence is a major challenge in the management of
hepatocellular carcinoma (HCC). We aimed to develop a genomic predictor that can identify patients at high risk for late
recurrence and assess its clinical implications.

Methods and Findings: Systematic analysis of gene expression data from human liver undergoing hepatic injury and regeneration
revealed a 233-gene signature that was significantly associated with late recurrence of HCC. Using this signature, we developed a
prognostic predictor that can identify patients at high risk of late recurrence, and tested and validated the robustness of the
predictor in patients (n = 396) who underwent surgery between 1990 and 2011 at four centers (210 recurrences during a median of
3.7 y of follow-up). In multivariate analysis, this signature was the strongest risk factor for late recurrence (hazard ratio, 2.2; 95%
confidence interval, 1.3–3.7; p = 0.002). In contrast, our previously developed tumor-derived 65-gene risk score was significantly
associated with early recurrence (p = 0.005) but not with late recurrence (p = 0.7). In multivariate analysis, the 65-gene risk score was
the strongest risk factor for very early recurrence (,1 y after surgical resection) (hazard ratio, 1.7; 95% confidence interval, 1.1–2.6;
p = 0.01). The potential significance of STAT3 activation in late recurrence was predicted by gene network analysis and validated
later. We also developed and validated 4- and 20-gene predictors from the full 233-gene predictor. The main limitation of the study
is that most of the patients in our study were hepatitis B virus–positive. Further investigations are needed to test our prediction
models in patients with different etiologies of HCC, such as hepatitis C virus.

Conclusions: Two independently developed predictors reflected well the differences between early and late recurrence of
HCC at the molecular level and provided new biomarkers for risk stratification.

Please see later in the article for the Editors’ Summary.
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Introduction

Liver cancer is the second-leading cause of cancer mortality

worldwide, accounting for approximately 600,000 cancer-related

deaths annually [1]. The incidence rate of hepatocellular

carcinoma (HCC), the most common type of liver cancer, has

increased in the United States recently and is expected to double

in the next 10 to 20 y [2–4]. Despite recent advances in diagnosis

and management, the median survival of patients with HCC is less

than 8 mo, and the disease is still one of the most fatal cancers [4].

Surgical resection, liver transplantation, and local ablation remain

the only curative modalities of HCC [5,6], and recurrence occurs

in up to 70% of patients within 5 y after resection [7,8]. Therefore,

among patients who have received curative treatment, survival is

jeopardized by tumor recurrence.

In HCC, two distinct types of recurrence are known. Early

recurrence arises from primary cancer cells disseminating to the

surrounding liver and is usually observed within the first 2 y after

surgery. In contrast, late recurrence, which is typically observed

.2 y after surgery, appears to be a result of chronic liver damage

known as the ‘‘field effect,’’ and produces de novo tumors that are

independent of resected primary tumors [7]. The two types of

recurrence have different clinical courses and probably appear in

distinct biological contexts [9]. For better disease management, it

is therefore important to uncover the biological characteristics of

each type of recurrence and to develop distinct molecular

prognostication systems that can identify patients at high risk for

either type. Despite the importance of managing recurrence, our

knowledge of the genetic alterations associated with either type,

especially late recurrence, is fragmentary.

Chronic injury and inflammation are known to promote tumor

development. HCC is one of the best known examples, as more

than 90% of HCCs arise in the context of hepatic injury and

inflammation [10–12]. Chronically unresolved inflammation is

frequently associated with persistent hepatic injury and concurrent

regeneration, which prime the liver for development of HCC [13].

This process is highly similar to a persistent wound-healing

response, regardless of the differences among various etiological

factors such as viruses, alcohol, and fatty liver [14,15]. Therefore,

we hypothesized that gene expression patterns significantly

associated with hepatic injury and regeneration (HIR) would

reflect the potential risk of HCC development as well as the de

novo recurrence of HCC, and that these patterns could serve as

predictive markers to identify patients with high risk of de novo

recurrence after treatment.

We and other researchers have discovered several genomic

predictors for recurrence of HCC [16–23]. In particular, one study

identified a prognostic gene expression signature (the Broad

signature) that was significantly associated with late recurrence of

HCC in a patient population that was mostly hepatitis C virus

(HCV)–positive [20]. However, it is currently unknown whether

this signature is applicable to HCC associated with other

etiological factors. Furthermore, molecular or genomic predictors

that can predict and discriminate early and late recurrence have

not been firmly established. In the current study, we aimed to

analyze gene expression data from human livers undergoing liver

injury with regeneration in order to develop a genomic predictor

for late recurrence of HCC that is associated with hepatitis B virus

(HBV) and a new prognostication model for prediction and

discrimination of early and late recurrence of HCC after surgery.

Methods

Study Design: Patients and Cohorts
This is a retrospective multi-center cohort study aimed at

investigating the association of a gene expression signature

reflecting HIR in human liver with recurrence of HCC and

developing a genomic predictor that can identify patients with a

high risk of recurrence after surgical treatment. Archived tissue

samples (tumors and matched surrounding non-tumor tissues) of

72 HCC patients (cohort 1) undergoing hepatectomy as primary

treatment at the Dongsan Medical Center of Keimyung Univer-

sity, Daegu, Korea, and the Guro Hospital of Korea University

College of Medicine, Seoul, Korea, between 26 December 2001

and 3 June 2011 were included in this study. Patients were

consecutively enrolled and selected on the basis of the availability

of both tumor tissues and non-tumor surrounding tissues. All liver

tissues were frozen in liquid nitrogen and stored at 280uC until

RNA extraction. The study protocols were approved by the

Institutional Review Boards at Dongsan Medical Center, Guro

Hospital, and the University of Texas MD Anderson Cancer

Center, and all participants provided written informed consent.

Patients in cohort 1 were followed up prospectively at least once

every 3 mo after surgery. Recurrence-free survival, which was

defined as the time from surgery to the first confirmed recurrence,

was censored when a patient died or was alive without recurrence

at last contact. To test the robustness of the genomic predictor,

gene expression data from two independent cohorts were used.

Gene expression and clinical data from Queen Mary Hospital of

University of Hong Kong (cohort 2, n = 96) and Fudan University

in China (cohort 3, n = 228) were obtained from Gene Expression

Omnibus (GSE22058 and GSE14520, respectively) [24,25].

Patients in the two validation cohorts underwent surgery between

1990 and 2007. The baseline characteristics of all three cohorts are

shown in Table 1. The patients in the three cohorts are largely

representative of those with HBV.

Gene Expression Data from Human Tissues
To identify a gene expression signature that faithfully reflects

HIR in human liver, i.e., a HIR signature, we acquired gene

expression data from liver biopsies of liver transplantation and

hepatectomy patients from the National Center for Biotechnology

Information’s Gene Expression Omnibus database. The first and

second sets of biopsies were taken from the livers of deceased

donors (n = 13) and living donors (n = 8), respectively (GSE12720)

[26]. The first core biopsies were taken before manipulation of the

liver, and the second biopsies were taken after reperfusion

following completion of bile duct anastomosis. A third set of

biopsies was taken before and after surgery from remnant liver of

patients who had undergone partial hepatectomy as treatment for

colon cancer metastasis or hepatoblastoma (n = 4, GSE15239).

Gene expression data from cohort 1 were generated using the

Illumina microarray platform HumanHT-12 version 4. Briefly,

total RNA was extracted from fresh-frozen tissues using a mirVana
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RNA isolation and labeling kit (Ambion). For each sample, 500 ng

of total RNA was used for labeling and hybridization according to

the manufacturer’s protocols. After the bead chips were scanned

with an Illumina BeadArray Reader, the microarray data were

normalized using the quantile normalization method in the Linear

Models for Microarray Data package in the R language

environment [27]. The expression level of each gene was

transformed into log2 base before further analysis. Primary

microarray data from human liver tissues are available in the

National Center for Biotechnology Information’s Gene Expression

Omnibus public database (accession number GSE39791).

Selection of Genes in the Hepatic Injury and
Regeneration Signature

We identified genes that were differentially expressed between two

series of biopsies in three different datasets (partial hepatectomy,

deceased-donor liver transplantation, and living-donor liver trans-

plantation). Genes were considered statistically significant if their p-
value was less than 0.005. This stringent significance threshold was

used to limit the number of false-positive findings. We also performed

a global test of whether the expression profiles differed between two

classes (two series of biopsies) by permuting the labels of which arrays

corresponded to which classes. For each permutation, the p-values

were recomputed, and the number of genes significant at the 0.005

level was noted. The proportion of the permutations that gave at least

as many significant genes as the actual data was the significance level

of the global test. A total of 325 gene features (representing 233

unique genes) were identified as the HIR signature.

Statistical Analysis
We used BRB ArrayTools for analysis of gene expression data

[28]. Genes differentially expressed between the two classes of

HCC were identified using a random-variance t-test [29].

Expression was considered statistically significant if the p-value

was less than 0.005. To stratify HCC patients as being at low risk

or high risk of de novo late recurrence of disease according to the

HIR signature, we applied a classification algorithm based on a

Bayesian compound covariate predictor (see Text S1) [30].

For patient stratification in our cohorts according to the 186-

gene Broad surrounding tissue signature, we applied a weighted

gene approach to stratify HCC patients as described in a previous

study [20]. Out of the 186 genes, 170 were present in the

microarray platforms from three cohorts. Gene expression data

were centralized independently across all samples before they were

integrated. The patients were stratified into two risk groups using a

Cox score derived in a previous study [20]. Briefly, each gene was

weighted using the corresponding Cox score, and all patients were

ranked by the summation of gene weights. In the Broad risk score,

a higher score is associated with poorer prognosis. The patients

whose gene weights were higher than the lowest gene weight of the

poor prognosis group in the Broad cohort were classified as the

poor prognosis group; those patients whose gene weights were

lower than the highest gene weights of the good prognosis group in

the Broad cohort were classified in the good prognosis group.

Prediction analysis of microarrays (PAM) was carried out as

described previously [31]. In addition to PAM, multivariate

logistic regression analysis was carried out to find minimum genes

in the prediction model. Briefly, univariate analysis was first

applied to genes in the HIR signature to identify genes whose

expression was significantly associated with recurrence-free

survival in the pooled patient cohort (p,0.005), yielding 13 genes.

Next, backward stepwise multivariable regression analysis was

carried out to find genes as independent predictors of recurrence

(p,0.1). Four genes (RALGDS, IER3, CEBPD, and SLC2A3)

were identified from the analysis.

Patient prognoses were estimated using Kaplan–Meier plots and

the log-rank test. We used multivariate Cox proportional hazards

regression analysis to evaluate independent prognostic factors

associated with recurrence-free survival. Recurrence-free survival

was defined as the time from surgery to the first confirmed

recurrence; data were censored when a patient died or was alive

without recurrence at last contact. As covariates we used sex, age,

alpha-fetoprotein concentration, infection with HBV, liver cirrhosis,

tumor size, tumor number, vascular invasion, Barcelona Clinic Liver

Cancer (BCLC) tumor stage, 65-gene risk score, and the HIR

signature [32]. All statistical tests were two-tailed. A p,0.05 indicated

Table 1. Baseline characteristics of HCC patients.

Variable Cohort 1 (n = 72) Cohort 2 (n = 96) Cohort 3 (n = 228)

Male sex 58 (80.6%) 78 (81.3%) 201 (88.2%)

Median (range) age (years) 57.5 (29–77) 55 (27–80) 50 (21–77)

AFP .300 ng/ml 18 (25.0%) 36 (37.5%) 104 (45.6%)

HBV 60 (83.3%) 84 (87.5%) 209 (91.7%)

Liver cirrhosis 36 (50.0%) 60 (62.5%) 211 (92.5%)

Tumor size #5 cm 45 (62.5%) 36 (37.5%) 145 (63.6%)

Single tumor 60 (83.3%) 71 (74.0%) 183 (80.3%)

Vascular invasion 24 (33.3%) 47 (49.0%) 88 (38.6%)

BCLC stage*

0 5 (6.9%) 4 (4.2%) 20 (8.8%)

A 53 (73.6%) 64 (66.7%) 144 (63.2%)

B 8 (11.1%) 19 (19.8%) 22 (9.6%)

C 6 (8.3%) 9 (9.4%) 26 (11.4%)

Median follow-up (months) 33.1 45.7 51.9

*BCLC stage was not available for 16 patients of cohort 3.
AFP, alpha-fetoprotein.
doi:10.1371/journal.pmed.1001770.t001
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Figure 1. Hepatic injury and regeneration gene expression signature from human liver. (A) Venn diagram of human genes whose
expression levels are significantly different before and after liver transplantation or partial hepatectomy. Three gene lists (X, Y, and Z) represent
differentially expressed genes from three datasets (partial hepatectomy [PHx], deceased-donor transplantation [DD], and living-donor transplantation
[LD]). A p-value of ,0.005 was required for a gene to be retained. (B) Expression patterns of the 325 probes representing 233 unique genes shared by
the three patient groups. The data are presented in matrix format, in which rows represent individual genes, and columns represent each tissue
sample. Each cell in the matrix represents the expression level of a gene feature in an individual tissue sample. The colors red and green in cells reflect
relatively high and low expression levels, respectively, as indicated in the scale bar (log2 transformed scale). Colored bars at the top of the heat map
represent samples as indicated.
doi:10.1371/journal.pmed.1001770.g001
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statistical significance. All statistical analyses were conducted in the R

language environment (http://www.r-project.org).

Gene Network Analysis for Identification of Dominant
Transcription Factors

We used the gene network analysis built into Ingenuity Pathway

Analysis to identify potential upstream transcription factors that

regulate gene expression patterns enriched in the HIR subtype.

The analysis is based on prior knowledge of expected effects of

transcriptional factors on their target genes stored in the Ingenuity

Knowledge Base [33]. Briefly, the analysis examines the known

targets of each transcription factor in the HIR signature and

compares their direction of change (i.e., expression in the HIR

subtype relative to the quiescent [QT] subtype) to what is expected

from the literature. If the direction of change is consistent with the

literature across the majority of targets, then the transcriptional

factor is predicted to be active in the HIR subtype, whereas if the

direction of change is mostly inconsistent (anti-correlated) with the

literature, then the transcriptional factor is predicted to be inactive

in the HIR subtype. If there is no clear pattern, then there is no

prediction either way. Regulation z-score was used to estimate the

activation state of the transcription factors. An absolute z-score of

.2 was considered significant as suggested by Ingenuity Pathway
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Figure 2. Construction of prediction models in test cohorts. (A) A schematic overview of the strategy used for constructing prediction models
and evaluating predicted outcomes based on the 325-gene HIR signature. (B–D) Kaplan–Meier plots of the HIR and QT subgroups predicted by the
Bayesian compound covariate predictor in cohorts 1 (B), 2 (C), and 3 (D). p-Values were obtained by log-rank test. The vertical lines indicate censored
data. BCCP, Bayesian compound covariate predictor; LOOCV, leave-one-out cross-validation; RFS, recurrence-free survival.
doi:10.1371/journal.pmed.1001770.g002
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Analysis. The overlap p-values generated by Fisher’s exact test

were used to estimate the statistical significance of overlap between

the dataset genes and the genes regulated by a transcription factor.

Immunohistochemistry
Surrounding liver tissues from 20 patients with HCC (ten with

early recurrence [#2 y] and ten with late recurrence [.2 y]) were

investigated for immunohistostaining validation. For comparison,

normal liver tissues obtained from nine donors for liver

transplantation were used as normal control. Representative

sections of formalin-fixed, paraffin-embedded tissues were used

for immunohistochemistry. Primary antibodies against STAT3

(Clone 124H6, Cell Signaling Technology; dilution 1:2,000) and

p-STAT3 (Tyr705; Clone D3A7, Cell Signaling Technology;

dilution 1:200) were used. Briefly, 4-mm-thick sections of the tissues

were deparaffinized and rehydrated. After treatment with a 3%

hydrogen peroxide solution for 10 min to block endogenous

peroxidases, the sections were pretreated in 10 mM citrate buffer

(pH 6.0) in a microwave oven for 15 min for antigen retrieval.

After incubation with the primary antibodies, the sections were

processed using the EnVision detection system (Dako) according to

the manufacturer’s instructions, and 3,39-diaminobenzidine tetra-

hydrochloride was used as a chromogen. All sections were

counterstained with Mayer hematoxylin. For interpretation of

the immunohistochemical stain results, the staining intensities of

STAT3 were graded on a scale of 0 to 2 (0, negative; 1, moderately

positive; 2, strongly positive), and the extent of distribution was

rated on a scale of 0 to 3 (0, positive in ,1%; 1, 1%–30%; 2,

31%–70%; 3, 71%–100%). For p-STAT3, the staining intensities

were graded on a scale of 0 to 3 (0, negative; 1, weakly positive; 2,

moderately positive; 3, strongly positive), and the extent of

distribution was also rated on a scale of 0 to 3 (0, not positive;

1, 0.1%–1%; 2, 1%–5%; 3, .6%). The histoscore was determined

by multiplying the intensity scores by the distribution scores

(histoscore for STAT3: score 0, 0; score 1, 1–3; score 2, 4–6;

histoscore for p-STAT3: score 0, 0–1; score 1, 2–4; score 2, 6–9).

Quantitative Reverse Transcription PCR Experiments
The mRNA expression levels of 19 genes (BIRC3, GADD45B,

IL1RN, LDLR, MCL1, RALGDS, CDKN1A, CCL20, ADM,
MYC, DUSP5, BCL3, SOD2, SERPINE1, PHLDA1,
C13ORF15, IER3, CEBPD, and SLC2A3) were quantified using

quantitative reverse transcription polymerase chain reaction

(qRT-PCR) experiments. Total RNAs from the surrounding

non-tumor liver tissues of 24 patients in cohort 1 were reverse-

transcribed using a first-strand cDNA synthesis kit (Promega,

according to the manufacturer’s specifications). The resulting

cDNAs were assayed using OriGene primers specific to each gene

Table 2. Univariate and multivariate Cox regression analyses of recurrence-free survival of patients in two different recurrence
groups.

Characteristics Univariate Analysis
Multivariate Analysis with 65-
Gene RS

Multivariate Analysis with
HIR Signature

Hazard Ratio
(95% CI) p-Value

Hazard Ratio
(95% CI) p-Value

Hazard Ratio
(95% CI) p-Value

Very early recurrence group (,1 y, n = 125*)

Patient sex (male or female) 1.1 (0.6–1.9) 0.84

Age (.60 y or #60 y) 0.9 (0.6–1.3) 0.47

AFP (.300 ng/ml or #300 ng/ml) 1.2 (0.8–1.7) 0.40

Cirrhosis (yes or no) 1.2 (0.7–1.9) 0.48

Tumor size (.5 cm or #5 cm) 1.6 (1.2–2.4) 0.01 1.2 (0.7–1.9) 0.34

Multinodular tumors (yes or no) 1.4 (0.9–2.2) 0.13

Microvessel invasion (yes or no) 2.0 (1.3–2.9) ,0.001 1.6 (1.0–2.5) 0.03

BCLC stage (0/A or B/C) 1.9 (1.3–2.9) 0.001 1.3 (0.8–2.1) 0.25

HIR signature# (HIR or QT) 1.0 (0.7–1.5) 0.97

65-gene RS# (high or low) 1.8 (1.2–2.8) 0.003 1.8 (1.2–2.7) 0.008

Late recurrence group (.2 y, n = 215*)

Patient sex (male or female) 1.6 (0.7–3.4) 0.26

Age (.60 y or #60 y) 1.0 (0.6–1.7) 0.97

AFP (.300 ng/ml or #300 ng/ml) 0.7 (0.4–1.2) 0.78

Cirrhosis (yes or no) 0.9 (0.5–1.6) 0.72

Tumor size (.5 cm or #5 cm) 1.2 (0.7–2.1) 0.45

Multinodular tumors (yes or no) 1.1 (0.6–2.3) 0.73

Microvessel invasion (yes or no) 1.5 (0.9–2.5) 0.11

BCLC stage (0/A or B/C) 1.8 (0.9–3.5) 0.08 1.7 (0.9–3.4) 0.11

HIR signature# (HIR or QT) 2.2 (1.3–3.8) 0.002 2.2 (1.3–3.7) 0.002

65-gene RS# (high or low) 1.1 (0.6–2.1) 0.73

*Patients without BCLC stage were not included in multivariate analysis.
#Two subgroups of the prognostic signatures were used as covariates during analysis.
AFP, alpha-fetoprotein; RS, risk score.
doi:10.1371/journal.pmed.1001770.t002
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and the Mastercycler ep realplex system (Eppendorf). Cycling

conditions were 95uC for 30 s, followed by 40 cycles of 95uC for

5 s, 62uC for 30 s, and 72uC for 20 s. Relative amounts of mRNAs

were calculated from the threshold cycle number using expression

levels of GAPDH as an endogenous control. All experiments were

performed in triplicate, and average values are presented.

Results

The Hepatic Injury and Regeneration Signature and Its
Association with Recurrence of HCC

Because injury-mediated wound healing triggers hepatic regenera-

tion and inflammation that can prime the liver for development of

HCC [13], we tried to find genes whose expression patterns are highly

associated with injury and regeneration in human liver. To do this, we

used gene expression data from three types of injured livers: livers from

patients with partial hepatectomy, livers from deceased-donor liver

transplantations, and livers from living-donor liver transplantations.

We first independently selected genes whose expression patterns

differed significantly (p,0.005) before and after hepatic injury with

regeneration in the three data-sets. The expression of 325 probes

representing 233 unique genes (the HIR signature) was significantly

altered in all three datasets (Figure 1; Table S1).

Because the expression patterns of selected genes should reflect

persistent HIR, mimicking the priming condition for HCC

development, we hypothesized that the HIR signature would be

highly associated with the development of HCC or de novo

recurrence of HCC. Thus, we applied the HIR classification

algorithm to gene expression data from patients’ surrounding non-

tumor liver tissues to test whether it could predict the recurrence of

HCC after surgery. Gene expression data of surrounding tissues

from the 72 patients in cohort 1 were used for this analysis, and the

Bayesian compound covariate predictor algorithm [30] was

applied (Figure 2A) as described in Text S1.

When patients in cohort 1 were dichotomized according to the

HIR signature, 23 patients (32%) were predicted to have a high

probability (.0.5) of having the HIR signature (HIR subgroup),

and 49 patients (68%), a high probability of having the QT

signature (QT subgroup). Recurrence-free survival differed signif-

icantly by subgroup (p = 0.01 by log-rank test; Figure 2B), strongly

indicating that the HIR signature can identify patients with a high

risk of overall recurrence after surgery.

We further tested the association of the HIR signature with

recurrence in the independent cohort 2 by applying the HIR

classification algorithm to gene expression data from surrounding

tissues and found that recurrence-free survival between the

predicted subgroups differed significantly (p = 0.02; Figure 2C).

The robustness of the signature’s association with patient

prognosis was further validated in another, larger independent

cohort (p = 0.004 in cohort 3; Figure 2D). The results from these

three independent HCC cohorts clearly demonstrate a strong

association between the HIR signature and HCC recurrence.

Prediction of Late Recurrence of HCC by HIR Signature
Because de novo recurrence largely comprises late recurrence,

which usually occurs .2 y after surgery [7], we carried out a

subset analysis of the pooled data to assess the ability of the HIR

signature to predict early and late recurrence. The signature

lacked a significant association with early recurrence (recurrence

#2 y after surgery; p = 0.2), but was significantly associated with

late recurrence (recurrence .2 y after surgery; p = 0.001;

Figure 3A). Furthermore, when we carried out stepwise subset

analysis for recurrence more than 2 y, 3 y, and 4 y after surgery,

the significance of the association of the HIR signature with late

recurrence remained the same (Figure S1), providing evidence of a

strong association between the HIR signature and late recurrence

regardless of the cutoff time for late recurrence. This finding

strengthens our hypothesis of a direct correlation of the HIR

signature with de novo development of HCC.

Prediction of Early Recurrence of HCC by a Tumor-
Derived 65-Gene Risk Score

Using gene expression data from tumors, we had previously

developed a 65-gene risk score that can identify patients at high

risk for HCC recurrence after surgery [34]. When we applied it to

gene expression data from tumors of the same patients (n = 396),

the risk score was significantly associated with a high overall

recurrence rate (p = 0.009; Figure 3B). However, it was signifi-

cantly associated with early recurrence only (p = 0.005) and failed

to identify patients at high risk for late recurrence (p = 0.7),

suggesting that this tumor-derived signature is more directly

correlated with recurrence mediated by intrahepatic metastasis of

primary tumors, which usually occurs within 2 y after surgery [7].

Because recurrence is the leading cause of death among HCC

patients during the first year after surgery [35–37], we further

divided early recurrence patients into very early (,1 y) and

intermediate (between 1 and 2 y) recurrence subpopulations and

assessed the ability of two different predictors, the tumor-derived

65-gene risk score and the HIR signature, to prognosticate each of

the recurrence types. As we expected, the HIR signature was not

significantly associated with very early (p = 0.7) or intermediate

recurrence (p = 0.3) but remained significantly associated with late

recurrence (p = 0.001) (Figure S2). The tumor-derived risk score

was significantly associated with the very early recurrence group

(p,0.001) but not with the intermediate recurrence group (p = 0.4)

or the late recurrence group (p = 0.7) (Figure S2). The fact the both

signatures failed to identify patients at high risk for recurrence

between 1 and 2 y after surgical resection suggests that

intermediate recurrence might be a mixture of metastatic and de

novo recurrence.

Clinical Significance of the Prognostic Genomic
Signatures

We next assessed the prognostic association between the two

predictors (the HIR signature and the 65-gene risk score) and

known demographic and clinical risk factors. For the very early

recurrence subgroup (recurrence less than 1 y after surgical

resection), significant predictors of recurrence-free survival were

the 65-gene risk score (p = 0.003) and BCLC stage (p = 0.001),

which is the most frequently used clinical staging system and

already a well-known risk factor for HCC recurrence (Table 2) [5].

When the 65-gene risk score was included in the multivariate

model, it was the strongest predictor of recurrence-free survival

(hazard ratio, 1.8; 95% confidence interval, 1.2–2.7; p = 0.008).

The HIR signature was not a significant predictor of very early

recurrence.

In the late recurrence subgroup (recurrence more than 2 y after

surgical resection), the HIR signature (p = 0.002) and BCLC stage

(p = 0.08) were important predictors of recurrence-free survival

(Table 2). The HIR signature was the stronger predictor in

multivariate analysis (hazard ratio, 2.2; 95% confidence interval,

1.3–3.7; p = 0.002). The 65-gene risk score was not a significant

predictor of late recurrence.

Because the BCLC staging system recommends curative

modalities, such as surgery, for only selected patients with HCC

(i.e., BCLC stage 0 and A), we then limited our analysis to patients

whose tumors were BCLC stage 0 or A at the time of surgery

Genomic Predictors of HCC Recurrence
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(n = 290). The significant association between the HIR signature

and late recurrence remained the same regardless of the cutoff

time for late recurrence (Figure S3). Likewise, the association of

the 65-gene risk score with early recurrence remained significant

(Figure S4).

We next examined the concordance of the HIR signature with a

previously developed 186-gene prognostic signature predicting late

recurrence called the Broad signature [20]. When the Broad

classification algorithm was applied to our cohort, 93 patients were

classified into the high-risk group for late recurrence. Consistent

with a previous report [20], patients in the Broad high-risk group

had significantly worse recurrence-free survival rates (both overall

and for late recurrence) (Figure 4A). The outcomes of the two

independent prognostic models showed moderate concordance: of

the 136 patients in the HIR subgroup, 54 were identified as being

at high risk by the Broad signature (r = 0.27 by Cramer V statistics;

p,0.001) (Table S2). It is also interesting that only four genes

overlapped in both prognostic signatures, suggesting that the two

signatures may capture different biological characteristics associ-

ated with late recurrence of HCC. This notion was supported by

the improved prognostication when the outcomes of both

prognostic models were integrated (Figure 4B). Furthermore, the

hazard ratio for late recurrence in the high-risk group was

substantially increased in the integrated model regardless of the

cutoff for defining late recurrence (Table 3).

Biological Insights of Early and Late Recurrence
Signatures

To gain better insight into the molecular characteristics of the

HIR signature, we categorized genes according to their known

functions based on the Ingenuity Knowledge Base repository [33].

As we expected, many genes associated with the inflammatory

response, inflammatory disease, and cell death were significantly

enriched in the signature (Table S3), suggesting that the HIR

signature reflects well the tissue damage that occurs during liver

transplantation and hepatectomy. Other significantly enriched

categories were cellular growth and proliferation, cancer, cell

cycle, and cellular movement, which suggests that the signature

also reflects the initiation of regeneration. In line with previous

observations indicating a close association of HIR with the

development and progression of HCC [38–42], many functional

categories of genes in the signature are closely related to cancer

development. We next carried out gene network analysis of the

233 genes in the HIR signature to uncover potential upstream

regulators of the HIR signature, and discovered strong over-

representation of five transcription factors, NOTCH1, STAT3,

PDX1, TP53, and RELA (Table S4). Functional connectivity of

the gene network further identified potential interaction between

NOTCH1 and STAT3 (Figure 5A). This observation is in good

agreement with the well-known role of STAT3 in liver regener-

ation and the potential interaction between the STAT3 and

NOTCH pathways [43–45].

We also assessed genes whose expression in surrounding non-

tumor liver tissues from patients in all three cohorts was

significantly different between the HIR and QT subgroups (p,

0.001 by two-sample t-test) and identified 177 genes (Figure S5).

We then examined the activation status of transcription factors in

the HIR subgroup. STAT3 (p,0.001) and NOTCH1 (p,0.001)

were again significantly activated in the HIR subgroup (Figure S6),

strongly supporting the idea that these transcription factors and

the signaling pathways associated with them play key roles in late

de novo recurrence of HCC. To further validate the activation of

STAT3 in surrounding non-tumor tissues in HCC with late

recurrence, we carried out immunohistostaining of STAT3 and p-

STAT3, an indicator of STAT3 activation [46], with normal liver

tissue, surrounding tissues of HCC with early recurrence (,1 y),

and surrounding tissues of HCC with late recurrence (.3 y).

Activation of STAT3 was significantly higher in surrounding

tissues of HCC with late recurrence than in surrounding tissues of

HCC with early recurrence or in normal liver tissue (Figure 5B–

5D; Table S5). In addition, we also remeasured expression of

downstream targets of NOTCH1 (MYC, BIRC3, CDKN1A,

CEBPD, and SERPINE1) in surrounding tissues using qRT-

PCR methods. Consistent with our prediction, expression of

downstream targets was significantly higher in HIR subtype than

QT subtype samples (Figure S7), suggesting that transcriptional

activity of NOTCH1 might be more active in HIR subtype. Taken

together, these data strongly support our prediction based on gene

network analysis.

We next carried out similar analysis with the 65 genes of the risk

score associated with early recurrence. Unlike the HIR signature,

the vast majority of the genes in the risk score were in functional

categories related to angiogenesis and invasion (Table S6),

supporting the notion that early recurrence is largely mediated

by intrahepatic metastasis. Taken together, these results strongly

suggest that the 65-gene risk score and the HIR signature reflect

well the biological characteristics or mechanisms that are

accountable for two distinct types of HCC recurrence, and that

they can be used to identify patients at risk for early or late

recurrence, respectively.

Minimum Number of Genes for a Prognostic Model
Because the number of genes in the HIR signature (233 genes) is

too large for easy translation of current findings into clinical

practice, we estimated the minimum number of genes that can

faithfully predict the HIR and QT subgroups. When the PAM

algorithm that can find subsets of genes that best characterize each

class [31] was applied to the HIR signature, ten to 20 genes were

estimated to be sufficient to construct reliable prediction models

with a 10% miscalculation rate (Figure S8). To confirm this

Table 3. Hazard ratios of high-risk groups in three prognostic models.

Model Recurrence after 2 y Recurrence after 3 y Recurrence after 4 y

Hazard Ratio
(95% CI) p-Value

Hazard Ratio
(95% CI) p-Value

Hazard Ratio
(95% CI) p-Value

HIR signature (HIR or QT) 2.2 (1.3–3.8) 0.002 2.6 (1.3–5.4) 0.007 3.2 (1.2–8.5) 0.01

BROAD signature (high risk or low risk) 1.8 (1.0–3.2) 0.04 1.6 (0.7–3.7) 0.25 1.9 (0.6–5.9) 0.26

Combined signature (HIR and Broad high-risk
or QT and Broad low-risk)

3.4 (1.7–6.6) ,0.001 4.1 (1.5–10.5) 0.004 6.0 (1.7–10.7) 0.004

doi:10.1371/journal.pmed.1001770.t003
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prediction, we randomly selected 20 genes from the top ten

functional categories in Table S3 (two genes per category) (Table

S7) and constructed a prediction model with these 20 genes

(HIR20 model). Consistent with PAM, the miscalculation rate of

the HIR20 model for the HIR subgroup was 8%, and the

concordance of the HIR20 model with the original model was

significantly high (r = 0.84 by Cramer V statistics, p,0.001) (Table

S8). Furthermore, the prognostic significance of the HIR20 model

was very similar to that of the original model (Figure 6A).

As an independent approach to finding the minimum number

of genes needed in the prediction model, we next carried out

multivariate logistic regression analysis. It identified four genes

(RALGDS, IER3, CEBPD, and SLC2A3) as independent

predictors of recurrence. We next tested whether the expression

data of these four genes would be sufficient to construct a reliable

prognostic model. Similar to the HIR20 model, the four-gene

prognostic model (HIR4) showed significant concordance with

original model (r = 0.64 by Cramer V statistics, p,0.001) (Table

S9). The prognostic significance of the HIR4 model was also

highly similar to those of the HIR20 and original models

(Figure 6B). Taken together, our data strongly suggest that four

to 20 genes is sufficient to identify patients at high risk for late

recurrence.

We next assessed the reproducibility of the gene expression

measurements in our microarray study by carrying out qRT-PCR

experiments with RNAs from cohort 1. For 15 selected genes in

the HIR signature, expression from qRT-PCR experiments was

significantly correlated with the microarray results (Figure S9). In

particular, the correlations of 11 genes (BIRC3, GADD45B,
IL1RN, LDLR, CDKN1A, CCL20, DUSP5, BCL3, SERPINE1,

Figure 6. Concordance of HIR20 and HIR4 models with original HIR model. Patients were stratified by HIR20 model (A) or HIR4 model (B). All
patients (n = 396) are plotted in the left panel, those with early recurrence (#2 y) in the middle panel, and those with late recurrence (.2 y) in the
right panel. p-Values were obtained from the log-rank test. Vertical lines denote observations that were censored owing to loss to follow-up or on the
date of the last contact.
doi:10.1371/journal.pmed.1001770.g006
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PHLDA1, and C13ORF15) were extremely high (r.0.8; p,

0.001), suggesting that the expression data of most genes would be

highly reproducible. In addition, our data demonstrated high

concordance of four genes selected from multivariate logistic

regression analysis (Figure S10), further suggesting that a

prediction model can be developed with expression data from

simpler technology such as qRT-PCR.

Discussion

By analyzing gene expression data from human liver undergo-

ing liver injury and regeneration that mimics the wound-healing

process, and surrounding non-tumor liver tissues of patients with

HCC, we identified a signature that was significantly associated

with late recurrence (.2 y) after resection of the primary tumor.

The robustness of this signature was validated using three

independent cohorts with a total of 396 patients. Our results also

suggest that signaling pathways activated during HIR may play

important roles in de novo late recurrence of HCC, and are

potential explorable therapeutic targets for prevention of de novo

recurrence of HCC.

We further demonstrated that our previously developed tumor-

derived 65-gene risk score was strongest for predicting very early

recurrence (,1 y). Thus, genetic information from tumors may be

limited for predicting very early recurrence, but surrounding non-

tumor liver tissues may contain genetic information sufficient for

predicting late recurrence. These findings support a previously

developed notion that early recurrence might be largely due to

metastatic tumor regrowth of primary tumor while late recurrence

might be due to de novo tumor development from non-cancerous

lesions with predisposing risk [7,9].

A significant association of STAT3 activation with late

recurrence was suggested by the gene network analysis with the

HIR signature and later validated by immunohistostaining of the

surrounding liver tissues. Our findings are in good agreement with

previous studies demonstrating that STAT3 is necessary for both

liver regeneration following hepatic injury and hepatocarcinogen-

esis in mouse models [43,45]. The importance of STAT3 in de

novo recurrence is supported by the concordant high expression of

interleukin 6 (IL6) [46], a key upstream regulator of STAT3 in the

liver. An earlier study demonstrated that IL6 is accountable for a

higher incident rate of HCC in males than in females in a mouse

model [47], suggesting that higher IL6 expression and the

subsequent activation of STAT3 in surrounding liver ‘‘prime’’

events for tumor development. STAT3 can be also activated by

other cytokines such as IL22 and leptin [48,49], suggesting that

diverse pathways might be involved in activation of STAT3 and

increase susceptibility to de novo recurrence. The concomitant

activation of NOTCH1, and its potential cross-talk with STAT3 in

the HIR subgroup, is also intriguing because of the roles of both

proteins in stem cells and organ regeneration [50]. Previous studies

also support potential roles of other identified genes in the

prediction model. For example, higher expression of RALGDS in

HCC was previously reported, and silencing or inhibition of

RALGDS significantly reduced tumorigenesis in an animal model

[51]. Higher expression of CCL20 and SOCS3 was significantly

associated with poor prognosis after curative resection of HCC

tumors [52,53]. Our data provide evidence for the current notion

postulating that micrometastasis and de novo development are

accountable for early and late recurrence, respectively, and suggest

an update to the notion in recognition of the distinct molecular

mechanisms for each type of recurrence that are not shared.

A previous study identified a prognostic 186-gene expression

signature (the Broad signature) from surrounding non-tumor

liver tissues of HCC patients that was significantly associated

with late recurrence of HCC [20]. Only a few genes were shared

between the independently developed HIR and Broad signa-

tures of late recurrence, and the outcomes of the two prognostic

models showed only moderate concordance. Interestingly,

prognostication was substantially improved when the outcomes

of both prognostic models were integrated, suggesting that each

signature captures different biological characteristics that may

be equally important in late recurrence of HCC. However, we

cannot rule out the possibility that differences in the techno-

logical platforms account for there being only moderate

concordance between the two predictors: the Broad signature

was developed using a DASL (DNA annealing, selection, and

ligation) microarray platform and RNA from formalin-fixed

paraffin-embedded tissue, whereas the HIR signature was

developed using the Affymetrix microarray platform and RNA

from fresh-frozen tissues. In addition, there are substantial

differences in the patient populations of the two studies. Patients

in the Broad study were largely HCV-positive, while the patients

in our study were mostly HBV-positive. Therefore, differences

in etiologies between the two patient cohorts might be another

contributing factor accountable for the only moderate concor-

dance between the two models.

We also assessed the minimum number of genes required for a

reliable prediction model by several independent approaches.

First, PAM showed that ten to 20 genes would be sufficient to

construct a reliable predictor with an approximately 10%

miscalculation rate. Second, we found that a 20-gene predictor

(HIR20 model) worked as well as the full 233-gene HIR predictor

in identifying patients at high risk for late recurrence. Third,

multivariate logistic regression analysis revealed that as few as four

genes (HIR4 model) were sufficient to construct a reliable

predictor. Lastly, the robustness of microarray data was validated

by qRT-PCR experiments with the same RNAs used for

microarray experiments. Thus, our study also clearly demonstrat-

ed the feasibility of developing reliable predictors with a small

number of genes with the use of relatively simple technology such

as qRT-PCR.

Our study has some limitations. Tissues and clinical data were

retrospectively collected. Thus, our models need to be validated

in a prospective study, although we obtained the same results for

three independent patient cohorts. It is also important to point

out that prognostication of the HIR signature may be limited to

HBV-related HCC because the majority of the patients in our

study were HBV-positive. This could limit the generalizability of

our results. While the validation of the HIR signature in three

independent cohorts of patients with different ethnic and

environmental backgrounds enrolled in Korea and China

strongly supports the potential generalizability of our models,

it will be necessary to test our models in patients with different

etiological backgrounds such as HCV or obesity in a future

study.

In summary, we showed that two different genomic predictors

can identify patients at high risk for early and late HCC

recurrence. Because these recurrences are clinically different

entities with distinctive biological characteristics, separate rational

management or treatment recommendations can be developed.

For example, patients at high risk of late recurrence may benefit

from the use of JAK/STAT and NOTCH1 pathway inhibitors

after surgical resection [54,55]. Because current staging systems

and biomarkers are limited in their ability to assess patients’ risk of

recurrence and their potential benefit from adjuvant therapy, two

genomic predictors represent tools that could help refine treatment

decisions based on molecular profiles.
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Editors’ Summary

Background. Primary liver cancer—a tumor that starts
when a liver cell acquires genetic changes that allow it to
grow uncontrollably—is the second-leading cause of cancer-
related deaths worldwide, killing more than 600,000 people
annually. If hepatocellular cancer (HCC; the most common
type of liver cancer) is diagnosed in its early stages, it can be
treated by surgically removing part of the liver (resection), by
liver transplantation, or by local ablation, which uses an
electric current to destroy the cancer cells. Unfortunately, the
symptoms of HCC, which include weight loss, tiredness, and
jaundice (yellowing of the skin and eyes), are vague and
rarely appear until the cancer has spread throughout the
liver. Consequently, HCC is rarely diagnosed before the
cancer is advanced and untreatable, and has a poor
prognosis (likely outcome)—fewer than 5% of patients
survive for five or more years after diagnosis. The exact
cause of HCC is unclear, but chronic liver (hepatic) injury and
inflammation (caused, for example, by infection with
hepatitis B virus [HBV] or by alcohol abuse) promote tumor
development.

Why Was This Study Done? Even when it is diagnosed
early, HCC has a poor prognosis because it often recurs.
Patients treated for HCC can experience two distinct types of
tumor recurrence. Early recurrence, which usually happens
within the first two years after surgery, arises from the spread
of primary cancer cells into the surrounding liver that left
behind during surgery. Late recurrence, which typically
happens more than two years after surgery, involves the
development of completely new tumors and seems to be
the result of chronic liver damage. Because early and late
recurrence have different clinical courses, it would be useful
to be able to predict which patients are at high risk of which
type of recurrence. Given that injury, inflammation, and
regeneration seem to prime the liver for HCC development,
might the gene expression patterns associated with these
conditions serve as predictive markers for the identification
of patients at risk of late recurrence of HCC? Here, the
researchers develop a genomic predictor for the late
recurrence of HCC by examining gene expression patterns
in tissue samples from livers that were undergoing injury and
regeneration.

What Did the Researchers Do and Find? By comparing
gene expression data obtained from liver biopsies taken
before and after liver transplantation or resection and
recorded in the US National Center for Biotechnology
Information Gene Expression Omnibus database, the re-
searchers identified 233 genes whose expression in liver
differed before and after liver injury (the hepatic injury and
regeneration, or HIR, signature). Statistical analyses indicate
that the expression of the HIR signature in archived tissue
samples was significantly associated with late recurrence of
HCC in three independent groups of patients, but not with
early recurrence (a significant association between two
variables is one that is unlikely to have arisen by chance).

By contrast, a tumor-derived 65-gene signature previously
developed by the researchers was significantly associated
with early recurrence but not with late recurrence. Notably,
as few as four genes from the HIR signature were sufficient
to construct a reliable predictor for late recurrence of HCC.
Finally, the researchers report that many of the genes in the
HIR signature encode proteins involved in inflammation and
cell death, but that others encode proteins involved in
cellular growth and proliferation such as STAT3, a protein
with a well-known role in liver regeneration.

What Do These Findings Mean? These findings identify a
gene expression signature that was significantly associated
with late recurrence of HCC in three independent groups of
patients. Because most of these patients were infected with
HBV, the ability of the HIR signature to predict late
occurrence of HCC may be limited to HBV-related HCC and
may not be generalizable to HCC related to other causes.
Moreover, the predictive ability of the HIR signature needs to
be tested in a prospective study in which samples are taken
and analyzed at baseline and patients are followed to see
whether their HCC recurs; the current retrospective study
analyzed stored tissue samples. Importantly, however, the
HIR signature associated with late recurrence and the 65-
gene signature associated with early recurrence provide new
insights into the biological differences between late and
early recurrence of HCC at the molecular level. Knowing
about these differences may lead to new treatments for HCC
and may help clinicians choose the most appropriate
treatments for their patients.

Additional Information Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001770.

N The US National Cancer Institute provides information
about all aspects of cancer, including detailed information
for patients and professionals about primary liver cancer
(in English and Spanish)

N The American Cancer Society also provides information
about liver cancer (including information on support
programs and services; available in several languages)

N The UK National Health Service Choices website provides
information about primary liver cancer (including a video
about coping with cancer)

N Cancer Research UK (a not-for-profit organization) also
provides detailed information about primary liver cancer
(including information about living with primary liver
cancer)

N MD Anderson Cancer Center provides information about
symptoms, diagnosis, treatment, and prevention of
primary liver cancer

N MedlinePlus provides links to further resources about liver
cancer (in English and Spanish)
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