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Abstract: Conventional prognostic risk analysis in patients undergoing noninvasive imaging is
based upon a limited selection of clinical and imaging findings, whereas machine learning (ML)
algorithms include a greater number and complexity of variables. Therefore, this paper aimed to
explore the predictive value of integrating coronary plaque information from coronary computed
tomographic angiography (CCTA) with ML to predict major adverse cardiovascular events (MACEs)
in patients with suspected coronary artery disease (CAD). Patients who underwent CCTA due
to suspected coronary artery disease with a 30-month follow-up for MACEs were included. We
collected demographic characteristics, cardiovascular risk factors, and information on coronary
plaques by analyzing CCTA information (plaque length, plaque composition and coronary artery
stenosis of 18 coronary artery segments, coronary dominance, myocardial bridge (MB), and patients
with vulnerable plaque) and follow-up information (cardiac death, nonfatal myocardial infarction
and unstable angina requiring hospitalization). An ML algorithm was used for survival analysis
(CoxBoost). This analysis showed that chest symptoms, the stenosis severity of the proximal anterior
descending branch, and the stenosis severity of the middle right coronary artery were among the
top three variables in the ML model. After the 22nd month of follow-up, in the testing dataset,
ML showed the largest C-index and AUC compared with Cox regression, SIS, SIS score + clinical
factors, and clinical factors. The DCA of all the models showed that the net benefit of the ML model
was the highest when the treatment threshold probability was between 1% and 9%. Integrating
coronary plaque information from CCTA based on ML technology provides a feasible and superior
method to assess prognosis in patients with suspected coronary artery disease over an approximately
three-year period.

Keywords: coronary plaque; machine learning; major adverse cardiovascular events; coronary artery
disease; coronary computed tomographic angiography

1. Introduction

Coronary computed tomography angiography (CCTA) is increasingly accepted as a
first-line noninvasive imaging examination that has shown high accuracy for diagnosing
and excluding coronary artery disease (CAD) [1,2]. Furthermore, CCTA examination was
used to evaluate various stages of atherosclerosis ranging from plaque formation (length,
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composition, and morphology) to plaque progression, aiding in risk stratification for future
major adverse cardiovascular events (MACE) and medical decision-making for patients
with CAD [3–7].

Conventional CCTA risk scores were used to stratify the patients with CAD mainly
based on the presence, length, composition, and luminal stenosis of 16-segment coronary
plaque [8–10]. This plaque information was integrated into a single score, assuming a
linear relationship between the atherosclerosis extent and outcomes [8,11,12]. Machine
learning (ML) is a field of computer science that uses advanced algorithms including a
great number of variables to optimize prediction, and this methodology has the potential to
maximize the utilization of the coronary plaque information derived from CCTA without
prior assumptions for independent variables. Previous studies have demonstrated that
ML showed improves predictive values for death, myocardial ischemia and myocardial
infarction compared with conventional risk scores [13–15]. The aim of the present study
was to explore whether ML based on survival data with a time-dependent outcome inte-
grating plaque information from CCTA exhibits better predictive values for MACEs over
an approximately three-year follow-up period than the conventional CCTA risk score in
patients with suspected coronary artery disease.

2. Materials and Methods
2.1. Study Population

This is a single-center prospective observational study that was approved by the insti-
tutional review board of PLA General Hospital. All patients provided written informed
consent. A total of 5526 patients with suspected coronary artery disease who sequentially
underwent CCTA at the Department of Cardiology of PLA General Hospital were included
from January 2015 to December 2016. The inclusion criteria were complete CCTA and
clinical data. The exclusion criteria were prior known CAD (defined as prior myocardial
infarction or revascularization) or those with early revascularization after CCTA (defined as
within 3 months), incomplete CCTA, motion artifacts, poor-quality images, or severe coro-
nary artery calcification that was unable to be interpreted (Figure 1). In total, 4017 patients
were included.
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Figure 1. A flowchart about the framework of this study. The data were randomly divided into a
training dataset and a testing dataset at a ratio of 7:3. The training dataset was used to build the
prediction model, whereas the testing dataset was independently used to verify the effectiveness
of the prediction model generated by the training dataset by computing C-index, AUC, Brier score
and DCA.
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2.2. Clinical Data

Demographic characteristics (age, male sex, and body mass index [BMI]) and conven-
tional cardiovascular risk factors (dyslipidemia, hypertension, diabetes, current smoking,
and family history of CAD) were collected by checking the medical record system. Hy-
pertension was defined as a history of blood pressure >140 mmHg or treatment with
antihypertensive medications. Diabetes mellitus was defined by a diagnosis made previ-
ously and/or use of insulin or oral hypoglycemic agents. Smoking was defined as current
smoking or cessation of smoking within the last 3 months. A family history of premature
CAD was defined as MI in a first-degree relative <55 years (male) or <65 years (female).
Dyslipidemia was defined as known but untreated dyslipidemia or current treatment with
lipid-lowering medications.

2.3. Image Acquisition and Analysis

A second-generation dual-source CT (Simens CT SOMATOM Definition Flash, SIEMENS
AG, Munich, Germany) was used for the CCTA scanning. The acquisition protocols
were performed in accordance with the Society of Cardiovascular Computed Tomography
guidelines [16]. A detailed methodology has been previously published [17].

All images were analyzed by three radiologists or cardiologists using the 16-segment
coronary artery tree model for the segment involvement score (SIS score) and the 18-segment
coronary artery tree model for ML [10,16]. Plaque was defined as a tissue structure > 1 mm2

within or adjacent to the coronary artery lumen that could be distinguished from surround-
ing pericardial tissue, epicardial fat, or the vessel lumen [8]. The presence of plaque was
evaluated with the corresponding stenosis severity in each segment. The coronary plaques
in each segment were classified as noncalcified, mixed, and calcified plaques. The corre-
sponding stenosis severity of the plaques was classified as 0%, 1–24%, 25–49%, 50–69%,
70–99%, and 100%. Lengths of coronary plaque were classified as 0 mm, <10 mm, 10–20 mm,
and >20 mm. Coronary dominance was divided into left dominant, right dominant, and
balanced types. Myocardial bridge was defined as a coronary artery segment that was
surrounded by myocardium and led to systolic compression of a part of the myocardium
covering the epicardial vessels [18]. Plaques with two or more characteristics (positive
remodeling, spotty calcification, low attenuation plaque, and napkin-ring sign) at the same
time were defined as vulnerable plaques [19]. Positive remodeling was assessed as the
cross-sectional area at the site of maximal stenosis divided by an average of the proximal
and distal reference segment cross-sectional areas [20]. Spotty calcification was defined by
calcium deposits (>130 HU) that were <3 mm within an atheroma [21]. A low attenuation
plaque was defined as a plaque with an average attenuation <30 HU, and the size of the
necrotic core was >1 mm2 [19]. The napkin-ring sign was defined as a ring of attenuation
of <130 HU that formed an arc of higher attenuation around a low attenuating plaque [22].

2.4. Outcome

The survival status of the patient was obtained by reviewing the electronic medical
record system or patient interviews at least 90 days after CCTA examination from 1 January
2015 to 31 August 2020. MACEs, including nonfatal myocardial infarction, unstable angina
requiring hospitalization, and cardiac death, were recorded as the outcome of the present
study. Two physicians judged each event independently. In the case of divergence, a third
physician was consulted.

2.5. Machine Learning Algorithm with Survival Times

Fifty-seven CCTA variables (including plaque length, plaque composition and stenosis
severity of 18 coronary artery segments, coronary artery dominance, myocardial bridge,
and vulnerable plaque) and nine clinical factors (including male, age, BMI, diabetes, hy-
pertension, dyslipidemia, family history of CAD, current smoking, and chest symptoms)
were available (Table 1). Machine learning involved automated feature selection, model
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building, and 10-fold stratified cross-validation for the entire process [23,24]. Machine
learning techniques were implemented using R version 4.0.2.

Table 1. Features Selected by Lasso-Cox.

Features Definition Category

Demographic characteristics

Age Age of the patient continuous variable
BMI Body mass index continuous variable
Male Are they male? 1/0 = yes/no
Cardiovascular risk factors
Symptom Types of chest pain 0/1/2 = no/atypical/typical
Hyperlipemia Is there hyperlipemia 1/0 = yes/no
Hypertension Is there hypertension 1/0 = yes/no
Diabetes Is there diabetes 1/0 = yes/no
Currently smoking Are they currently smoking 1/0 = yes/no
Family history of CAD Is there family history for CAD 1/0 = yes/no
CCTA Features
Coronary dominance Is there left/right/balanced dominance? 1/2/3 = left/right/balanced
Myocardial bridge Is there myocardial bridge? 1/0 = yes/no

Vulnerable plaque Are there two or more characteristics of
vulnerable plaque? 1/0 = yes/no

RCAp_composition Composition of plaque in proximal RCA 0/1/2/3 = normal/calcified/non-calcified/mix
RCAm_composition Composition of plaque in middle RCA 0/1/2/3 = normal/calcified/non-calcified/mix
RCAd_composition Composition of plaque in distal RCA 0/1/2/3 = normal/calcified/non-calcified/mix
P-PDA_composition Composition of plaque in PDA of RCA origin 0/1/2/3 = normal/calcified/non-calcified/mix
LM_composition Composition of plaque in LM 0/1/2/3 = normal/calcified/non-calcified/mix
LADp_composition Composition of plaque in proximal LAD 0/1/2/3 = normal/calcified/non-calcified/mix
LADm_composition Composition of plaque in middle LAD 0/1/2/3 = normal/calcified/non-calcified/mix
LADd_composition Composition of plaque in distal LAD 0/1/2/3 = normal/calcified/non-calcified/mix
D1_composition Composition of plaque in D1 0/1/2/3 = normal/calcified/non-calcified/mix
D2_composition Composition of plaque in D2 0/1/2/3 = normal/calcified/non-calcified/mix
LCXp_composition Composition of plaque in proximal LCX 0/1/2/3 = normal/calcified/non-calcified/mix
OM1_composition Composition of plaque in OM1 0/1/2/3 = normal/calcified/non-calcified/mix
LCXd_composition Composition of plaque in distal LCX 0/1/2/3 = normal/calcified/non-calcified/mix
OM2_composition Composition of plaque in OM2 0/1/2/3 = normal/calcified/non-calcified/mix
L-PDA_composition Composition of plaque in PDA of LAD origin 0/1/2/3 = normal/calcified/non-calcified/mix
R-PLB_composition Composition of plaque in PLB of RCA origin 0/1/2/3 = normal/calcified/non-calcified/mix
RI_composition Composition of plaque in RI 0/1/2/3 = normal/calcified/non-calcified/mix
L-PLB_composition Composition of plaque in PLB of LAD origin 0/1/2/3 = normal/calcified/non-calcified/mix
RCAp_length Length of plaque in proximal RCA 0/1/2/3 = normal/localized/segmental/diffuse
RCAm_length Length of plaque in middle RCA 0/1/2/3 = normal/localized/segmental/diffuse
RCAd_length Length of plaque in distal RCA 0/1/2/3 = normal/localized/segmental/diffuse
P-PDA_length Length of plaque in PDA of RCA origin 0/1/2/3 = normal/localized/segmental/diffuse
LM_length Length of plaque in LM 0/1/2/3 = normal/localized/segmental/diffuse
LADp_length Length of plaque in proximal LAD 0/1/2/3 = normal/localized/segmental/diffuse
LADm_length Length of plaque in middle LAD 0/1/2/3 = normal/localized/segmental/diffuse
LADd_length Length of plaque in distal LAD 0/1/2/3 = normal/localized/segmental/diffuse
D1_length Length of plaque in D1 0/1/2/3 = normal/localized/segmental/diffuse
D2_length Length of plaque in D2 0/1/2/3 = normal/localized/segmental/diffuse
LCXp_length Length of plaque in proximal LCX 0/1/2/3 = normal/localized/segmental/diffuse
OM1_length Length of plaque in OM1 0/1/2/3 = normal/localized/segmental/diffuse
LCXd_length Length of plaque in distal LCX 0/1/2/3 = normal/localized/segmental/diffuse
OM2_length Length of plaque in OM2 0/1/2/3 = normal/localized/segmental/diffuse
L-PDA_length Length of plaque in PDA of LAD origin 0/1/2/3 = normal/localized/segmental/diffuse
R-PLB_length Length of plaque in PLB of RCA origin 0/1/2/3 = normal/localized/segmental/diffuse
RI_length Length of plaque in RI 0/1/2/3 = normal/localized/segmental/diffuse
L-PLB_length Length of plaque in PLB of LAD origin 0/1/2/3 = normal/localized/segmental/diffuse
RCAp_stenosis Stenosis of plaque in proximal RCA 0/1/2/3/4 = normal/mininal/mild/moderate/severe
RCAm_stenosis Stenosis of plaque in middle RCA 0/1/2/3/4 = normal/mininal/mild/moderate/severe
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Table 1. Cont.

Features Definition Category

Demographic characteristics

RCAd_stenosis Stenosis of plaque in distal RCA 0/1/2/3/4 = normal/mininal/mild/moderate/severe
P-PDA_stenosis Stenosis of plaque in PDA of RCA origin 0/1/2/3/4 = normal/mininal/mild/moderate/severe
LM_stenosis Stenosis of plaque in LM 0/1/2/3/4 = normal/mininal/mild/moderate/severe
LADp_stenosis Stenosis of plaque in proximal LAD 0/1/2/3/4 = normal/mininal/mild/moderate/severe
LADm_stenosis Stenosis of plaque in middle LAD 0/1/2/3/4 = normal/mininal/mild/moderate/severe
LADd_stenosis Stenosis of plaque in distal LAD 0/1/2/3/4 = normal/mininal/mild/moderate/severe
D1_stenosis Stenosis of plaque in D1 0/1/2/3/4 = normal/mininal/mild/moderate/severe
D2_stenosis Stenosis of plaque in D2 0/1/2/3/4 = normal/mininal/mild/moderate/severe
LCXp_stenosis Stenosis of plaque in proximal LCX 0/1/2/3/4 = normal/mininal/mild/moderate/severe
OM1_stenosis Stenosis of plaque in OM1 0/1/2/3/4 = normal/mininal/mild/moderate/severe
LCXd_stenosis Stenosis of plaque in distal LCX 0/1/2/3/4 = normal/mininal/mild/moderate/severe
OM2_stenosis Stenosis of plaque in OM2 0/1/2/3/4 = normal/mininal/mild/moderate/severe
L-PDA_stenosis Stenosis of plaque in PDA of LCX origin 0/1/2/3/4 = normal/mininal/mild/moderate/severe
R-PLB_stenosis Stenosis of plaque in PLB of RCA origin 0/1/2/3/4 = normal/mininal/mild/moderate/severe
RI_stenosis Stenosis of plaque in RI 0/1/2/3/4 = normal/mininal/mild/moderate/severe
L-PLB_stenosis Stenosis of plaque in PLB of LCX origin 0/1/2/3/4 = normal/mininal/mild/moderate/severe

BMI, body mass index; CAD, coronary artery disease; CCTA, coronary computed tomography angiography;
RCA, right coronary artery; PDA, posterior descending artery; LM, left main coronary artery; LAD, left an-
terior descending branch; D1, first diagonal branches; D2, second diagonal branches; LCX, left circumflex
branch; OM1, first obtuse marginal branch; OM2, second obtuse marginal branch; PLB, posterior lateral branch;
RI, intermediate ramus.

First, the data were randomly divided into a training dataset and a testing dataset
at a 7:3 ratio. The training dataset was used to build the prediction model, and the
testing dataset was independently used to verify the effectiveness of the prediction model
generated by the training dataset.

Second, automated feature selection for fifty-seven CCTA variables and nine clinical
factors was performed in the training dataset using least absolute shrinkage and selection
operator regression for Cox regression (LASSO-COX), which minimizes the log partial
likelihood subject to the sum of the absolute values of the parameters being bounded by a
constant, shrinks coefficients, and produces some coefficients that are zero, allowing for
efficient variable selection (Table 1) [23].

Then, filtered CCTA variables were included for model generation. The model for
MACE prediction was constructed using ‘CoxBoost’, an algorithm used to fit a Cox pro-
portional hazards model by componentwise likelihood based on the offset-based boosting
approach. This algorithm is especially suited for models with a large number of variables
and allows for mandatory covariates with unpenalized parameter estimates [25–28].

The model building procedure using the training dataset included two steps, as
follows. First, the hyperparameters of CoxBoost (penalty, optimal step, and numbers of
estimators) were automatically calculated by the training dataset. The penalty value was
calculated using a coarse line search that lead to an optimal number of boosting steps for
CoxBoost, as determined by 10-fold cross-validation [29]. The optimal step of the model
was confirmed using a coarse line search considering the connections between parameters
to identify a potential combination of tuned hyperparameters (a penalty updating scheme
was helped by an optimum step-size modification for CoxBoost), which results in an
optimal model in terms of cross-validated partial log-likelihood [26]. Second, after tuning
the hyperparameters from 10-fold stratified cross validation, the model was refitted on the
entire training dataset for the training model. Then, the trained model was validated on
the independent testing dataset (30% of entire data) to show the prediction probabilities.
Compared with other models, the performance of the ML model was derived from the
testing dataset.
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2.6. The Reference Models

First, Cox proportional hazard regression (Cox regression), including the same vari-
ables as the ML model and the conventional CCTA risk score (SIS score) assessing overall
plaque burden, was used in this study. The SIS score was calculated as a measure of
overall coronary segments with plaque by summation of the absolute number of coro-
nary segments with plaques (0–16) [30]. Second, the clinical factors were added to the
SIS score (SIS score + clinical factors), and only clinical factors were used in this study as
reference models.

2.7. Statistical Analysis

Continuous variables are presented as the mean ± standard deviation, and categorical
variables are presented as counts (%). We assessed the performance of each prediction
model (including CoxBoost, Cox regression, SIS score, SIS score + clinical factors, and clini-
cal factors) to discriminate outcomes on the testing dataset using the C-index and AUC [31].
We evaluated the calibration of each prediction model using the Brier score [32]. The Cox
regression model included the variables used in the ML model. The Brier score calculates
the mean squared distance between the predicted probabilities and actual outcomes, and a
smaller value indicates better calibration (<0.25 indicates significant) [32]. Decision curve
analysis (DCA) of all models revealed the preferred model with the best net benefit at any
given threshold. The statistical analysis was implemented in R version 4.0.2. A two-sided
p value < 0.05 was considered statistically significant.

3. Results
3.1. Study Population

A total of 4017 patients were included in this study. The mean age was 57.76 ± 10.98 years,
and 54.29% were male (Table 2). Patients without CAD, patients with nonobstructive CAD,
and patients with obstructive CAD represented 37.27%, 33.06%, and 29.67% of the study
population, respectively. During a mean follow-up of 29 months, 176 events (14 cardiac
deaths (0.3%), 9 nonfatal myocardial infarctions (0.2%), and 190 cases of unstable angina
requiring hospitalization (4.7%)) were recorded.

Table 2. Demographic and Clinical Characteristics of Patients at Baseline.

Characteristics Total (n = 4017) Training Dataset
(n = 2812)

Testing Dataset
(n = 1205)

Age (y) 57.76 ± 10.98 57.43 ± 10.94 57.71 ± 10.86
Male (n, %) 2181 (54.29) 1544 (54.91) 637 (52.86)

BMI (kg/m2) 25.47 ± 3.41 25.50 ± 3.43 25.40 ± 3.34
SIS score 1.80 ± 4.17 1.82 ± 2.05 1.74 ± 2.03

Follow-up time (months) 29.56 ± 5.94 29.51 ± 6.09 29.68 ± 5.57
Chest symptom

No chest pain (n, %) 1935 (48.17) 1338 (47.58) 597 (49.54)
Atypical chest pain (n, %) 1692 (42.12) 1192 (42.39) 500 (41.49)
Typical chest pain (n, %) 390 (9.71) 282 (10.03) 108 (8.96)

Cardiovascular risk factors
Hyperlipemia (n, %) 1311 (32.64) 912 (32.43) 399 (33.11)
Hypertension (n, %) 1916 (47.70) 1333 (47.40) 583 (48.38)

Diabetes (n, %) 660 (16.43) 451 (16.04) 209 (17.34)
Currently smoking (n, %) 1023 (25.47) 716 (25.46) 307 (25.48)

Family history of CAD (n, %) 845 (21.04) 593 (21.09) 252 (20.91)
CCTA Finding

No CAD (n, %) 1497 (37.27) 1029 (36.6) 468 (38.8)
Non-obstructive CAD (n, %) 1328 (33.06) 917 (32.6) 411 (34.1)

Obstructive CAD (n, %) 1192 (29.67) 866 (30.8) 326 (27.1)
Vulnerable plaque (n, %) 35 (0.87) 24 (0.85) 11 (0.91)
Myocardial bridge (n, %) 332 (8.26) 221 (7.86) 111 (9.21)
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Table 2. Cont.

Characteristics Total (n = 4017) Training Dataset
(n = 2812)

Testing Dataset
(n = 1205)

Coronary dominance
Left dominant (n, %) 3736 (93.00) 2613 (92.92) 1123 (93.20)

Right dominant (n, %) 198 (4.93) 138 (4.91) 60 (4.98)
Balanced type (n, %) 83 (2.07) 61 (2.17) 22 (1.83)

Values are means ± SD or counts (%). BMI, body mass index; CAD, coronary artery disease; CCTA, coronary
computed tomography angiography.

3.2. Feature Selection and Model Generation

In this study, feature selection was performed by LASSO-COX (Figure 2). When the
hyperparameter of feature selection were determined (partial likelihood deviance is mini-
mum), the algorithm output filtered variables with non-zero coefficients (chest symptoms
(symptom); MB; plaque composition of the middle right coronary, the left main coro-
nary artery, the proximal, middle and distal anterior descending branch, the first obtuse
marginal branch, and the ramus intermedius artery (RCAm_composition, LM_composition,
LADp_composition, LADm_composition, LADd_composition, OM1_composition,
RI_composition); plaque length of the distal right coronary, the proximal anterior descend-
ing branch, and the proximal circumflex branch (RCAd_length, LADp_length, LCXp_length);
and stenosis of the proximal and middle right coronary, the left main coronary artery,
the proximal, middle and distal anterior descending branch, the first and second di-
agonal branch, and the proximal circumflex branch (RCAp_stenosis, RCAm_stenosis,
LM_stenosis, LADp_stenosis, LADm_stenosis, LADd_stenosis, D1_stenosis, D2_stenosis,
LCXp_stenosis)) (Figure 2).
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Figure 2. Selecting process for features by Lasso-Cox. Automated feature selection for fifty-seven
CCTA variables and nine clinical factors was performed using LASSO-COX, which minimizes the log
partial likelihood subject to the sum of the absolute values of the parameters being bounded by a
constant, shrinks coefficients, and produces some coefficients that are zero, allowing efficient variable
selection (a). When the hyperparameters of feature selection were determined (partial likelihood
deviance is minimum) (b), the algorithm outputted 21 filtered variables with non-zero coefficients
(the filtered variables were included in model generation subsequently).

After feature selection, the filtered variables were included in model generation
(Figure 3). When the hyperparameters of the ML model were determined (the penalty
was 1116, and the step was 74), the optimal model (the logplik of the 10-fold stratified cross
validation was the largest) was identified in the training dataset (Figure 3a). In the ML
model, chest symptoms, stenosis of the proximal anterior descending branch, and stenosis
of the middle right coronary artery were among the top three variables (Figure 3b).
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Figure 3. The process of model construction and coefficients of the features in the ML model. Filtered
CCTA variables were included in model generation. The 21 filtered variables with non-zero coeffi-
cients in the results of LASSO-COX were included in ML model generation. The hyperparameters of
ML model were automatically calculated on the training dataset. After tuning the hyperparameters
(the penalty was 1116, and the step was 74) from 10-fold stratified cross validation, the model was
refitted on the entire training dataset for training model. When the logplik of the 10-fold stratified
cross validation was the largest (cv.res$mean.logplik = −103.723), it showed the optimal model in the
training dataset and the coefficients of features (a). In the ML model, chest symptoms (symptom),
the stenosis severity of the proximal anterior descending branch (LADp_stenosis), and the stenosis
severity of the middle right coronary artery (RCAm_stenosis) were among the top three variables
(coefficients: 0.251, 0.245, and 0.190, respectively) (b).

3.3. Assessment of the Performance of Each Prediction Model

After the 22nd month of follow-up, compared to other models (Cox regression, SIS
score, SIS score + clinical factors, and clinical factors), the C-index of the ML model for
prediction of the MACE in the testing dataset (30% of the data not used for model building)
was significantly increased (C-index: 0.770–0.782, 0.723–0.752, 0.706–0.742, 0.686–0.712,
0.639–0.653, p < 0.05) (Figure 4 and Table 3), whereas the AUC of the ML model for the
prediction of the MACE was also significantly increased in approximately three years
[AUC (CI): 0.780 (0.726, 0.834), 0.738 (0.667, 0.809), 0.725 (0.669, 0.782), 0.702 (0.643, 0.762),
0.656 (0.581, 0.730), p < 0.05] (Figure 5 and Table 4).
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Figure 4. The concordance index for each model in testing dataset every month. After 22nd month
in follow-up, compared to other models (Cox regression, SIS score, SIS score + clinical factors,
and clinical factors), the C-index of ML model for prediction of the MACE in the testing dataset
was significantly increased (C-index: 0.770–0.782, 0.723–0.752, 0.706–0.742, 0.786–0.712, 0.639–0.653,
p < 0.05).
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Table 3. The performance (concordance-index) for each model validated at each half year
of follow-up.

Model 6th Month
C-Index

12th Month
C-Index

18th Month
C-Index

24th Month
C-Index

30th Month
C-Index

CoxBoost 83.0 79.5 81.5 77.0 78.2
Cox regression 86.3 79.3 80.5 72.8 75.2

SIS score 80.0 71.5 73.3 71.8 74.2
SIS score +

clinical factors 77.4 68.4 69.9 69.6 71.2

Clinical factors 67.6 67.4 67.0 63.9 65.3
Cox regression, Cox proportional hazard regression; SIS score, segment involvement score; SIS score + clinical
factors, clinical factors added to segment involvement score.
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Figure 5. The AUC of each model in testing dataset over 30 months. Over an approximately three-
year period, compared to the AUC of other models (Cox regression, SIS score, SIS score + clinical
factors, and clinical factors), the AUC of ML model for prediction of MACE was significantly
increased [AUC(CI): 0.780 (0.726, 0.834), 0.738 (0.667, 0.809), 0.725 (0.669, 0.782), 0.702 (0.643, 0.762),
0.656 (0.581, 0.730), p < 0.05].

Table 4. Comparison of AUC for each model validated at 30 months of follow-up.

Model AUC 95%CI p
(CoxBoost vs.)

CoxBoost 0.780 0.726, 0.834 \
Cox regression 0.738 0.667, 0.809 0.048

SIS score 0.725 0.669, 0.782 0.010
SIS score + clinical factors 0.702 0.643, 0.762 0.003

Clinical factors 0.656 0.581, 0.730 0.005
AUC, area under the receiver operator characteristic curve; Cox regression, Cox proportional hazard regression; SIS
score, segment involvement score; SIS score + clinical factors, clinical factors added to segment involvement score.

3.4. Model Evaluation Using Calibration and DCA

In this study, we evaluated each model through calibration and DCA. In the model
calibration, this study shows that the Brier score for each model to predict the MACE was
less than 0.040 in approximately three years (<0.25 means significant) (Table 5). The DCA of
all the models showed that the proportion of the benefit for the population each year was
the highest when the risk assessment of the ML model was used for treatment, while the
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treatment threshold probability was between 1% and 9% over a period of approximately
three years. (Figure 6).

Table 5. The calibration (Brier score) for each model validated at each half year of follow-up.

Model 6th Month
BS

12th Month
BS

18th Month
BS

24th Month
BS

30th Month
BS

CoxBoost 0.004 0.006 0.020 0.033 0.039
Cox regression 0.004 0.012 0.021 0.033 0.039

SIS score 0.006 0.012 0.021 0.033 0.039
SIS score +

clinical factors 0.004 0.011 0.020 0.033 0.039

Clinical factors 0.004 0.011 0.020 0.033 0.039
BS, Brier score; Cox regression, Cox proportional hazard regression; SIS score, segment involvement score; SIS
score + clinical factors, clinical factors added to segment involvement score.
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Figure 6. The decision curve analysis of all models for patients over 30 months. The brown trans-
verse line = net benefit when all patients are considered as not having the outcome (MACEs); red 
Figure 6. The decision curve analysis of all models for patients over 30 months. The brown transverse
line = net benefit when all patients are considered as not having the outcome (MACEs); red oblique
line = net benefit when all patients are considered as having the outcome (MACEs). The decision
curve analysis of all models showed that the proportion of the benefit for the population each year was
the highest when the risk assessment of the ML model was used for treatment, while the treatment
threshold probability was between 1% and 9% over a period of approximately three years.

4. Discussion

In this study, we used ML integrating numerous coronary plaque factors (stenosis
severity, lesion length, plaque location and composition considering the 18 coronary seg-
ments, coronary dominance, myocardial bridge (MB), and patient with vulnerable plaque)
and clinical and demographic information to predict MACEs after an approximately three-
year period in a cohort study that accounts for time to event. The results of this study
suggest that a newly generated model based on ML, accounting for nonlinearities, provided
better event prediction. This study, integrating coronary plaque information from CCTA
and clinical factors based on ML technology, provides a feasible and superior method to
assess prognosis in patients with suspected coronary artery disease over an approximately
three-year period.

4.1. Risk Stratification with CCTA

Until recently, cardiac imaging studies were more inclined to use clinical and coronary
plaque features (presence, extent, location, and composition) of CCTA for risk stratification
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of future events [33,34]. Cheruvu C showed that the maximal severity of CAD is related
to major cardiovascular events [35]. The number of segments with plaque, location, and
composition also improve risk assessment [36,37]. Currently, the use of CCTA information
is far from insufficient, whereas the resolution of CCTA can provide massive information
for mining. The conventional CCTA risk score, linear assumptions, and conventional
statistical approaches may be insufficient to complete this study [38].

4.2. Machine Learning Algorithms Improve the Integration of Coronary Plaque Information for
Survival Analysis

ML, a subset of artificial intelligence accounting for nonlinearities, is able to integrate
a number of variables [11]. Cox regression is often limited for data mining purposes due to
the correlation between variables, nonlinearity of variables (including potential complex
interactions among them), and the possibility of overfitting.

The feasibility of ML has been demonstrated previously in CAD risk reclassification
analysis. Using 25 clinical and 44 CCTA features, Motwani et al. showed that ML sig-
nificantly improved the prediction of death compared with the Framinghan risk score,
SSS, SIS, and the Duke prognostic index [13]. Moreover, Dey et al. showed that an ML
model incorporating semiautomatically quantified measures of coronary plaque (plaque
volumes, stenosis severity, lesion length, and contrast density difference) identified vessels
with hemodynamically significant CAD (fractional flow reserve ≤ 0.80) with high accuracy
(AUC = 0.84) [14]. Specifically, the ML model showed greater diagnostic accuracy than
a conventional statistical model that utilized the exact same data. The findings above
suggest that ML improves the integration of the available data for the prediction of a
certain outcome.

However, these studies are similar to a cross-sectional study (as opposed to a cohort
study) because the follow-up outcomes of these studies do not include survival time and
only showed dichotomous outcomes (not time-dependent).

This study accounted for time to event to obtain a more appropriate risk estima-
tion. In the ML model, chest symptoms, stenosis of the proximal anterior descending
branch, and stenosis of the middle right coronary artery were among the top three fac-
tors (Figure 3), suggesting that we need to pay more attention to these characteristics
in patients with suspected coronary disease. In the assessment of the model’s perfor-
mance, this study shows that the ML model significantly improved the prediction of
MACEs compared with other models (Cox-Boost vs. SIS score, SIS score + clinical factors,
and clinical factors: C-index: 0.770–0.782, 0.706–0.742, 0.686–0.712, 0.639–0.653, p < 0.05;
AUC (CI): 0.780 (0.726, 0.834), 0.725 (0.669, 0.782), 0.702 (0.643, 0.762), 0.656 (0.581, 0.730),
p < 0.05) (Figures 4 and 5 and Tables 2 and 3). Specifically, the ML model showed bet-
ter predicted values than a conventional statistical model (Cox regression) that utilized
the exact same variables after the 22nd month of follow-up (Cox-Boost vs. Cox regres-
sion: C-index: 0.770–0.782, 0.723–0.752, p < 0.05; 30-month AUC (CI): 0.780 (0.726, 0.834),
0.738 (0.667, 0.809), p < 0.05) (Figures 4 and 5 and Tables 2 and 3).

In the model evaluation, the ML model showed great calibration for approximately
three years (Brier score < 0.040), demonstrating a low difference between the predicted risk
and the actual observed risk for events, and a good prediction performance (<0.25 indicates
significant) (Table 5). The decision curve analysis of all models showed that the ML model
was the preferred model, with the best net benefit when the treatment threshold probability
was between 1% and 9% in approximately three years (Figure 6).

This ML model can potentially translate the detailed 18-segment CCTA reads and
clinical factors into an individualized risk report that might help physicians tailor pre-
ventive medical therapy. The present study established an integrated machine-learning
model to predict clinical outcomes and compared it to currently available tools includ-
ing SIS score, SIS score with clinical factors, and clinical factors models. The results
demonstrated that the machine-learning model was feasible and easily-obtainable. Further-
more, the machine-learning model demonstrated the best performance in discrimination
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and calibration. The ML model could directly output MACE risk assessment within
three years based on 13 non-zero variables and their coefficients in Figure 3b (symp-
tom, LADp_stenosis, RCAm_stenosis, LCXp_length, LM_stenosis, LADm_composition,
RCAp_stenosis, RI_composition, LADd_composition, OM1_composition, LCXp_stenosis,
RCAd_length). For individualized preventive therapy, as is shown in present study, the
proportion of the benefit for the population each year was between 0% and 3% when the
risk assessment of the ML model was used for treatment, while the treatment threshold
probability was between 1% and 9% over a period of approximately three years (Figure 6).
Considering the incidence of MACE events (4.4%), the proportion of the benefit for the
population each year of 3% is relatively better.

4.3. Study Limitations

This study, which was designed as a respective single-center cohort study, was per-
formed in a middle-aged population with suspected coronary artery disease. Therefore,
the results of this study may not be generalizable to other study populations. This study
was lacking in medication history and only followed up after nearly three years. Further
research may follow up for longer, add follow-up medication history, include genetic data,
and identify the image feature-genome interaction, wihle combined prediction ability may
potentially improve the risk estimation.

5. Conclusions

Integrating coronary plaque information from CCTA based on machine learning
technology provides a feasible and superior method to assess prognosis in patients with
suspected coronary artery disease over an approximately three-year period.
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