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Inflammasomes are multiprotein complexes that trigger the activation of caspases-1 and subsequently the maturation of
proinflammatory cytokines interleukin-1𝛽 and interleukin-18. These cytokines play a critical role in mediating inflammation and
innate immunity response. Among various inflammasome complexes, the NLRP3 inflammasome is the best characterized, which
has been demonstrated as a crucial role in various diseases. Here, we review recently described mechanisms that are involved
in the activation and regulation of NLRP3 inflammasome. In addition, we summarize the recent researches on the role of NLRP3
inflammasome in central nervous system (CNS) diseases, including traumatic brain injury, ischemic stroke and hemorrhagic stroke,
brain tumor, neurodegenerative diseases, and other CNS diseases. In conclusion, the NLRP3 inflammasome may be a promising
therapeutic target for these CNS diseases.

1. Introduction

In the central nervous system (CNS), the innate immune
response plays a significant role in the pathology after tissue
damage or pathogen invasion. This process is known as
neuroinflammation and is characterized by the activation
of the microglia and astrocyte population [1]. It is known
that several cell types in the brain express specialized
pattern recognition receptors (PRRs) such as membrane-
bound Toll-like receptors (TLRs) and cytosolic NOD-like
receptors (NLRs). The NOD-like receptors are a class of
cytosolic sensors or receptors that respond to a variety of
pathogen-associated molecular patterns (PAMPs) linked to
various microbes and damage-associated molecular patterns
(DAMPs) produced during tissue-based injury [2].

One of the most extensively studied classes of NLRs is
the inflammasome-forming NLRs including NLRP1, NLRP3,
NLRC4, NLRC5, NLRP6, NLRP7, and NLRP12 as well as the
non-NLR inflammasome receptor known as AIM2. Among
them, NLRP3 is the best characterized. The NLRP3 inflam-
masome is composed of NLRP3, apoptosis-associated speck-
like (ASC) adapter protein, and the downstream effector
enzyme (procaspase-1) [3]. When stimulated by PAMP or

DAMP, NLR forms a protein complex known as the inflam-
masome through the combination of the adaptor protein
ASC [4]. This initiates the cleavage of procaspase-1 into
the active and mature form of caspase-1 [5]. Subsequently,
active caspase-1 converts the inactive pro-IL-1𝛽 and pro-IL-
18 into their active and secreted forms: IL-1𝛽 and IL-18.These
cytokines initiate or amplify diverse downstream signaling
pathways and drive proinflammatory responses, leading to
cellular damage, such as autophagy and pyroptosis [6, 7].

Recently, increasing attention is being paid to the role
of the NLRP3 inflammasome in the central nervous system
(CNS). The NLRP3 inflammasome plays a pathogenic role
in neuroinflammatory diseases. Here, we review described
mechanisms that have been proposed to be involved in
the activation and regulation of NLRP3 inflammasome and
further explore the role of NLRP3 inflammasome in several
CNS diseases.

2. The Activation and Regulation of NLRP3
Inflammasome (Figure 1)

To date, it has been demonstrated that the activation of
the NLRP3 inflammasome appears to occur by two signals.
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Figure 1: Models of NLRP3 inflammasome activation. Signal 1 activates the Toll-like receptor (TLR)/NF-𝜅B pathway, leading to the
transcription of pro-IL-1𝛽 and pro-IL-18. Signal 2 is mediated by PAMPs or DAMPs stimulation and promotes the assembly of NLRP3
inflammasome complex. Three main mechanisms of the NLRP3 inflammasome activation have been proposed. (1) Stimuli can trigger the
production of mitochondrial ROS and then induce the NLRP3 inflammasome activity. (2) Extracellular ATP or bacterial toxins can induce
K+ efflux through the P2X purinergic receptor 7 (P2X7), which leads to the activation of the NLRP3 inflammasome. (3) The phagocytosis of
specific crystalline can cause lysosomal rupture and induce the release of lysosomal contents cathepsin B, which contributes to the activation
and assembly of theNLRP3 inflammasome. Consequently, these trigger the cleavage of procaspase-1 into its active andmature form caspase-1,
which leads to the production of the mature IL-1𝛽 and IL-18.

The initial priming signal, induced by the Toll-like recep-
tor (TLR)/nuclear factor NF-𝜅B pathway, affects NLRP3 at
the transcriptional level and also serves to trigger post-
translational modifications of inflammasome components
[8, 9]. The second signal triggers assembly of the NLRP3
inflammasome complex [10, 11]. The NLRP3 inflammasome
complex can be activated by both exogenous (including infec-
tion, tissue damage, and metabolic dysregulation) [12] and
endogenousmolecules such as extracellular ATP, hyaluronan,
A𝛽 fibrils, and uric acid crystals [13].

For a large number and diversity of NLRP3 inflamma-
some stimuli, it seems unlikely that they all bind to theNLRP3
structure to form the NLRP3 inflammasome. So far, there
have been three mainly mechanisms regarding activation
of the NLRP3 inflammasome, including the generation of
reactive oxygen species (ROS), the efflux of potassium, and
the rupture of lysosomal [14, 15].

2.1. Reactive Oxygen Species (ROS). ROS, mainly associated
with the normal or malfunctioning mitochondria, has been
proved to play a significant role in the activation of NLRP3
inflammasome [16]. Numerous NLRP3 inflammasome acti-
vators are known to trigger mitochondrial ROS production.

A recent study has shown that the thioredoxin-interacting
protein (TXNIP) is a ROS-sensitive regulator of the activation
of NLRP3 inflammasome [17]. The binding of TXNIP to
NLRP3 leads to the activation of NLRP3, the recruitment
of ASC and procaspase-1, and the formation of the active
NLRP3 inflammasome complex [18, 19]. In addition, several
researches suggest that the damage to NADPH oxidase by
mitochondrial ROS can activate the inflammasome [20,

21]. Other studies suggest that NADPH oxidase and the
production of ROS are dispensable forNLRP3 inflammasome
activation, but crucial for IL-1𝛽 secretion [15, 22]. Moreover,
it has been demonstrated that the mitochondria-targeted
antioxidantMito-TEMPO,which targetsmitochondrial ROS,
can inhibit the activation of inflammasome and subsequently
reduce the secretion of IL-1𝛽 and IL-18 [23, 24].

However, ROS activation is not an absolute requirement
for activation of all NLRP3 inflammasomes [25]. Some stud-
ies implicate that mitochondrial ROS mediates the upreg-
ulation of NLRP3 and pro-IL-1𝛽 transcription rather than
the NLRP3 inflammasome activation [26]. Therefore, more
studies are required to understand the precise role of ROS in
regulating NLRP3 inflammasome activation.

2.2. K+ Efflux. Another fully studied mechanism of NLRP3
inflammasome activation is the decrease in the intracel-
lular K+. Several mechanisms underlying the efflux of K+
have been proposed. For example, high extracellular ATP
concentrations can reduce intracellular K+ concentrations
by activating the P2X purinergic receptor 7 (P2X7), which
is considered an important signaling pathway to activate
NLRP3 inflammasomes [27, 28]. Furthermore, a reduction
in intracellular K+ levels was found to be essential for
NLRP3 inflammasome activationwhen triggered by bacterial
infection, MSU crystals, and pore-forming toxins [29, 30].
Another study indicated that inflammasome activation in
response to many NLRP3 activators was effectively inhibited
by K+ channel inhibitor glibenclamide [13]. Recently, the
reduction in intracellular K+ concentration is thought to
be a common pathway for NLRP3 inflammasome complex
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activation. However, themechanisms of how low cytoplasmic
K+ concentration activates inflammasome activation are
needed to further study.

2.3. Rupture of Lysosome. It has also been widely accepted
that the disruption of the lysosomal membrane can result
in NLRP3 activation. lysosome destabilization, caused by the
phagocytosis of specific crystalline and particulate matter,
leads to the release of lysosomal contents [31]. Cathepsin
B, as one of the lysosomal contents, has been proved to
activate the NLRP3 inflammasome. Cathepsin B inhibitor
CA-074-Me was found to partially inhibit NLRP3 acti-
vation [32, 33]. Besides the mechanisms of activation by
endogenous crystalline, the role of environmentally derived
crystals such as asbestos, silica, and aluminum salts has
also been proved in NLRP3 inflammasome activation [34].
In addition, to understand how lysosomal rupture leads to
NLRP3 activation, a recent study found that the TAK1-JNK
pathway, a MAPK signaling pathway, was activated through
lysosome rupture and that this activation was necessary for
the complete activation of the NLRP3 inflammasome [35].
Thus, the lysosome plays an essential role in the activation
of the NLRP3 inflammasome. Further understanding of the
mechanism is needed in future.

2.4. Other Activators. Despite the former three mecha-
nisms regarding activation of the NLRP3, it is becoming
increasingly clear that one signal alone is insufficient to
induce inflammasome activation [16]. Several other path-
ways have been revealed to explain the mechanisms by
which diverse stimuli activate the NLRP3 inflammasome
complex. Recently, it has been reported that Ca2+ mobi-
lization mediated mitochondrial damage and dysfunction
can also activate the NLRP3 inflammasome [36, 37]. In
addition, mitochondria-associated cardiolipin is required for
recruitment and activation of the NLRP3 inflammasome
[38]. Moreover, some studies elucidated the contribution
of the mitochondrial antiviral signaling protein (MAVS) in
NLRP3 inflammasome activation [39, 40]. It has also been
reported that infection with RNA virus initiates assembly
of the RIP1–RIP3 complex, which promotes activation of
the GTPase DRP1 and its translocation to mitochondria to
drive mitochondrial damage and activation of the NLRP3
inflammasome [41].

2.5. Negative Regulation. Despite the multiple positive regu-
lation contributed to the activation of NLRP3 inflammasome,
negative regulation is also necessary to maintain appropriate
induction of inflammasome function.

Recent studies have indicated that autophagy can act
as a negative regulator of NLRP3 inflammasome activation
by removing sources of endogenous NLRP3 inflammasome
agonists [42, 43], suppressing of IL-1𝛽 secretion [44], and
degrading inflammasome components, such as NLRP3 and
ASC [45, 46]. And also inhibition of autophagy by 3-
methyladenine (3-MA) can promote the activation of the
NLRP3 inflammasome [47]. Additionally, nitric oxide (NO)
downregulates NLRP3 activation through enhancing the

removal of the dysfunctional mitochondria and preventing
assembly of the inflammasome [48, 49]. Moreover, type I
IFNs inhibit the NLRP3 inflammasome in both the priming
signal and the activation signal [50]. Other forms of negative
regulation, such as the roles of microRNAs and bacterial
and viral mechanisms, have been detailed in recent reviews
[8, 51].

Considering the recent findings of activation and regu-
lation of the NLRP3 inflammasome, further understanding
of these molecular mechanisms and signal pathways may be
helpful in designing potential therapeutics to prevent inflam-
matory diseases associated with the NLRP3 inflammasome.

3. NLRP3 Inflammasome and CNS Diseases

Recently, an increasing number of studies have been inves-
tigating the underlying role of NLRP3 inflammasome in the
central nervous system.The NLRP3 inflammasome has been
proved to express in diversity of cells such asmicroglia, astro-
cyte, neuron, and endothelial cell [52–55] and in different
kinds of diseases such as traumatic brain injury, stroke, brain
tumor, neurodegenerative disease, and others.

3.1. NLRP3 Inflammasome and Traumatic Brain Injury. Trau-
matic brain injury (TBI), caused by physical force to the
brain tissue, initiates a primary insult and secondary cascade
of events. The primary insult results in direct neuronal
loss and necrotic death, which is then followed by a wave
of injury cascades including excitotoxicity, oxidative stress,
mitochondrial dysfunction, blood-brain barrier disruption,
and inflammation [56]. Numerous studies laid emphasis on
the role of inflammatory response among the components of
the secondary brain injury [57, 58].

The significant increasing of IL-1𝛽 and IL-18 after exper-
imental TBI has been demonstrated [59]. Recently, a study
found that TBI could induce assembly of NLRP3 inflam-
masome complex, expression of ASC, activation of caspase-
1, and processing of IL-1𝛽 and IL-18. It may be possible
that NLRP3 inflammasome is a promising therapeutic target
for patients with TBI [60]. Similar to NLRP3, NLRP1 has
also been proved as an important component of the innate
inflammatory response after TBI. TBI induced assembly of
the NLRP1 inflammasome, cleavage of X-linked inhibitor
of apoptosis protein (XIAP), activation of caspase-1, and
processing of IL-1𝛽 [61]. Another study showed that TBI
patients with higher levels ofNLRP1 in the cerebrospinal fluid
(CSF) had a worse outcome than that with a lower expression
of NLRP1 [62]. NLRP1 and NLRP3may work together to play
a role in the inflammation after TBI and serve as candidate
therapeutic targets in TBI [4]. However, the relationship
between those two inflammasomes needs further study.

Although the studies indicated a correlation between
enhanced inflammasome expression and TBI pathology, the
potential functional role that inflammasomemay play in TBI
remains to be directly demonstrated. Therefore, inflamma-
tory response, especially in the postinjury period of TBI, is
an important therapeutic target for reducing the neurological
dysfunction and improving the outcome.
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3.2. NLRP3 Inflammasome and Ischemia Stroke. Stroke is
regarded as a severe disorder with high mortality and
long-term disability. Clinically, stroke can be classified into
ischemic stroke and hemorrhagic stroke. Ischemic stroke
commonly accounts for approximately 80% of all stroke
cases while hemorrhagic stroke accounts for approximately
20% [63]. The mechanisms responsible for ischemic stroke-
induced neuronal cell death include bioenergetic failure,
oxidative stress, excitotoxicity, apoptosis, and inflammatory
process [64–66].

Recently, the increasing number of evidences has indi-
cated that inflammatory mechanism fundamental to the
innate immune system may contribute to the death of neu-
ronal and glial cell during cerebral ischemia [67].TheNLRP3
inflammasome has been proved to play an important role
in detecting cellular damage and mediating inflammatory
responses to tissue injury during ischemic stroke. Hence,
targeting pathways upstream and downstream of NLRP3
inflammasome signaling may offer substantial promise in
developing new therapeutics for stroke [68].

A study found the neuroprotective effects of intravenous
immunoglobulin (IVIg), which could significantly reduce
the levels of NLRP3 inflammasome proteins as well as IL-
1𝛽 and IL-18 during simulated ischemia in vitro and in
a mouse model of focal ischemic stroke [69]. Another
study showed that intermittent fasting (IF) could contribute
to reducing expression of NLRP1 and NLRP3 inflamma-
some and the precursors of IL-1𝛽 and IL-18 in a mouse
model of focal ischemic stroke by suppressing the activa-
tion of NF-𝜅B and MAPK pathway [70]. More evidence
showed that, in neuronal cells, oxygen-glucose depriva-
tion (OGD) could induce the accumulation of dsRNA to
prime the NLRP3 and proinflammatory cytokines produc-
tion, which were involved in the inflammatory progres-
sion and injuries of cerebral ischemia [71]. These suggest
that targeting NF-𝜅B pathway and transcriptional level
may provide a therapeutic effect on inflammasome expres-
sion and activity during cerebral ischemia. Recently, the
research targeting TXNIP/NLRP3 inflammasome activation
is also a hotspot. A study indicated that Umbelliferone
(UMB) suppressed the inflammatory cytokines production
through the inhibition of TXNIP/NLRP3 inflammasome
activation [72]. Another study showed that curcumin inhib-
ited TXNIP/NLRP3 inflammasome activation by suppress-
ing endoplasmic reticulum stress and thereby protected
neuronal cell survival from glutamate neurotoxicity after
ischemic insult [73]. In addition, one study demonstrated that
pharmacological inhibition by using resveratrol or genetic
deletion of TXNIP attenuated brain infarction and neuro-
logical outcome in mice embolic mode via restoring redox-
balance and inhibition of TXNIP-NLRP3 inflammasome
activation [74]. Moreover, there are also researches targeting
inflammasome componentsNLRPs, ASC, and caspase-1. One
study demonstrated that estrogen and progesterone could
regulate ASC and NLRP3 at the protein level and reduce
the expression of inflammasome components in the transient
focal rat ischemic model [53]. In addition, Bruton’s tyrosine
kinase (BTK) regulated activation of the NLRP3 inflamma-
some by interacting with NLRP3 and ASC [75]. Another

study found that A151, a synthetic oligodeoxynucleotide,
attenuated ischemic brain injury by reducing the matura-
tion of caspase-1 and IL-1𝛽 and the production of NLRP3
[76].

Therefore, numerous studies have focused on the expres-
sion, activity, and products of NLRP3 inflammasome, which
may discover potential therapeutics for ischemia stroke.
However, there are still many underlying mechanisms of the
inflammasome remained to investigate.

3.3. NLRP3 Inflammasome and Hemorrhagic Stroke. Sponta-
neous intracerebral hemorrhage (ICH), as one type of hem-
orrhagic stroke, is also a devastating disease with high mor-
bidity and mortality [77]. The mechanisms responsible for
neurological dysfunction after ICH include hematoma for-
mation, brain edema, inflammation, andmicroglia activation
[78–81]. Accumulating evidence indicates that inflammatory
mechanism, especially the role of NLRP3 inflammasome, is
involved in the pathophysiology of ICH [82].

In a mouse model of ICH, Ma et al. found the role
of NLRP3 inflammasome in contributing to ICH-induced
inflammatory activation. The mPTP inhibitor (TRO-19622)
and mitochondria ROS scavenger (Mito-TEMPO) were used
in the study to indicate the mechanism of mitochondria
ROS inNLRP3 inflammasome activation [24].The inhibition
of P2X7R pathway by using blue brilliant G (BBG) could
be a potential therapeutic target for secondary brain injury
after ICH [83]. Additionally, a recent study found that a
recombinant adenovirus encoding NLRP3 RNAi attenuated
inflammation in ICH [84]. Moreover, another study iden-
tified miR-223 suppressed NLRP3 production by directly
binding to its 3UTR, which reduced neuronal inflammation
and improved neuronal function after ICH [85]. Recent
studies have revealed new information on the NLRP3 inflam-
masome during ICH, and the NLRP3 inflammasome may be
a promising therapeutic target in ICH patients.

Subarachnoid hemorrhage (SAH), as another type of
hemorrhagic stroke, is associated with a high mortality and
morbidity [86, 87]. Recently, increasing evidence has empha-
sized the role of early brain injury (EBI) associated with
the poor outcome of SAH patients [88–91]. The underlying
mechanisms include a reduction in cerebral blood flow,
increased intracranial pressure, oxidative stress, apoptosis,
and inflammation [92]. NLRP3 inflammasome has been
proved a key component of inflammatory response in the
pathophysiology of SAH.

A recent study made the observation that treatment
with minocycline in a rat SAH model could inhibit NLRP3
inflammasome activation and attenuate brain edema in EBI
after SAH. This effect may be associated with the reduction
of mitochondrial ROS [93]. Another study demonstrated the
downregulating role of hydrogen-rich saline (HS) treatment
in the activation of NLRP3 inflammasome via inhibiting NF-
𝜅B pathway after SAH [94]. In addition, the neuroprotection
role of melatonin treatment has been proved in the EBI fol-
lowing SAH by inhibiting NLRP3 inflammasome activation
and NLRP3-associated apoptosis [95].

An increasing number of studies focus on the role of
NLRP3 inflammasome in inflammatory response after SAH.
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These studies may provide a promising therapeutic choice for
patients with SAH.

3.4. NLRP3 Inflammasome and Brain Tumor. In recent years,
the important role of NLRP3 inflammasome in carcinogene-
sis and tumor progression has been reported. A number of
endogenous and exogenous stimuli can behave as tumor pro-
moters by inducing chronic inflammation and consequently
provide signals for inflammasome activation in cancer [96].
And NLRP3 inflammasome is also reported to suppress the
function of natural killer cell in controlling carcinogenesis
and metastases [97]. Moreover, NLRP3 inflammasome plays
a significant role in tumor control by recruiting neutrophils,
which may provide a prognostic marker and promising
therapeutic target in cancer patients [98].

In CNS, malignant glioma is the most common pri-
mary brain tumors with poor prognosis. Increasing evidence
indicates the crucial role of innate immunity and chronic
inflammation in carcinogenesis and tumor progression [99–
101]. And the role of NLRP3 inflammasome in glioma has
also been described. NLRP3 inflammasome can active in
glioblastoma multiforme (GBM) cells constitutively [102].
NLRP3 inflammasome can also be activated by different
signals in different types of cells [54, 55, 103]. Moreover,
by using a mouse glioblastoma model, it has been proved
that the inhibition of NLRP3 can reduce tumor growth and
prolong the survival of mouse following IR treatment. They
demonstrated that NLRP3 inflammasome was a molecular
link between brain aging and progression of glioma and
radiotherapy resistance [104].

The NLRP3 gene signature may serve as a promising
biomarker in glioma patients. However, the potential mecha-
nism ofNLRP3 inflammasome in the progress of brain tumor
has not been totally understood. More studies are needed in
understanding the character of inflammasome and exploring
therapeutic potential in brain cancer.

3.5. NLRP3 Inflammasome and Neurodegenerative Diseases.
Recent researches have indicated that innate immune acti-
vation and neuroinflammation may be involved in various
neurodegenerative diseases, such asAlzheimer’s disease (AD)
and Parkinson’s disease (PD). There is increasing evidence
that sustained inflammatory responses may contribute to
disease progression. It can not only be a consequence but also
be a trigger of pathology [105]. Neuroinflammatory cascades
rely on the activation of NLRP3 inflammasome, which has
been proved crucial in neurodegenerative diseases.

AD is the most prevalent form of dementia. Extensive
evidence has indicated that IL-1𝛽 and IL-18 may contribute
to the pathogenesis of AD and cause cognitive impairment
[106, 107]. The pathogenesis of AD involves extracellular
accumulation of amyloid-𝛽 (A𝛽) in senile plaques [108]. It has
been demonstrated that the toxicity ofA𝛽 can activateNLRP3
inflammasome, process IL-1𝛽 and IL-18, and eventually
induce AD pathology and tissue damage. Moreover, in AD
transgenic mouse model, the inhibition of NLRP3 can largely
protect memory loss and decrease A𝛽 deposition, which
provides a possibility of AD therapy by targeting NLRP3
inflammasome [109].

PD is another common degenerative disease with two
main pathological hallmarks: progressive loss of dopaminer-
gic neurons in substantia nigra and accumulation of Lewy
body in neurons [110]. Lewy body is mainly composed of
the presynaptic protein 𝛼-synuclein (𝛼-syn), which has been
proved to be a significant role in NLRP3 inflammasome
activation and PD pathogenesis [111, 112]. And it also provides
a therapeutic possibility for PD.

In addition, numerous researches have revealed the role
of NLRP3 inflammasome in many other neurodegenera-
tive diseases such as frontotemporal dementia, amyotrophic
lateral sclerosis (ALS), Huntington’s disease, and multiple
sclerosis (MS) [105, 113].The innate immune activation could
be an early cause in neurodegenerative diseases and this indi-
cates that anti-inflammatory therapies could be a promising
treatment approach.Although the inhibition of inflammation
may not alter the underlying cause of disease, it may reduce
the production of factors involved in neurotoxicity and
consequently result in clinical benefits.

3.6. NLRP3 Inflammasome and Other CNS Diseases. It has
been widely accepted that neuroinflammation is involved in
the epileptogenesis by promoting neuronal excitability and
decreasing seizure threshold [114]. The role of the NLRP3
inflammasome in status epilepticus (SE), one of the most
serious types of epilepsy, has been proved. In SE rat model,
the expression of NLRP3 inflammasome was promoted,
which could activate caspase-1 signaling and contribute
to neuroinflammation and epileptogenesis. The inhibition
of NLRP3 inflammasome may play a neuroprotective role
against neuroinflammation and neuronal damage followed
by SE [115].

In addition, increasing evidence shows that the NLRP3
inflammasome is also involved in microbial infections in
CNS. Microglial cells constitute the first defense line of the
CNS against microbial invasion [116]. A study of Jamilloux
et al. found that microglial cells detected that legionella
pneumophila could lead to the activation of inflammasome
[117]. And another study showed that NLRP3 knockout
mice infected with pneumococcal meningitis could present
decreased scores of disease severity and brain inflammation
[118]. Moreover, another study found the expression of
NLRP3 and IL-1𝛽 changed in the brain of avian influenza
virus H9N2 infected mice. This study indicated the role of
NLRP3 inflammasome in host response to influenza virus
infection and the outcome of pathological injury and clinical
manifestation [119]. In general, inhibiting inflammasome
activation might be a promising target for microbial infec-
tion diseases. Besides, many other CNS disorders, such as
prion diseases, experimental autoimmune encephalomyelitis
(EAE), are associated with the activation of NLRP3 inflam-
masome [120, 121]. Further studies are aimed at providing
new therapeutic choices for all these disorders.

4. Conclusion

In this review, we have elaborated on the mechanisms
involved in the activation and regulation of NLRP3 inflam-
masome. In addition, we collected the recent researches on
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the role of NLRP3 inflammasome in CNS diseases. The
exact molecular mechanisms on the assembly, activation,
and regulation of NLRP3 inflammasome are required to
be further examined, which are very important for NLRP3
inflammasome to be as a novel therapeutic strategy in CNS
disorders.
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