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Background: Shanghai experienced a significant surge in Omicron BA.2 infections from
March to June 2022. In addition to the standard interventions in place at that time,
additional interventions were implemented in response to the outbreak. However, the
impact of these interventions on BA.2 transmission remains unclear.
Methods: We systematically collected data on the daily number of newly reported in-
fections during this wave and utilized a Bayesian approach to estimate the daily effective
reproduction number. Data on public health responses were retrieved from the Oxford
COVID-19 Government Response Tracker and served as a proxy for the interventions
implemented during this outbreak. Using a log-linear regression model, we assessed the
impact of these interventions on the reproduction number. Furthermore, we developed a
mathematical model of BA.2 transmission. By combining the estimated effect of the in-
terventions from the regression model and the transmission model, we estimated the
number of infections and deaths averted by the implemented interventions.
Results: We found a negative association (�0.0069, 95% CI: 0.0096 to �0.0045) between
the level of interventions and the number of infections. If interventions did not ramp up
during the outbreak, we estimated that the number of infections and deaths would have
increased by 22.6% (95% CI: 22.4e22.8%), leading to a total of 768,576 (95% CI: 768,021-
769,107) infections and 722 (95% CI: 722e723) deaths. If no interventions were deployed
during the outbreak, we estimated that the number of infections and deaths would have
increased by 46.0% (95% CI: 45.8e46.2%), leading to a total of 915,099 (95% CI: 914,639-
915,518) infections and 860 (95% CI: 860e861) deaths.
Conclusion: Our findings suggest that the interventions adopted during the Omicron BA.2
outbreak in spring 2022 in Shanghai were effective in reducing SARS-CoV-2 transmission
and disease burden. Our findings emphasize the importance of non-pharmacological in-
terventions in controlling quick surges of cases during epidemic outbreaks.
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1. Background

China experienced multiple localized Omicron outbreaks in the first half of 2022 (National Health Commission of the
People's Republic of China). Specifically, Shanghai underwent a major outbreak of the Omicron BA.2 variant in March
2022, resulting in a total of 0.62 million reported infections (~2.4% of the Shanghai population) and 588 deaths (The State
Council Information Office of the People's Republic of China). In response to this outbreak, a set of additional interventions
were implemented, including district-wide and city-wide mass nucleic acid screening, as well as lockdown measures (Chen
et al., 2022). Moreover, Hong Kong faced its fifth wave of coronavirus disease 2019 (COVID-19) in late December 2021, leading
to over 3.0 million infections (Centre for Health Protection of the Department of Health and the Hospital Authority), affecting
a substantial 41.1% of the Hong Kong population. To safeguard people's health and protect the healthcare system from
collapse, mitigation strategies such as rapid antigen tests (RATs) (The Government of the Hong Kong Special Administrative
Regiona) and the “StayHomeSafe” scheme (The Government of the Hong Kong Special Administrative Regionb) were
deployed. These measures have been demonstrated to significantly contribute to reducing the reproduction number and
easing the isolation and treatment burden of hospitals (Du et al., 2022). However, the quantitative impact of these in-
terventions on BA.2 transmission in Shanghai has yet to be quantified.

In this study, we utilized a log-linear regression model to evaluate the impact of these interventions on the reproduction
number. Furthermore, we employed a stochastic susceptible-latent-infectious-recovered (SLIR) model to simulate the
transmission of BA.2 in Shanghai. The objective of this study is to assess the effect of these interventions on the disease
burden and estimate the number of averted infections and deaths under counterfactual scenarios on alternative
interventions.

2. Methods

2.1. Data sources

For the entire duration of the Omicron BA.2 wave in Spring 2022 in Shanghai, we systematically collected data on the daily
number of newly reported COVID-19 infections from March 1 to June 1, 2022 (Supplementary Table 1) (The State Council
Information Office of the People's Republic of China).

2.2. Public health response

We downloaded public health response data from the Oxford COVID-19 Government Response Tracker (Hale et al., 2021).
Changes in policy indicators related to containment and closure policies (C1-C8) and health system policies (H1-H8) in
Shanghai from February to July 2022 are illustrated in Supplementary Fig.1. The containment and health index (denoted as Ct)
served as an index grouping these two families of policy indicators. Before the start of the Omicron BA.2 wave, Shanghai
maintained a baseline level of non-pharmacological interventions to prevent potential outbreak of COVID-19. BetweenMarch
and June 2022, additional interventions, including district-wide and city-wide mass nucleic acid screening and lockdown,
were implemented in response to the outbreak. The majority of the containment measures (such as lockdowns) were lifted at
the end of the outbreak (Fig. 1 and Supplementary Table 2).
Fig. 1. Containment and health index (Ct) over time during the Omicron BA.2 outbreak in Shanghai. Phase 1 (Pre-March 2022): Implementation of baseline
interventions to prevent potential COVID-19 outbreaks. Phase 2 (March to June 2022, shaded grey area): Implementation of baseline and additional interventions
in response to the Omicron BA.2 outbreak. Phase 3 (Post-June 2022): Easing of containment and closure policies.
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2.3. Effective reproduction number

We applied a Bayesian approach to estimate the real-time daily effective reproduction number (denoted as Rdt ) (Liu et al.,
2018). This method relies on the time series of the daily number of new infections and knowledge of the distribution of the
generation time. Since our dataset provided only the official reporting date, we generated the date of sample collection for
each infection using a Poisson distribution with the mean equal to the delay between the date of sample collection and the
reporting date. In our main analysis, we considered delays of 2 days, 3 days, and 2 days between the date of sample collection
and reporting for periods before March 15, between March 16 and May 14, and after May 15, respectively, based previous
findings (Chen et al., 2022). Additionally, a 4-day delay for the period between March 16 and May 14 was considered as a
sensitivity analysis. This estimated sampling date was assumed to approximate the date of symptom onset. The generation
time was assumed to follow a gamma distribution of mean 2.7 days (shape: 3.25, scale: 0.84), in agreement with the mean
serial interval estimated in reference (Mefsin et al., 2022). As a sensitivity analysis, we considered a gamma distribution of
mean 3.3 days (shape: 1.89, scale: 1.75), in agreement with the mean serial interval estimated in reference (Backer et al.,
2022). The weekly effective reproduction number (denoted as Rwt ) was derived as the weekly geometric mean of Rdt .
2.4. Log-linear regression model

Following the approach presented in reference (te Beest et al., 2013). we used a regression model to establish the rela-
tionship among Rwt , the depletion of susceptible individuals, and implemented interventions Ct . The log-linear regression
model is expressed as:

ln
�
Rwt

�
z lnðR0S0Þþaht þ εCt

where:

� R0 represents the basic reproduction number,
� S0 represents the initial fraction of susceptible individuals in the population,
� ht represents the observed cumulative incidence of infections up to week t-1,
� a represents the rate at which susceptible individuals are depleted,
� ε represents the coefficient measuring the effect of the implemented interventions.

R-squared was calculated to measure the goodness of fit of the regression model. In the main analysis, we analyzed an 11-
week dataset of Rwt , centered on the peak incidence of reported COVID-19 infections (April 9, 2022). This dataset covered the
period from March 2 to May 17, 2022. Additionally, we performed a sensitivity analysis by adjusting the duration of the
dataset to 10 or 12 weeks.
2.5. SARS-CoV-2 transmission model

We utilized the standard SLIR model to simulate the transmission of BA.2 in Shanghai (Supplementary Method). This
model classified the population into four epidemiological categories: susceptible, latent, infectious, and recovered. Upon
infection, susceptible individuals enter a latent compartment and become infectious after a latent period of 1.0 days (Leung
et al., 2023). Infectious individuals could transmit the virus to susceptible individuals during an infectious period of 1.7 days,
after which they naturally recover. Since latent and infectious periods are both exponentially distributed, their sum corre-
sponds to the generation time of average 2.7 days (Wallinga et al., 2007). Wemodeled the transitions between compartments
using a stochastic chain binomial process (Cai et al., 2022a; Liu et al., 2024). Given the limited protection against infection
provided by the inactivated vaccine and the rapid decline in immunity (Huang et al., 2022), we assumed that the population
was fully susceptible to infection during the analyzed outbreak.

Using the estimated coefficients in the regression model, we determined the initial net reproduction number (denoted as
Re) as Re ¼ elnðR0S0Þ. The transmission rate in absence of interventions (denoted as b0) was estimated following its relationship
with Re: b0 ¼ elnðR0S0Þg, where g represents the recovery rate. The number of reported infections was assumed to be pro-
portional to the number of infected individuals, and the seeding date was set at March 1, 2022. To calibrate the model, we
fitted it to the time series of cumulative infections, identifying the number of initial infectious seeds that best matched the
observed data.

The baseline scenario (denoted as S0) corresponds to the real-world situation, and simulations were carried out using the
observed time series of interventions (Ct) and the estimated real-time transmission rate bt ¼ b0eεCt . Then, we reconstructed
the transmission rate bt by varying Ct values to simulate the transmission of BA.2 under two counterfactual scenarios.
Counterfactual scenario 1 (denoted as S1) assumes that the level of interventions remained constant at the level observed
before the start of the outbreak, namely bt ¼ b0eεC0. In counterfactual scenario 2 (denoted as S2), no interventions were
implemented, namely the values of Ct were set to zero throughout the entire outbreak and bt ¼ b0. Given the number of
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infections projected by the transmission model, the overall crude infection-fatality ratio (0.094% The State Council
Information Office of the People's Republic of China) was used to estimate the number of deaths.

3. Results

A total of 626,806 infections were officially reported in Shanghai between March and June 2022 (Fig. 2A and
Supplementary Fig. 2). In response to this outbreak, additional interventions were implemented. Rdt initially fluctuated
around 2 and gradually decreased due to district-wide mass nucleic acid screening and lockdown. Subsequently, there was a
rapid drop below the epidemic threshold following the implementation of city-wide mass nucleic acid screening and lock-
down (Fig. 2B). Consistent findings were observed when considering a 4-day delay between the sampling date and reporting
date in the period from March 16 to May 14, 2022, and using a gamma-distributed generation time with a mean of 3.3 days
(Supplementary Fig. 3).

We applied a log-linear regression model to assess the impact of interventions on the reproduction number (Fig. 3A). The
parameter εwas estimated to be�0.0069 (95% CI: 0.0096,�0.0045). This negative value indicates that the implementation of
interventions effectively reduced the reproduction number. The estimated parameters of the regressionmodel are reported in
Supplementary Table 3. Shortening or lengthening the duration of dataset to 10 or 12 weeks had little effect on model
outcomes (Supplementary Figs. 4e5).

We then fit the transmission model to the time series of cumulative infections. The best fit was obtained by setting initial
infectious seeds to 230, which projected 626,858 (95% CI: 625,959-627,674) infections and 589 (95% CI: 588e590) deaths
(Fig. 3B). Using the calibratedmodel, we assessed the impact of interventions on the disease burden (Fig. 4). In counterfactual
scenario 1, the estimated cumulative number of infections and deaths were 768,576 (95% CI: 768,021-769,107) infections and
722 (95% CI: 722e723), respectively. Compared to the baseline scenario, the absence of additional interventions would have
resulted in a 22.6% (95% CI: 22.4e22.8%) increase in disease both in the number of infections and deaths. Counterfactual
scenario 2 projected a total of 915,099 (95% CI: 914,639-915,518) infections and 860 (95% CI: 860e861) deaths. This suggests
that if no interventions were deployed the disease burdenwould have increased by 46.0% (95% CI: 45.8e46.2%) as compared
to the baseline scenario.
Fig. 2. Epidemic curve and estimated Rd
t during the Omicron BA.2 outbreak in Shanghai. A Daily number of newly reported infections by date of sample

collection. B Daily effective reproduction number Rdt as estimated from our Bayesian approach. Lines and shaded areas: mean and 95% CI of 100 simulations. The
horizontal line represents the epidemic threshold.
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Fig. 3. Fit of the weekly effective reproduction number and epidemic curves. A Weekly effective reproduction number as estimated from our Bayesian
approach (red circles) and as estimated from our regression model (blue line). Blue line and shaded areas: mean and 95% CI of 100 simulations. B Daily number of
new and cumulative infections as observed in the data (red or blue circles) and as simulated by the SLIR model (red or blue lines). Lines and shaded areas: mean
and 95% CI of 100 simulations.
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4. Discussion

In this study, we used a combination of log-linear regression and mechanistic modeling to evaluate the impact of in-
terventions on the Omicron BA.2 outbreak in spring 2022 in Shanghai, China. We estimated that escalation of non-
pharmacological interventions in response to the outbreak decreased the disease burden by 22.6% (95% CI: 22.4e22.8%).
Moreover, we estimated that in the absence of any intervention, the disease burden would have increased by 46.0% (95% CI:
45.8e46.2%).

Throughout the Shanghai Omicron BA.2 wave, most of the infectious individuals were identifies thoughmultiple rounds of
mass nucleic acid screening characterized by high test sensitivity (pool size of 5e20 samples were commonly tested in the
outbreak, which would lead to a detection sensitivity of 84.7e95.3% Yelin et al., 2020). Subsequently, these individuals were
either isolated in the designated hospitals or dedicated isolation facilities, or they were quarantined at home. This approach
contributed for the interruption the transmission process of infectious individuals, contributing to explain the high effec-
tiveness of the interventions estimated in this study.

Our study has several limitations that should be considered. First, the estimation of the effective reproduction number
over time is based on the date of sample collections inferred from the date of reporting. Although this is not ideal, previous
studies have used a similar approach (Abbott et al., 2020; Chen et al., 2022). Moreover, it is important to stress that multiple
rounds of mass screenings were implemented during the analyzed outbreak, greatly reducing the delay between infection
and reporting dates. Finally, we also conducted a sensitivity analysis with different reporting delays and found consistent
results. Second, the adopted interventions have likely contributed to the shortening of the duration generation time as
compared to the intrinsic generation time of Omicron (Manica et al., 2022). Since no estimates of the realized generation time
during the Omicron BA.2 outbreak in Shanghai is available in the literature, we relied on estimates of the serial interval
available for an outbreak in Hong Kong that was treated with strict interventions (Mefsin et al., 2022). To assess the
robustness of our findings, we conducted a sensitivity analysis assuming a longer generation time and found similar results.
Third, we estimated the overall effect of the interventions adopted during the Shanghai outbreak. This analysis utilized the
523



Fig. 4. Projected disease burden under baseline and counterfactual scenarios. A Daily number of new infections over time under different scenarios. Baseline
scenario (S0): simulations are carried out using the observed time series of interventions. Counterfactual scenario 1 (S1): simulations are carried out maintaining
constant pre-outbreak interventions. Counterfactual scenario 2 (S2): no interventions. Lines and shaded areas: mean and 95% CI of 100 simulations. B Cumulative
number of infections under the three scenarios used in panel A. C Cumulative number of deaths under the three scenarios used in panel A.
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containment and health index from the Oxford COVID-19 Government Response Tracker as a proxy of the intensity of the
interventions implemented during the outbreak, which has been widely adopted in previous studies (García-García et al.,
2022; Ge et al., 2022; Zhang et al., 2023). Further analyses are warranted to investigate the impact of single interventions
separately. Additionally, vaccination was excluded from the transmission model due to the limited and temporarily effec-
tiveness against infection provided by the inactivated vaccine (Huang et al., 2022). Future work would be warranted in
evaluating the effectiveness of inactivated vaccine against different clinical endpoints and assess the impact of vaccination
and interventions together. Moreover, the interventions deployed during the outbreak were highly heterogeneous between
districts before April 2022e after that, the entire Shanghai went to a lockdown (Chen et al., 2022). Modeling the transmission
of Omicron BA.2 at the district level and assessing the impact of interventions at a higher spatial resolution could deepen our
understanding of their impact. Finally, most studies, including ours, aim at evaluating the impact of interventions on
epidemiological/clinical endpoints (Cai et al., 2022a, 2022b; Han et al., 2021; Liu et al., 2022, 2024; Wang et al., 2022; Yang
et al., 2021), neglecting the economic costs associated with the deployed strategies. A future analysis that includes an eco-
nomic evaluation of the intervention strategies implemented during the Shanghai Omicron BA.2 outbreak would be war-
ranted as it could provide new evidence to policymakers for the design of more balanced control strategies.

In conclusion, our study estimated the effect of the interventions adopted during the Omicron BA.2 outbreak in spring
2022 in Shanghai in reducing SARS-C-V-2 transmission, measured as effective reproduction number, and disease burdens,
measured as number of infections and deaths. Our findings emphasize the importance of non-pharmacological interventions
in controlling quick surges of cases during epidemic outbreaks.
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