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Fitting dynamic models with forcing
functions: Application to continuous
glucose monitoring in insulin therapy
D. J. Lunn,a∗† C. Weia and R. Hovorkab

The artificial pancreas is an emerging technology to treat type 1 diabetes (T1D). It has the potential to
revolutionize diabetes care and improve quality of life. The system requires extensive testing, however,
to ensure that it is both effective and safe. Clinical studies are resource demanding and so a principle aim is to
develop an in silico population of subjects with T1D on which to conduct pre-clinical testing. This paper aims
to reliably characterize the relationship between blood glucose and glucose measured by subcutaneous sensor
as a major step towards this goal. Blood- and sensor-glucose are related through a dynamic model, specified
in terms of differential equations. Such models can present special challenges for statistical inference, however.
In this paper we make use of the BUGS software, which can accommodate a limited class of dynamic models,
and it is in this context that we discuss such challenges. For example, we show how dynamic models involving
forcing functions can be accommodated. To account for fluctuations away from the dynamic model that are
apparent in the observed data, we assume an autoregressive structure for the residual error model. This leads
to some identifiability issues but gives very good predictions of virtual data. Our approach is pragmatic and
we propose a method to mitigate the consequences of such identifiability issues. Copyright © 2011 John Wiley
& Sons, Ltd.
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1. Introduction

Type 1 diabetes (T1D) is a chronic autoimmune disorder characterized by dysregulated blood-glucose
(BG) levels due to an inability of the pancreas to produce insulin, the hormone that promotes uptake
of glucose by cells [1]. Persistent exposure to high glucose levels (hyperglycaemia) causes long-term
diabetes complications and organ dysfunction [2]. The standard therapy is based on multiple insulin
injections, using a combination of short and long acting insulin analogues, informed by frequent BG self-
monitoring [3]. Treatment by continuous subcutaneous insulin infusion (CSII [4]) is on the rise and uses
a portable electromechanical pump to mimic nondiabetic insulin delivery, infusing insulin at preselected
rates—basically a slow basal rate with patient-activated boosts at mealtimes. However, intensive insulin
therapy aiming to achieve near-normal glucose control is associated with an increased risk of low BG
levels (hypoglycaemia), potentially leading to seizures, unconsciousness, brain damage and even death
[5]. Optimization of insulin therapy is confounded by large day-to-day and diurnal variability in insulin
requirements influenced by factors such as exercise, stress, and recurrent illness [6--8].

Self-monitoring of BG offers only a snapshot, each time, of the underlying glucose excursion,
thus, making for considerable uncertainty in determining the right treatment decision to achieve and
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maintain desirable glucose levels. Continuous glucose monitoring (CGM [9]) devices offer an alternative
approach informing on real-time glucose levels, with the possibility of real-time hyperglycaemia and
hypoglycaemia alerts [10]. CGM can show the rate at which glucose is increasing or decreasing, and thus
facilitate an understanding of how glucose levels react to insulin, food, exercise, and other factors, thus,
providing scope for finer glucose control. CGM devices use a sensor to measure interstitial glucose,
which provides an indirect reading of BG. That they can lead to improved glycaemic control has been
demonstrated [11]. They may also reduce the frequency of hypoglycaemia events in people with well
controlled T1D [12]. CGM devices and insulin pumps can be combined to form an artificial pancreas.
Insulin delivery is then automatically modulated according to real-time sensor-glucose (SG), as directed
by a control algorithm, rather than at preselected rates as during the conventional ‘open-loop’ CSII [13].

An impediment to real-time accurate CGM tracing is the existence of a physiological delay between
BG and interstitial glucose [14--16]. While there is great potential for CGM systems and the artifi-
cial pancreas to revolutionize diabetes care and improve quality of life, a more detailed quantitative
understanding is needed about the relationship between BG and SG as reported by CGM devices. This
information is helpful to health-care professionals, subjects with T1D and their carers, and also to
facilitate in silico testing of the artificial pancreas [17]. With this latter objective in mind, it is impor-
tant to be able to predict realistic sensor data, since sensor data are what the control algorithm will
have to respond to. Our approach is to characterize the relationship between BG and SG throughout
the population using data from a relatively small clinical study. We use a nonlinear regression func-
tion to describe each individual’s data and simultaneously estimate the population distribution of the
underlying parameters, exploring both inter- and intra-individual variability, including any correla-
tions between the parameters. We also use an autoregressive (AR) process to accurately describe the
residual errors. The estimated population distribution can then be used to simulate realistic param-
eter sets for new individuals, with appropriate correlations between parameters. These can then be
used, in combination with real or simulated BG data, to predict SG profiles for the new individ-
uals, which are overlaid with simulated AR processes (informed by the estimated model) to account
for typical differences between sensor observations and our regression function. A wealth of virtual
data can thus be generated, allowing extensive testing and accelerated development of the artificial
pancreas [17].

Existing CGM devices lack the accuracy of BG meters. Early reports documented particular concerns
at low BG values [18, 19], although more recent assessments indicate comparable relative accu-
racy at normal and low glucose ranges [20, 21]. Each new generation of CGM devices brings about
improvements in accuracy, reliability, and sensitivity and specificity of hypo- and hyperglycaemia alerts
[10, 21, 22]. This has a positive effect on the utility and frequency of CGM use, which is associated
with health benefits [23] and facilitates the development of the artificial pancreas [24, 25]. Our work
complements these developments by providing a methodological framework and insights into the nature
and statistical properties of sensor errors. This may also inform the development of advanced control
algorithms for the artificial pancreas [26].

The present paper is concerned with the Guardian� RT CGM system [27]. Breton and Kovatchev
[28] use similar ideas to model another CGM system (FreeStyle NavigatorTM, Abbott Diabetes Care,
Alameda, California). However, their estimation strategy is somewhat fragmented, with parameter
uncertainty being ignored between the various stages. We extend their approach by combining all of
the various modelling components into a single model, allowing all sources of uncertainty to propagate
through to our final inferences. We also examine the process of calibrating the sensor in more detail,
allowing the model to be extended to handle multiple calibration events for a single individual. Finally,
we simultaneously model the inter- and intra-individual variability of system parameters in order to
facilitate prediction.

The structure of the paper is as follows. In Section 2 we describe the data obtained from a small
clinical study involving 12 children and adolescents. Section 3 provides some mathematical background
and then presents the various aspects of our statistical model, including the dynamic sub-model and
how we account for system calibration. Section 4 presents the results of our analyses, and a concluding
discussion is given in Section 5.

2. Data

A total of N =12 children and adolescents with T1D treated by continuous subcutaneous insulin
infusion participated in a clinical research study conducted at the Wellcome Trust Clinical Research
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Facility, Addenbrooke’s Hospital, University of Cambridge, UK [24]. The sample size was not based
on any power calculation as the study concerned (APCam01 in [24]) was exploratory. Participants and,
as appropriate, their carers gave informed consent/assent. The study was approved by the Cambridge
Research Ethics Committee (REC Ref 06/Q0108/350).

A glucose sensor was fitted to each participant at least 24 h prior to the study, and, following a run-in
period and calibration as suggested by the manufacturer, the Guardian� RT CGM system took SG
readings every 5 min. BG was measured every 15 min by collecting samples via a venous cannula. The
study ran from 17:00 until 12:00 the following day, giving m =77 BG and n =228 SG measurements
for each individual. There are a small number of missing SG measurements, which we shall treat
as unknown parameters in order to retain a balanced data set. Two self-selected meals were eaten at
18:00 and 08:00 the following morning to maintain a normal carbohydrate intake, each meal containing
a mean (SD) of 87 (23) g carbohydrates. Prandial insulin boluses were given with the meals. During
the study, the Guardian� RT was calibrated, using recent BG measurements, shortly after 17:00 and
every 6 h thereafter, thus splitting the study period into five distinct ‘calibration periods’ for each
individual.

3. Methods

3.1. Background

The model that we will describe in subsequent sections is essentially an extension of the non-linear
regression

y j =g(�, x j )+� j , j =1, . . . ,n,

where y j and x j denote response and independent variables, respectively, � denotes a set of regression
parameters, and � j ∼N(0,�2), say. As a simple example, let us consider a situation in which the
regression function g() represents exponential decay and x is elapsed time:

g(�, x)=�1 exp(−�2x). (1)

Note that (1) is the unique solution to

dg

dx
=−�2g, g(�, x =0)=�1, (2)

and so (1) and (2) are equivalent specifications of the same regression function. Now suppose that
we can only express our regression function in terms of differential equations (with the corresponding
initial conditions) as we do not know the analytic solution. If we know that a unique solution exists,
however, then we know that solution is simply a deterministic function of the inputs, � and x , albeit
of unknown form. If we can find a way to evaluate the solution, we may thus treat it as we would
any other deterministic function. We may then exploit standard graphical modelling theory [29, 30] to
evaluate the full conditional distributions of any unknown inputs, e.g. �2. In this paper, we make use of
the BUGS software [31, 32] with WBDiff interface [33] installed (to allow specification of differential
equations). The differential equations, described in the following subsection, are solved numerically
by the software using a Runge–Kutta algorithm [34], and Metropolis–Hastings samplers [35, 36] are
typically used for sampling the unknown inputs.

Now suppose that the differential equations depend on some additional quantity, such as the ambient
temperature or pressure, say, whose evolution through time is driven by external factors. This happens
in many settings. For example, wind stress may be a factor in modelling ocean circulation [37], whereas
light intensity, temperature, availability of food/nutrients, and wind speed may all be important in
ecological modelling [38]. In our case, the equations depend on BG concentrations but in other areas
of diabetes research insulin concentrations may be used, e.g. [39]. We cannot usually model such
quantities but may be able to observe their values over a series of times. If we interpolate between the
observations, then we can approximate the relevant quantity at any time within the observation period.
If this observation period envelopes the time-frame over which we wish to evaluate our regression
function, then solving the differential equations is still possible, and the interpolated series is referred
to as a forcing function. WBDiff has not been designed with the specification of forcing functions in
mind, but we show how they may be accommodated in Section 3.5.

2236

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 2234--2250



D. J. LUNN, C. WEI AND R. HOVORKA

As we shall see later, our regression function (also referred to herein as the ‘dynamic model’) is
somewhat imperfect—there are clear fluctuations away from the fitted model apparent in the observed
data. For the purposes of testing the artificial pancreas’ control algorithm, it is important that we are able
to predict realistic sensor data, and so we consider an AR model for the residual errors (� j above)—see
Section 3.3. We fit the AR and dynamic models simultaneously, to fully account for uncertainty and also
to capture posterior correlation between them. However, we find that they are somewhat confounded
and identifiability issues arise unless the degree of autocorrelation in the AR process is constrained.
Our approach to this is pragmatic and involves exploring various ways of limiting the extent to which
the two models may interact, as discussed at the end of Section 4 and in the discussion.

3.2. Glucose kinetics

The CGM sensor measures glucose concentrations in the interstitial fluid, which can be related, math-
ematically, to the BG concentration via a compartmental model [40, 41]:

dIG(t)

dt
=−p1IG(t)+ p2BG(t), (3)

where IG denotes interstitial glucose. Hence, IG increases at a rate proportional to BG but is ‘used up’
according to a first-order process—the more there is, the faster it disappears.

The sensor does not measure IG directly but, instead, measures electric current in the interstitial
fluid and maps this to a scaled measure of IG via an assumption of proportionality. When the system
is calibrated, the appropriate scale is chosen by equating scaled current with recent measures of BG.
To account for this calibration we transform (3) to the same scale, by defining normalized interstitial
glucose NIG= �IG and choosing �= p1/p2 so that NIG is equal to BG at steady state:

dNIG(t)

dt
=−p1{NIG(t)−BG(t)}. (4)

Let SGij denote the j th measured SG concentration for individual i(i =1, . . . , N =12, j =1, . . . ,n =
228). Similarly, let BGil, l =1, . . . ,m =77, denote the lth measured BG concentration for individual i .
Further, denote the times at which SGij and BGil were measured by tij and sil, respectively. A simple
model for fitting individual i’s data is then

SGij =NIGij +�ij, �ij ∼N(0,�2
i ), (5)

where NIGij is the solution to (4) at time tij. This is a deterministic function of three unknown inputs:
(i) the value of p1; (ii) the initial condition NIG(t =0); and (iii) the form of BG(t). We assume that
each individual has a distinct, but unknown, value of p1, which we denote by p1i . Often the initial
conditions will be known, but in general they are not, and so these may also be treated as unknown
parameters; in this case denoted by NIG0i , i =1, . . . , N . Regarding the form of BG(t), we assume that
linearly interpolating‡ between the observed values for each individual, BGil , l =1, . . . ,m, provides a
satisfactory approximation, although see later for further discussion. Denoting the forcing function for
individual i by BGi (t), we then have

BGi (t)=BGi p + BGi(p+1) −BGi p

si(p+1) −sip
×(t −sip), p=

m−1∑
l=1

l × I (sil�t <si(l+1)).

3.3. Calibration

As demonstrated in Figure 1(b), the simple model above can perform poorly. With some careful
thought, however, as to the nature of the underlying calibration mechanism, we can do much better. We
stress, though, that the details of calibration are actually unknown to us—implementation details of the
calibration procedure are proprietary and comprise guarded know-how by the respective CGM-system
manufacturers to retain competitive advantage. In what follows, we make basic assumptions about how
the process might work in order to construct a reasonable model. We first assume that SG is given by
A× Im + D, where A and D are unknown constants and Im is the electrical current measured by the

‡The numerical differential equation solver needs to be able to evaluate BG(t) at any time, not just those times at which BG has been
observed.
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Figure 1. Observed data and posterior median model-predicted concentrations for individual ‘10’ plotted
against time since beginning of study: (a) observed BG (−·−) and SG (|) concentrations; (b) observed SG
concentrations (|) and model-predicted values NIG10 j (—) from ‘basic’ population model; and (c) observed

SG concentrations (|) and model-predicted values CIG10 j (—) from ‘calibrated’ population model.

sensor, which we assume is subject to some error, �, such that Im = I +�, where I is the true current.
We also assume that the true current I is related to interstitial glucose IG through I = IG/S+ IB , where
S denotes current sensitivity and IB represents a baseline current that is present even in the absence of
IG. Hence,

SG = A

S�
NIG+ A.IB + A.�+ D

= F ·NIG+ B +�=CIG+�,

where CIG= F ·NIG+ B denotes ‘calibrated interstitial glucose’. Note that A, S, �, IB , �, and D are
all unknown and so only F = A/S�, B = A · IB + D, and �= A ·� can feasibly be identified. Note also
that while S,�, IB , and Var(�) might all reasonably be assumed constant, both A and D change every
time the sensor is calibrated, leading to new values for F , B, and Var(�) anyway.
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Let �ik denote the kth calibration time for individual i(k =1, . . . , K =4). For convenience, we also
define �i0 = ti1 and �i(K+1) > tin . We can then write down the calibration period to which each SGij
belongs as

P[i, j]=
K+1∑
k=1

k× I (�i(k−1)�tij <�ik).

(In this paper, the calibration times are assumed known, but, in general, we may wish to acknowledge
some uncertainty regarding their values.) A more realistic model for SG observations is then

SGij = Fi P[i, j] ×NIGij + Bi P[i, j] +�ij =CIGij +�ij, (6)

where Bik and Fik(k =1, . . . , K +1) are unknown, individual, and calibration-period-specific parameters
referred to as the calibration shift and calibration scale-factor, respectively.

We consider two different models for the residuals �ij. Assuming that the only source of ‘error’
is the measured current, then a homoscedasticity assumption leads to �ij ∼N(0,�2

i P[i, j]), i =1, . . . , N ,
j =1, . . . ,n, whereas an AR model gives

�ij =	i
Fi P[i, j]

Fi P[i, j−1]
�i( j−1) +
ij, i =1, . . . , N , j =2, . . . ,n, (7)

with 
ij ∼N(0,�2
i P[i, j]), i =1, . . . , N , j =1, . . . ,n. Here 	i is an unknown individual-specific param-

eter controlling the degree of autocorrelation among the residuals. Note that in order to obtain the
Fi P[i, j]/Fi P[i, j−1] term, which is equal to one except at the calibration times, when it ‘adjusts’ the AR
process, we make the assumption that current sensitivity, S, and � do not change over time for a given
individual. We cannot specify the autoregressive model, as given by (6)–(7), in BUGS, however, since
a logical relationship for the response variable is not allowed. One way to get around this is to assume
that each individual’s SG-series arises from a CAR distribution [42, 43]. A more flexible and intuitive
approach, though, is to reexpress (6)–(7) as

SGij ∼N(�ij,�
2
i P[i, j]), �ij =CIGij +	i

Fi P[i, j]

Fi P[i, j−1]
�i( j−1), �ij =SGij −CIGij,

for j =2, . . . ,n.
To define �i1, we could simply specify �i1 =SGi1 −CIGi1. However, note that the AR model does

not penalize large �s, and so unless we control their size, through an informative prior on �i1, say, they
can become large and force the underlying ‘model fit’ {CIGij, j =1, . . . ,n} away from the observed
data, leading to implausible parameter estimates (see later for discussion). Note, though, that as the
initial condition for the differential equation is unknown, we are free to choose the time to which it
relates. If we choose the time of the first sensor reading ti1, then we may express the initial condition
deterministically:

NIG0i =NIGi1 = (SGi1 −�i1 − Bi1)/Fi1.

Hence, specifying a prior for �i1 means that there is no need to model the initial conditions. Figure 2
shows a graphical representation of the full model in the case of autoregressive errors.

3.4. Priors

Calibration shifts and scale-factors may be correlated; in addition, scale factors must be positive whereas

shifts may be negative. We therefore define Cik =
(

log Fik
Bik

)
, i =1, . . . , N ,k =1, . . . , K +1, which we

assume arise from a bivariate normal ‘population’ distribution. If we believe that calibration parameters
reflect characteristics of the individual (and/or sensor), then we may wish to assume individual-specific
means �i and an intra-individual covariance �: Cik ∼MVN2(�i ,�). We may then wish to assume
that the �i s also arise from a bivariate normal distribution, with unknown ‘global’ mean 
 and inter-
individual covariance �:

�i ∼MVN2(
,�). (8)

If, on the other hand, we believe that there is no correlation among calibration vectors for the same
individual, then we might assume that it is the Ciks that are drawn from the right-hand side of (8)
instead.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 2234--2250
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i = 1,…,N

Bi

Figure 2. Directed acyclic graph (DAG) corresponding to ‘calibrated’ model with AR(1) process for the
residual errors. For simplicity, the case in which there is only one calibration period for each individual is
depicted. Each variable in the statistical model corresponds to a node and links between nodes show direct
dependence. The graph is directed because each link is an arrow; it is acyclic because by following the arrows
it is not possible to return to a node after leaving it. Square nodes denote known constants whereas circular
nodes represent either deterministic relationships (i.e. functions) or stochastic quantities, i.e. quantities that
require a distributional assumption. Stochastic dependence and functional dependence are denoted by solid
and dashed arrows, respectively. Repetitive structures, such as the ‘loop’ from i =1 to i = N , are represented
by ‘plates’, which are nested if the model is hierarchical. The ‘plate’ in light-type on the right-hand side
is shown to indicate the nature of dependence between successive observations. Nodes � and BGi denote
the entire set of population parameters, and the set of observed blood glucose concentrations for individual

i,{BGil, l =1, . . . ,m}, respectively.

We assume fairly standard, vague (but proper) priors for 
, �, and �: bivariate normal and inverse-
Wishart, centered at our best a priori guess with large variance. Throughout, the prior standard deviation
specified for vague normal priors is 100 whereas Wishart priors are made as vague as possible by
setting the degrees of freedom equal to the dimension, two in this case. The remaining parameters,
�ik(i =1, . . . , N ,k =1, . . . , K +1),	i (where appropriate), p1i , and the initial conditions NIG0i or initial
residuals �i1(i =1, . . . , N ), are transformed appropriately and assumed to arise from normal population
distributions. Except for the initial residuals, these population distributions have unknown means and
log-standard deviations with vague normal priors. The population mean initial residual is assumed to
be zero and the population standard deviation is assigned an informative uniform prior on (0, 0.5),
where the upper bound ensures that initial residuals greater than one are unlikely. The transformations
applied are logarithmic for the residual standard deviations, initial conditions and p1 parameters, and
logistic for the 	i parameters (no transformation is required for the �i1s).

3.5. Implementation issues

Dynamic models in BUGS are ‘packaged’ in one of two ways [33]. One option is to specify the
differential equations using the BUGS language and pass these as arguments to a generic ordinary
differential equation (ODE) solver. The alternative is to edit and compile a template module for ‘hard-
wiring’ the ODE system into the software. In so doing, we create a new logical function in the BUGS
language, which provides access to the numerical solution. We pass any parameters required to define
the ODE system as arguments to the new function.
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BUGS relies heavily on graphical modelling theory [29, 30]. However, it is important to note that
in graphical modelling terms, forcing functions are non-standard nodes. At first glance we might think
they are logical nodes, since they are deterministic in nature. However, logical nodes are deterministic
functions of other nodes in the graph: when they are defined in terms of ‘time’ they are functions of
specific times, whereas forcing functions are defined for all times, in particular, they are functions of the
dummy variable of integration, which, technically speaking, does not belong in the graph (Figure 2). In
cases where the ODE-system is defined using the BUGS language, however, the integration-dummy is
accessible within the model description, since it is required to define the differential equations. Hence,
we can also use this to define forcing functions, linearly interpolating between the ‘forcing data’ via
the BUGS language. One very significant advantage of hard-wiring the ODE-system, however, is that
it is potentially much faster to compute. In this case, the integration-dummy is only available within
the hard-wired module, and so we need to pass the forcing data, along with the times to which they
relate, as parameters to the new function, and perform the interpolation within—see the Appendix.

4. Results

We begin by fitting the basic model given by (5), with the individual-specific parameters, p1i ,NIG0i ,
and �i , assumed to arise from log-normal population distributions with unknown means and standard
deviations assigned vague normal and log-normal priors, respectively. We run 10 000 iterations in
WinBUGS 1.4.3 [31, 32] with WBDiff interface [33] installed. WinBUGS code for the main models
considered in this paper is given in the Appendix.

Primarily, we work with ‘hard-wired’ systems of equations by writing and compiling specialized
BUGS-modules, but, in this case, we also considered specifying the model entirely via the BUGS
language. The former took around 5 min on a 2.13-GHz machine (when coded efficiently—see the
Appendix), whereas the latter approach was substantially slower, taking ∼50 min. Point and interval
estimates for the population parameters are presented in Table I, and a typical model fit is shown in
Figure 1(b)—individual ‘10’ was chosen as their data best illustrate the incremental benefit of increasing
the model complexity.

Visual inspection of the model fits confirms that they are generally poor. Of primary importance in
this paper is our ability to predict new data, and, to this end, the basic model is clearly inadequate.
We might still wonder, however, whether it provides meaningful parameter estimates. From a clinical
perspective, we are interested in the time delay that exists between glucose appearing in the blood and
it then showing up on the sensor. This can be seen by looking at the relative positions of BG and
SG peaks and/or troughs in Figure 1(a). The time delay is represented in the model by �= p−1

1 . To

Table I. Posterior median point estimates for population parameters (mean and SD), with 95 per cent
credible intervals in parentheses, from analysis of Guardian� RT SG-BG data using three different models.

Basic Calibrated Calibrated model
model model + AR

Parameter

Pop. mean
(95 per cent

CI)

Pop. SD
(95 per cent

CI)

Pop. mean
(95 per cent

CI)

Pop. SD
(95 per cent

CI)

Pop. mean
(95 per cent

CI)

Pop. SD
(95 per cent

CI)

log p1 −3.58 0.889 −2.79 0.164 −2.82 0.166
(−4.14, −3.03) (0.597, 1.52) (−2.89, −2.67) (0.102, 0.283) (−2.94,

−2.71)
(0.0933,
0.301)

log F — — −0.198 0.316 −0.202 0.298
(−0.291, −0.108) (0.258, 0.396) (−0.289, −0.118) (0.245, 0.370)

B — — 1.52 1.76 1.63 1.37
(0.981, 2.06) (1.41, 2.24) (1.19, 2.06) (1.08, 1.83)

log� −0.130 0.320 −1.42 0.615 −2.14 0.445
(−0.329, 0.0707) (0.216, 0.537) (−1.60, −1.24) (0.492, 0.782) (−2.27, −2.01) (0.357, 0.564)

log N I G0 2.31 0.458 2.20 0.588 — —
(2.01, 2.60) (0.310, 0.750) (1.83, 2.56) (0.395, 0.980)

�.1 — — — — 0 0.374
(0.0413, 0.496)

	 — — — — 0.8 —
(0.8,0.8)
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get a rough idea of its size purely from the data, we performed a crude correlation analysis in which
the SG values were lagged by 0, 5, 10 min, etc., and the correlation between BG and lagged-SG was
calculated. The largest correlation coefficient (0.937) was obtained at a lag of 15 min, suggesting that
a model-based estimate of the population median delay (from Table I) of exp(3.58)≈36min could be
somewhat inaccurate.

To fit the ‘calibrated’ model given by (6) with �ij ∼N(0,�2
i P[i, j]), we need to choose between the

available exchangeability assumptions for the calibration parameters Cik , i =1, . . . , N , k =1, . . . , K +1.
In particular, we wish to explore whether or not the calibration parameters reflect characteristics of the
individual (and/or sensor), that is, whether to include individual-level means for these parameters. To
address this we fit the model with and without individual means, and assess performance by looking
at the posterior mean deviance, as a measure of model fit, and the Deviance Information Criterion,
which penalizes the former by adding a penalty equal to the ‘effective number of parameters’ [44]. We
find that there is no support for individual-level means as the mean deviance is virtually the same for
both models, regardless of the effective number of parameters. Hence, we proceed with a three-level,
as opposed to a four-level, model.

We ran 300 000 iterations of WinBUGS for the three-level calibrated model in a little over 3.5 h. To
reduce the amount of computer memory required to store the output, we retained only every fifth sample
for each parameter. The final 50 000 of the resulting 60 000 samples were then used for inference. The
increased run-length here is due to a high level of autocorrelation in the output for the newly introduced
Cik vectors. Parameter estimates for the population parameters are shown in the fourth and fifth columns
of Table I. Now the population median time delay is 16.3 min, which is consistent with our crude
empirical estimate. The inter-individual variability is relatively low, corresponding to a coefficient of
variation, on the time-delay scale, of around 18 per cent. This is most usefully expressed, however,
in the form of a prediction interval for new individuals’ time delays, which accounts for uncertainty
in the population mean and variability estimates: a 95 per cent interval is given by (11.1, 23.6) min.
Population medians and 95 per cent prediction intervals for the calibration shift and scale factor are
1.52 (−2.02,5.09)mmol/L and 0.821 (0.431, 1.55), respectively. Note that the population median
residual standard deviation has reduced from exp(−0.130)=0.878 to exp(−1.42)=0.242, indicating a
substantially better fit to the data, as illustrated in Figure 1(c).

Although the model fit is much improved, we would still like, for prediction purposes, to be able to
track the considerable fluctuations away from such fits that are apparent in the data. As can be seen in
Figure 1(c) the residuals are serially correlated, and so we attempt to model them via the autoregressive
(AR) process (7). However, a problem arises when we run the MCMC simulation. Recall that there
is no penalty for large �ijs, only their stochastic components 
ij (see (7)) need to be small. A good
fit to the data, then, can often be obtained by setting 	i =1 and choosing other parameters such that
the underlying ‘model fit’ {C I Gij, j =1, . . . ,n} lies a roughly constant (with respect to time) distance
away from the data. Then the residuals are all similar, consistent with 	i =1, and each requires only a
small stochastic component. We have some control over this phenomenon in specifying an informative
prior for the initial residual �i1. However, it still occurs for some individuals unless we constrain the
value of 	, and while the resulting model fits well in terms of {�ij, j =1, . . . ,n}, the underlying CIGij
values are often implausible.

To impose the required constraint we assume that logit(	i/	max), as opposed to logit(	i ), arises from
some normal population distribution (with unknown parameters), where 	max is assigned a specific
value. However, now all of the individual 	i s are estimated equal to 	max, whatever value of 	max we
choose. We address this by choosing the maximum value possible (in increments of 0.05) that still leads
to plausible CIG-series for all individuals. Note that in so doing we find that there is no support for
individual-specific 	i s, and so we also set 	i =	 ∀i , where logit(	/	max) is assigned a vague normal
prior. The value chosen for 	max was 0.8, and WinBUGS was again run for 300 000 iterations, retaining
only every 5th sample. This took around 11.5 h, and point and interval estimates for the population
parameters from the final 50 000 samples are presented in Table I. These are in good agreement with
results from the previous model (without the AR process). The calibration shift B seems a little higher
with less variability but we would expect from these figures that the underlying CIG-series are similar to
before, as illustrated in Figure 3(b) for individual 10. Note that the population median residual standard
deviation is now around half its previous value, at 0.118. This corresponds to the stochastic component
of the residuals 
ij =SGij −�ij, indicating that the �-series offer a substantial improvement over the
CIG-series, as we would hope, and as is demonstrated in Figure 3(a) for individual 10. To demonstrate
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Figure 3. Observed SG data (|) and posterior median model-predicted concentrations for individual ‘10’ plotted
against time since beginning of study: (a) �10 j (—) from ‘calibrated + AR’ population model; and (b) CIG10 j

(—) from ‘calibrated + AR’ population model.

the performance of our model across all individuals we present relative residuals, 100×(SGij −�ij)/�ij,
for i =1, . . . , N =12, j =1, . . . ,n =228, in Figure 4(a). (Relative residuals are chosen in preference to
the 
ijs as the percentage scale, on which they are defined, is more intuitive.) Ninety five per cent of
all relative residuals have magnitudes less than 4.2 per cent, whereas 80 per cent are smaller than 2.1
per cent. The median size is 0.93 per cent. Note that individual 10 is fairly representative; if anything,
he/she is one of the less well-fitted individuals. To further demonstrate the impact of the AR component
in our model, we also present, in Figure 4(b), relative residuals for the case in which it is not present.
Here the median relative residual size is 2.3 per cent, whereas 95 per cent of residuals have sizes
below 8.9 per cent, and 80 per cent have sizes below 4.9 per cent. It is of interest to examine whether
residuals corresponding to hypoglycaemic (�3.9mmol/L), euglycaemic (>3.9mmol/L,�10mmol/L),
and hyperglycaemic (>10mmol/L) glucose ranges are similar or not. Some small differences are
apparent, with median residual sizes (inter-quartile intervals in parentheses) for the three groups given
by 0.241 (0.144, 0.279) mmol/L, 0.0650 (0.0280, 0.124) mmol/L, and 0.100 (0.0400, 0.190) mmol/L,
respectively. (Note that the hypoglycaemic figures are based on only 15 residuals.) Visual inspection
of various plots (not shown), including histograms of residual size for each group, and plots of all
residuals versus the corresponding glucose values, reveal only small trends, however, and suggest that
modifying the model for the residual variance would be of little practical benefit.

Finally, we wish to acknowledge some uncertainty regarding our choice of upper bound 	max.
Choosing a value for 	max, it seems, is tantamount to fixing 	 at that value. We would like to acknowledge
that 	 could lie between 0.75, which gives inferior model fits {�ij, j =1, . . . ,n}, and 0.85, which leads
to implausible CIG-series. But there is no point trying to acknowledge this uncertainty via a prior
distribution, since we know that the posterior will be concentrated on the upper boundary (we may as
well set 	=0.85). Instead we specify 	 as a ‘distributional constant’—a fixed distribution as opposed to
a fixed value (see [45], for example). We specify 	∼Unif(0.75,0.85) but we prevent learning about 	
from the likelihood—in graphical modelling terms, 	 acts as a parent of {SGij, i =1, . . . , N , j =1, . . . ,n}
but the SGijs are not considered to be children of 	. WinBUGS code for ‘cutting feedback’ from
the likelihood in this way is presented in the Appendix, and further comments on the use of such
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Figure 4. Relative residuals, 100×(SGij −�ij)/�ij, for all 12 individuals. Residuals are plotted in time-order
within each individual’s zone: (a) ‘calibrated + AR’ population model; and (b) ‘calibrated’ population model.

techniques are given in the discussion below. Results from this model give point estimates for population
parameters identical to those obtained with 	max =0.8, modulo Monte Carlo error, except for a very
slight difference in the population median �, which is still given by 0.118 to three significant figures.

5. Discussion

We have characterized the relationship between BG and SG, in children and adolescents, for the
Guardian� RT CGM system. Various hierarchical models have been explored to determine the most
appropriate model, which assumes that calibration parameters for the same individual/sensor are not
correlated. Our model can be viewed as a hierarchical, nonlinear regression, where the regression
function is given by numerically solving a differential equation with accompanying initial condition,
forcing function, and unknown parameter. While the forcing function is not naturally accommodated
within the BUGS software, due to it representing a new class of graphical node, we have illustrated
how it can be incorporated.

Even without modelling autocorrelation among the residuals our model fits remarkably well, given
its simplicity. However, there are clear, unexplained fluctuations away from such fits, which we
have accounted for by simultaneously fitting the nonlinear regression and an AR(1) process for the
residuals.§ While this has presented several practical challenges, we emphasize that the resulting model
fits are very satisfactory (the majority of residuals—nearly 80 per cent—correspond to percentage
differences between data and model fit of less than 2 per cent), and predictions from the model faithfully

§The order of the AR process was chosen by fitting individual sets of posterior mean residuals using the ‘ar’ package in R.
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reproduce features present in the observed data. Sudden deviations away from the fitted curve, which
are more prominent with other CGM systems, might be better handled by assuming heavier tailed,
t-distributed stochastic residuals (
ij) in the AR process, but we have not explored this yet. Note that
Breton and Kovatchev [28] find the (unbounded) Johnson family of distributions [46] useful for the
FreeStyle NavigatorTM system. Another possible modification to the model for the residuals is to allow
for different behaviour in hypoglycaemic, euglycaemic, and hyperglycaemic glucose ranges. However,
any differences that could reliably be ascertained from our analyses were small, and it was thought
that adapting the model would be of little practical benefit, especially considering that increasing the
complexity of the residual model may exacerbate the apparent identifiability problem.

The motivation behind this work is to accelerate artificial pancreas development by providing a
means of simulating large quantities of realistic sensor data, which can be fed into the control algorithm
to test its response [17]. To this end, it is important to account for all sources of variability in glucose-
sensor data. In particular, we have estimated the population distribution of regression parameters,
including their means/medians, their inter- and intra-individual variabilities, and any correlations that
may exist between parameters. This allows us to generate ‘virtual patients’ by simulating realistic
parameter sets from the population distribution. In addition, the Bayesian nature of our model enables
full acknowledgement of the uncertainty associated with each population parameter estimate when
simulating the virtual patients. Each virtual patient’s parameters can be input, along with observed or
simulated BG data, into the nonlinear regression function to derive CIG-values. However, the regression
function is parsimonious and simply adding Gaussian white noise to this is insufficient for the purposes
of generating realistic sensor data. Hence, characterizing the residuals has been a vital step in our
analyses. The resulting parameter estimates can be used, again fully acknowledging their uncertainty,
to simulate AR processes to be added to the derived CIG-series.

It is somewhat disappointing that we have had to constrain the degree of autocorrelation 	 in the AR
process and that the posterior distribution for 	 is then always concentrated on the artificial boundary.
This is mainly due, we think, to an inability to encapsulate within our prior distribution our ‘common
sense’ knowledge as to the relationship between the observed data and the model-predicted CIG-series.
Basically, we believe that the CIG-series should fit the data reasonably well and that the AR process
should then account for mild fluctuations around that fit. But the unconstrained posterior is located near
	=1 with CIG-series that often lie, implausibly, some (roughly) constant distance from the data. The
resulting individual-level parameters, B, F , and p1 are clearly inappropriate for the given individual,
but do not necessarily have outlying values in terms of the population distribution of those parameters.
Hence, it is not possible to circumvent the problem by constraining B, F , and p1. We have to remember
that our model represents a gross simplification of the underlying process. To put too much emphasis on
fitting the data when the model is known to be ‘wrong’ would be a mistake, in our opinion—the model
is designed to provide meaningful parameter estimates and reasonably realistic predictions, which we
believe it achieves.

One approach to avoiding the confounding problem would be to perform the analysis in two stages.
We could first fit the calibrated model without the AR process and use this for inference on the
parameters. We could then apply an autoregressive model to the residuals in order to characterize any
fluctuations away from the deterministic model. However, this would ignore uncertainty in the model
fit and prevent the model fit being adjusted, even slightly, to accommodate the different error structure.
Hence, our efforts to fit nonlinear regression and AR models simultaneously. However, fixing 	max is
tantamount to fixing 	 and we would prefer to acknowledge some uncertainty regarding the latter. We
achieve this by specifying 	 as a ‘distributional constant’, as opposed to a fixed value, by placing a valve
in the graphical model that allows information to flow from prior to likelihood but not vice versa. This
allows us to be uncertain about 	 without the model fit being ‘tweaked’ inappropriately. Point estimates
provided by this approach are identical to those obtained with 	max =0.8, but we would prefer to use the
former for prediction as the level of uncertainty would be more realistic. Cutting the feedback from one
or more sources of likelihood in such a way is growing in popularity—see, for example, [45, 47--54].
The motives vary, but it is typically used for ‘multiply imputing’ missing data or combining different
sub-models that might otherwise be somewhat inconsistent, due to misspecification, say.

Other ways to cut feedback in the model begin with duplicating the SG data. A homoscedastic
model could be specified for the first set of data and the same Bik, Fik, and p1i parameters could
then be used to define the CIGijs needed for fitting an AR model to the second set of data. Without
appropriate valves/cuts in the graph, this would lead to excessive precision due to using the data twice.
If we cut the feedback from the second set of data to the Bik, Fik, and p1i parameters, however, then
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we are guaranteed plausible CIG-series regardless of what happens to 	. Note that 	 can then be
unconstrained—the posterior median and 95 per cent credible interval from our analyses are 0.925 and
(0.908, 0.941), respectively (results for other parameters are the same as in columns 4 and 5 of Table I).
This is a Bayesian analogue of the two-stage approach described above where uncertainty in the
model fit is now acknowledged. Further research is required to address whether or not this approach is
preferable to specifying 	 as a distributional constant. Another option would be to also create duplicate
Bik, Fik, and p1i parameters, a set for each model fit, and to cut feedback from the AR set to the
common population parameters (see [45], for example). This does not help for our data, however, as
the parameters for the AR fit become implausible with unconstrained 	.

One area that we have not considered in this paper is uncertainty in the forcing function. Here we
have simply linearly interpolated between a series of observed values, but it is natural to think that
those observations might be subject to some error, resulting in a somewhat jagged forcing function.
This is likely at odds with our prior beliefs as we might expect a biological process to be largely
smooth. Moreover, if there is noise in the time-series then, presumably, we would rather use the
underlying ‘true’ values. Hence, we may wish to specify a separate sub-model for the BG data. This
is the subject of ongoing research and will form the basis of a future report. Another methodological
issue is the numerical stability of ODE solving algorithms, which can be sensitive to the values of the
input parameters, in some more complex settings precluding the use of vague prior distributions, say.
The works of Ramsay et al. [55] and Campbell [56] offer an alternative approach that circumvents this
problem. However, it is, as yet, unclear to us how this might be implemented in a flexible modelling
framework such as BUGS or JAGS [57]. More robust solving algorithms for BUGS are currently under
investigation.

Appendix A: WinBUGS/WBDiff code

WinBUGS code for the calibrated model (without AR errors) is presented below. Most of the code
is self-explanatory but some notes, pertaining to the line numbers given in the right-hand margin, are
provided below for clarity.

model {
for (i in 1:N) { #1

# likelihood... #2
for (j in 1:n) { #3

CIG[i,j] <- F[i, P[i,j]]*NIG[i,j] + B[i, P[i,j]] #4
} #5
for (j in 1:n) { #6
SG[i,j] ~ dnorm(CIG[i,j], prec[i,j]) #7
prec[i,j] <- 1/pow(sigma[i, P[i,j]], 2) #8

} #9
NIG[i,1:n] <- glucose(init[i], t[i,1:n], par[i,1:n.par],

t[i,1], tol) #10
for (l in 1:m) { #11

par[i,l] <- s[l] #12
par[i,m+l] <- BG[i,l] #13

} #14
par[i,2*m+1] <- p1[i] #15

#16
# exchangeability assumptions... #17
log(init[i]) <- log.init[i] #18
log.init[i] ~ dnorm(mean.init, prec.init) #19
log(p1[i]) <- log.p1[i] #20
log.p1[i] ~ dnorm(mean.p1, prec.p1) #21
for (j in 1:5) { #22

log(sigma[i,j]) <- log.sigma[i,j] #23
log.sigma[i,j] ~ dnorm(mean.sigma, prec.sigma) #24
log(F[i,j]) <- C[i,j,1] #25
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B[i,j] <- C[i,j,2] #26
C[i,j, 1:2] ~ dmnorm(mean.C[], prec.C[,]) #27

} #28
} #29

#30
# priors... #31
mean.init ~ dnorm(0, 0.0001) #32
prec.init <- 1/pow(sd.init, 2) #33
log(sd.init) <- log.sd.init #34
log.sd.init ~ dnorm(0, 0.0001) #35

#36
mean.sigma ~ dnorm(0, 0.0001) #37
prec.sigma <- 1/pow(sd.sigma, 2) #38
log(sd.sigma) <- log.sd.sigma #39
log.sd.sigma ~ dnorm(0, 0.0001) #40

#41
mean.p1 ~ dnorm(0, 0.0001) #42
prec.p1 <- 1/pow(sd.p1, 2) #43
log(sd.p1) <- log.sd.p1 #44
log.sd.p1 ~ dnorm(0, 0.0001) #45

#46
mean.C[1:2] ~ dmnorm(zero[], prior.prec.C[,]) #47
prec.C[1:2,1:2] ~ dwish(prior.mat.C[,], 2) #48
cov.C[1:2,1:2] <- inverse(prec.C[,]) #49

}

• Line 4: The P[,] variable, representing the calibration period to which each observation belongs,
is fixed as the calibration times are assumed known. Hence, it can be defined in the data set as
opposed to being calculated in the BUGS code.

• Lines 7–8: Normal distributions in BUGS are parameterized in terms of mean and precision
(1/variance). Hence, prec[i,j]=1/�2

i P[i, j].• Line 10: glucose(.) is the name given to our new ‘hard-wired’ function that specifies
and solves the differential equation (4) at a specified grid of time-points. It is a vector-valued
function of five arguments: (i) the initial condition for individual i,NIG0i , denoted init[i];
(ii) the vector of times at which the solution is to be evaluated; (iii) a set of parameters
required to fully specify the differential equation—these are defined on lines 11–15 (see
below); (iv) the time to which the initial condition applies; and (v) the numerical tolerance
to be used by the solving algorithm in determining whether or not the solution is sufficiently
accurate—a value of 10−6 is typical. Pseudo-code for the hard-wired function is given in
Appendix B.

• Lines 11–15: In order that our new, hard-wired component can evaluate the forcing function, we
must supply it with the forcing data, and the times to which they relate. More generally, we may
also need to supply the number of forcing data but here this is the same for all individuals, and so
this information can be hard-wired instead of being passed as a parameter. The only other parameter
required to fully specify the differential equation is p1i .

• Line 19 onwards: Throughout, mean.x and prec.x denote the unknown population mean and
precision of appropriately transformed x.

• Lines 47–48: zero[], prior.prec.C[,], and prior.mat.C[,] are specified in the data
set: they are given by a two-dimensional vector of zeros, 0.0001× I2, and I2, respectively, where I2
denotes the 2×2 identity matrix.

The above model is adapted to incorporate autoregressive errors (with a common autocorrelation
parameter 	 for all individuals) by first making the j-loop on line 6 run from 2 to n rather than 1 to n
and by replacing CIG[i,j] on line 7 with phi[i,j]. The following code is then inserted into that
j-loop.

phi[i,j] <- CIG[i,j] + rho*eta[i,j-1]*F[i, P[i,j]]/F[i, P[i,j-1]]
eta[i,j] <- SG[i,j] - CIG[i,j]
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In addition, lines 18–19 above are replaced by

eta[i,1] ~ dnorm(0, prec.eta)
init[i] <- (SG[i,1] - eta[i,1] - B[i,1])/F[i,1]

and lines 32–35 are replaced by the blocks of code labelled A and B as follows:

# block A...
rho <- rho.max * prop
logit(prop) <- r
r ~ dnorm(0, 0.0001)
# block B...
prec.eta <- 1/pow(sd.eta, 2)
sd.eta ~ dunif(0, 0.5)

If we wish to specify rho as a ‘distributional constant’ instead, then we may replace block A with, for
example,

rho <- cut(rho.dc)
rho.dc ~ dunif(0.75, 0.85)

Here the cut(.) function makes a ‘copy’ of the argument rho.dc. This always has the same value
as the argument, and so uncertainty is propagated into the graph, but the ‘cut’ acts as a valve in the
graph, preventing information from flowing through rho in the other direction (back to rho.dc).
Hence, feedback from the likelihood is prevented and no learning about rho.dc can occur.

Appendix B: Pseudo-code for hard-wired differential equation with forcing function

Here we present pseudo-code for evaluating the differential equation(s) in our ‘hard-wired’ module.
(The reader is referred to the WBDiff documentation [33] for more general information.) The input
parameters, including the forcing data, are available via a vector named theta and we are required
to evaluate the equation(s) at some arbitrary time t. Note that the elements of theta are arranged as
defined by the BUGS code in Appendix A, i.e. m forcing times, followed by m forcing data, followed
by p1. Note also that the current solution at time t is also made available by the solving algorithm—this
is denoted by NIG in the pseudo-code below. The main difficulty is in finding which elements of the
forcing data are relevant to time t, i.e. which successive pair of observations lie either side of t, so
that we can interpolate between them. We should be aware that the code will be called many, many
times in solving the equation(s), and so it may be prudent to think about efficiency. Here we realize
that each time the code is called, there is a very good chance that the ‘forcing interval’ will be the same
as that most recently used or the subsequent interval. Hence, each time we evaluate the equation(s), we
store, in a global variable named prev, the index of theta corresponding to the end of the forcing
interval, so that we can refer to it next time.

IF (t >= theta[prev-1]) & (t < theta[prev]) THEN
end = prev

ELSE IF (prev < m) & (t >= theta[prev]) & (t < theta[prev+1]) THEN
end = prev + 1

ELSE
find end such that (t >= theta[end-1]) & (t < theta[end])

END
prev = end
gradient = (theta[m+end] - theta[m+end-1])/(theta[end] - theta[end-1])
BG = theta[m+end-1] + gradient*(t - theta[end-1])
RETURN theta[2*m+1]*(BG - NIG)
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