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Abstract

Aberrant activation of inflammasomes, a group of protein complexes, is pathogenic in a variety of metabolic and
inflammation-related diseases. Here, we report that carnosol inhibits NLRP3 inflammasome activation by directly
targeting heat-shock protein 90 (HSP90), which is essential for NLRP3 inflammasome activity, thereby treating
inflammasome-mediated diseases. Our data demonstrate that carnosol inhibits NLRP3 inflammasome activation in
primary mouse bone marrow-derived macrophages (BMDMs), THP-1 cells and human peripheral blood mononuclear
cells (hPBMCs). Mechanistically, carnosol inhibits inflammasome activation by binding to HSP90 and then inhibiting its
ATPase activity. In vivo, our results show that carnosol has remarkable therapeutic effects in mouse models of NLRP3
inflammasome-mediated diseases, including endotoxemia and nonalcoholic steatohepatitis (NASH). Our data also
suggest that intraperitoneal administration of carnosol (120 mg/kg) once daily for two weeks is well tolerated in mice.
Thus, our study reveals the inhibitory effect of carnosol on inflammasome activation and demonstrates that carnosol is

a safe and effective candidate for the treatment of inflammasome-mediated diseases.

Introduction

Inflammasomes are multiprotein complexes that can be
activated by pathogen-associated molecular patterns
(PAMPs) and danger-associated molecular patterns
(DAMPs) to trigger the catalytic activation of caspase-1,
subsequently leading to pyroptosis and the production of
interleukin 1p (IL-1B) and IL-18"7>, Previous studies have
confirmed that inflammasomes are involved in the
initiation of various metabolic and inflammation-related
diseases™”. Pharmacological inhibitors of inflammasomes
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have produced remarkable therapeutic effects in animal
models of various human diseases®!'. Thus, inflamma-
somes are widely considered to be new targets for the
treatment of many diseases.

NOD-like receptor (NLR) family members including
NLRP1, NLRP3, and NLRC4, as well as the cytosolic
receptor AIM2, have been shown to form inflamma-
somes'>71°, Among them, the NLRP3 inflammasome is
the most well-characterized, it can be activated by many
stimuli, including adenosine triphosphate (ATP), niger-
icin, monocrystalline sodium urate (MSU), SiO,, choles-
terol crystals and amyloid-B aggregates'’'°. Thus, the
NLRP3 inflammasome contributes to the development of
several human diseases, including gout, Alzheimer’s dis-
ease, enteritis and liver disease*®**!. In recent years,
several molecular compounds, including MCC950,
OLT1177, Bay 11-7082, B-hydroxybutyrate glyburide,
parthenolide, sulforaphane, glycyclamide, isoliquiritigenin
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and tranilast®>~>*, have been shown to have clear inhibi-
tory effect on the NLRP3 inflammasome. MCC950, the
most potent and specific inhibitor of NLRP3, has proven
efficacy in many mouse models of NLRP3-driven diseases,
such as colitis, NASH, Alzheimer’s disease and other
afflictions** . However, its potential hepatotoxicity has
been confirmed in phase II clinical trials®’. Aside from
MCC950, only OLT1177 has been tested in phase II
clinical trials'®*®, It is, therefore, urgent to develop safe
and effective NLRP3 inflammasome inhibitors for the
treatment of inflammasome-mediated diseases.

Heat-shock protein 90 (HSP90), a molecular chaperone,
modulates the stability and activation of other proteins
(clients) involved in protein trafficking, signal transduc-
tion and receptor maturation®>*, Moreover, HSP90 is
responsible for stabilizing NLR proteins, such as
NLRP3**, HSP90 is also essential for the activation of
NLRP3 inflammasome, and geldanamycin(GA), a specific
inhibitor of HSP90, blocks NLRP3 inflammasome acti-
vation and helps ameliorate NLRP3 inflammasome-
mediated diseases™.

Herbal rosemary and sage have been widely used
around the world for both culinary purposes and their
medicinal properties®®. Rosemary and sage have both
been shown to contain a variety of polyphenols, including
carnosol and carnosic acid®’. Polyphenols extracted from
rosemary exhibit strong antioxidant activity, and carnosol
and carnosic acid account for ~90% of this antioxidant
activity’®?®, Carnosol has previously been shown to
exhibit anti-inflammatory activity and prevent the acti-
vation of various inflammatory signaling pathways, such
as the NF-kB and mitogen-activated protein kinase
(MAPK)* pathways. Therefore, carnosol is considered to
be promising anti-inflammatory agent.

In this study, we demonstrate that carnosol treatment
inhibits NLRP3 inflammasome activation by directly
interacting with HSP90 and blocking its ATPase activity.
More importantly, carnosol treatment prevents or alle-
viates NLRP3 inflammasome-mediated diseases in mouse
models, indicating that carnosol is a potential candidate
for the treatment of inflammasome-mediated human
diseases.

Results
Carnosol inhibits NLRP3 inflammasome activation in
BMDMs, THP1 cells and hPBMCs

A high-throughput assay for bioluminescent caspase-1
activity in screening NLRP3 inflammasome inhibitors
revealed that carnosol inhibits NLRP3 inflammasome
activation (data not shown). To further investigate how
carnosol impacts NLRP3 inflammasome activation, we
pretreated LPS-primed BMDMs with carnosol prior to
nigericin stimulation. Our results showed that carnosol
inhibited caspase-1 and IL-1p production in a dose-
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dependent manner, as well as the release of LDH in LPS-
primed BMDMs (Fig. 1a—d). Similarly, pretreatment with
carnosol also dose-dependently inhibited the nigericin-
induced maturation of caspase-1 and IL-1 in PMA-
primed THP1 cells (Fig. 1f-h). Furthermore, carnosol
suppressed nigericin-induced caspase-1 activation and IL-
1P maturation in LPS-primed hPBMCs (Fig. 1j, k). These
results suggest that carnosol inhibits nigericin-mediated
NLRP3 inflammasome activation. In contrast to the
secretion of IL-1B, the inflammasome-independent
secretion of tumor necrosis factor-a (TNF-a) and the
expression of NLRP3 inflammasome complex proteins,
including NLRP3, ASC, procaspase-1 and pro-IL-1f3, were
not affected by carnosol treatment (Fig. 1a, e, f, i), sug-
gesting that carnosol affects the activation of NLRP3
inflammasome.

To determine whether carnosol acts as a broad-
spectrum inhibitor of the NLRP3 inflammasome, we
investigated the effect of carnosol on the SiO2-, poly(I:
C)- and cytosolic LPS-mediated activation of the NLRP3
inflammasome. We observed that carnosol treatment
disrupted caspase-1 cleavage and IL-1p maturation,
which were triggered by these NLRP3 inflammasome
stimuli (Fig. 2a, ¢, d). Meanwhile, carnosol treatment
had no effect on the production of TNF-a and
NLRP3 inflammasome complex proteins (Fig. 2a, e).
Taken together, these results demonstrate that carnosol
treatment inhibits the activation of the NLRP3
inflammasome.

Carnosol inhibits NLRC4 inflammasome activation but has
no effect on AIM2 inflammasome activation and NF-kB-
mediated induction of inflammasome complex proteins

Next, we tested whether the inhibitory effect of carnosol
on NLRP3 inflammasome was specific. The NLRC4
inflammasome can be activated by flagellin derived from
bacteria, such as Salmonella typhimurium™>*~*, We
evaluated whether carnosol treatment could prevent
NLRC4 inflammasome activation, and our results showed
that carnosol treatment disrupted NLRC4-dependent
caspase-1 activation as well as IL-1p secretion in Salmo-
nella-infected LPS-primed BMDMs (Fig. 2b, f, g), whereas
TNEF-a production remained unchanged (Fig. 2h). Fur-
thermore, the expression of NLRC4 inflammasome
complex proteins, including procaspase-1, pro-IL-1p and
ASC, were not impaired by carnosol treatment (Fig. 2b).
The AIM2 inflammasome can be activated by double-
stranded DNA and induces inflammation* %, We
observed that carnosol had no effect on caspase-1
maturation or IL-1p and TNF-a expression in LPS-
primed BMDMs after poly(dA:dT) transfection (Fig. 2b,
f—h). These results revealed that carnosol inhibits NLRC4
inflammasome activation but has no effect on AIM2
inflammasome activation.
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Fig. 1 Carnosol inhibits NLRP3 inflammasome activation triggered by nigericin in BMDMs, THP1, and PBMCs. a Western blot analysis of
caspase-1 (p20) and IL-1B in culture supernatants (Sup.) and pro- IL-1, caspase-1 (p45), NLRP3 and ASC in cell lysates (Lys.) of LPS-primed BMDMs
treated with various doses of carnosol and then stimulated with nigericin. b—e Activity of caspase-1 (b), ELISA of IL-1B (c), release of LDH (d) and ELISA
of TNF-a (e) in Sup. from samples described in a. f Western blot analysis of caspase-1 (p20) and IL-13 in Sup. and pro- IL-1B3, caspase-1 (p45), NLRP3
and ASC in cell Lys. of PMA-primed THP1 treated with various doses of carnosol and then stimulated with nigericin. g—i Activity of caspase-1 (g),
ELISA of IL-1B (h) and TNF-a (i) in Sup. from samples described in f. j, k Activity of caspase-1 (j) and ELISA of IL-13 (k) in Sup. from LPS-primed hPBMCs
treated with various doses of carnosol and then stimulated with nigericin. Coomassie blue staining was used as the loading control in Sup. GAPDH
served as a loading control in the Lys. Data are represented as the mean + SD from at least four biological samples. The significance of the differences
was analyzed using Mann-Whitney U test: *P < 0.05, **P < 0.01, ***P < 0.001 vs. the control, NS, not significant.

Previous studies have shown that carnosol disrupts the
activation of the NF-«B signaling pathway, which largely
controls NLRs and pro-IL-1p expression®**®, Our study
revealed that when BMDMs were first treated with
carnosol for 1 h and then stimulated with LPS for 4 h,
carnosol treatment inhibited the expression of pro-IL-
1B, TNF-a, and IL-6 in BMDMs (Fig. Sla—c). However,
when BMDMs were first stimulated with LPS for 4 h and
then treated with carnosol for 1h, the expression of
NLRP3, pro-IL-13, TNF-a and IL-6 was not affected
(Fig. Sla—c). These findings imply that the inhibitory
effect of carnosol on the activation of inflammasomes is
not related to the NF-kB-mediated expression of NLRP3
and pro-IL-1f.

Carnosol inhibits the assembly of inflammasome
complexes but has no effect on mitochondrial damage

NLRP3 requires ASC for the recruitment of procaspase-
1 to form inflammasome complexes***®*, We further
assessed the effect of carnosol on the formation of ASC
oligomers, which is an important step in the activation of
NLRP3 inflammasome'”*®, Consistent with the inhibitory
effects of carnosol on caspase-1 activation and IL-1f
production, carnosol treatment also dose-dependently
blocked ASC oligomerization induced by nigericin in
LPS-primed BMDMs and PMA-primed THP1 cells (Figs.
3a, S2). In addition, carnosol treatment also inhibited
NLRP3-dependent ASC oligomerization triggered by
ATP, poly(I:C), SiO, and cytosolic LPS (Fig. 3b). These
results suggest that carnosol may directly target ASC
oligomerization or upstream events to block NLRP3
inflammasome activation.

Oxidative stress is one of the most important events
upstream of inflammasome activation®®~°. Therefore,
we examined the effect of carnosol on the production of
reactive oxygen species (ROS) induced by ATP. Our
results revealed that carnosol treatment had no effect
on the release of ROS induced by ATP (Fig. 3c). Pre-
vious studies have revealed that mitochondrial damage
is associated with activation of NLRP3 inflamma-
some®”®!, Thus, we utilized MitoTracker Red to stain
mitochondria in BMDMs that were pretreated with
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carnosol and/or nigericin. Our results revealed that
carnosol treatment did not inhibit nigericin-induced
mitochondrial damage (Fig. 3d). These findings collec-
tively suggest that carnosol has no effect on mito-
chondrial damage during inflammasome activation.
Potassium efflux is another important upstream sig-
naling pathway of NLRP3 inflammasome activation®>°?,
Nigericin treatment can cause a dramatic decrease in
intracellular potassium, but this effect was not sup-
pressed by carnosol (Fig. 3e), suggesting that carnosol
has no effect on potassium efflux during NLRP3
inflammasome activation.

Carnosol inhibits inflammasome assembly by directly
targeting HSP90 and inhibiting its ATPase activity

To further elucidate the inhibitory mechanism of car-
nosol on inflammasome activation, we synthesized car-
nosol with cyanogen bromide-activated Sepharose
(Sepharose-carnosol) and investigated whether carnosol
could directly bind to the proteins involved in NLRP3
inflammasome. We found that HSP90, but not ASC or
NLRP3, was pulled down by the Sepharose-carnosol (Fig.
4a). It has been reported that HSP90 is essential for the
activation of the NLRP3 inflammasome®***, In order to
exclude the possibility of nonspecific binding of
Sepharose-carnosol to HSP90, we next incubated cell
lysates with free carnosol and then added Sepharose-
carnosol. The results showed that free carnosol dose-
dependently inhibited the binding of Sepharose-carnosol
to HSP90 (Fig. 4b), confirming that carnosol can indeed
directly interact with HSP90.

The ATPase activity of HSP90 constitutes a major
role in the control of inflammasome activation, as
indicated by treatment using HSP90 inhibitors such as
GA and 17-DMAG®®. We further examined whether
carnosol-induced inhibition of inflammasome activa-
tion involves the inhibition of HSP90 ATPase activity.
Our results showed that carnosol treatment dose-
dependently inhibited the ATPase activity of HSP90
in vitro (Fig. 4c). Similar to the findings of previous
reports, GA treatment inhibited caspase-1 activation,
IL-1p maturation and ASC oligomerization triggered by
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nigericin, cytosolic LPS or Salmonella infection, aside
from poly(dA:dT) transfection (Fig. 4d). These results
suggested that carnosol blocks the activation of the
NLRP3 and NLRC4 inflammasomes by binding to
HSP90 and inhibiting its ATPase activity.
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Carnosol prevents NLRP3 inflammasome activation and
LPS-induced septic shock in mice

To test whether carnosol inhibits NLRP3 inflamma-
some activation in vivo, we chose the NLRP3
inflammasome-dependent septic shock mouse model
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induced by intraperitoneal injection of LPS***’. Mice
were intraperitoneally injected with MCC950 or carnosol
for 1h before being injected with LPS and were then
monitored for survival. Our results showed that carnosol
treatment dose-dependently improved the survival of
mice with LPS-induced septic shock (Fig. 5a). We also
compared the effect of carnosol with that of MCC950,
which is considered to be a selective inhibitor of the
NLRP3 inflammasome®?, and the found that the protec-
tive effect of carnosol against LPS-mediated lethality was
similar to that of MCC950 (Fig. 5a). Additionally, mice
were initially injected with carnosol or MCC950 intra-
peritoneally and then injected with LPS 1 h later, followed
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by evaluation of NLRP3 inflammasome activation after
4h. The results indicated that, similar to the effect of
MCC950, treatment with carnosol downregulated IL-1p
and TNF-a in the LPS-mediated septic shock mouse
model in a dose-dependent manner, along with a reduc-
tion in the number of peritoneal exudate cells and peri-
toneal macrophages (Figs. 5b—e; S3a, b). Taken together,
these results showed that carnosol treatment disrupts the
activation of NLRP3 inflammasome and NLRP3-related
septic shock in mice.

We then evaluated the toxicity effect of carnosol
in vivo. Mice were injected with 120 mg/kg of carnosol
intraperitoneally for two weeks, and it was found that
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Fig. 5 Carnosol prevents NLRP3 inflammasome activation and suppresses LPS-induced septic shock in mice. a Survival of C57BL/6 female
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carnosol did not induce changes in body weight or liver
and kidney function in the mice (Fig. 5f-i), indicating
that carnosol is well tolerated in mice and thus may be
safe for use in the treatment of inflammasome-related
diseases.
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Carnosol suppresses liver injury and fibrosis in an
experimental NASH model

Since the NLRP3 inflammasome is mechanistically
important for the development of NASH>®, we next
evaluated the effects of carnosol in a methionine- and
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choline-deficient (MCD) diet-fed mouse model of NASH.
We observed that, relative to methionine- and choline-
sufficient (MCS) diet-fed mice, major changes in liver
morphology, which were reversed by carnosol treatment,
were observed in MCD diet-fed mice (Fig. 6a). Further-
more, compared to the MCS diet-fed mice, we observed
higher plasma alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) levels in the MCD diet-
fed mice, and these symptoms were prevented by carnosol
treatment (Fig. 6b, c). In addition, liver histopathological
analysis revealed fat vacuoles, cell death and inflammatory
cell infiltration in the livers of MCD diet-fed mice, and
this hepatic fibrosis was noticeably relieved by carnosol
treatment, as evidenced by Masson staining and Sirius red
staining (Fig. 6d). MCC950, an NLRP3 inflammasome
inhibitor, has been shown to be useful for treating NASH
in MCD diet-fed mice®’. As expected, treatment with
MCC950 resulted in an improvement in NASH pathology
and liver fibrosis in the MCD diet-fed mice, and the
inhibitory effect of carnosol was comparable to that of
MCC950 (Fig. 6a—d).

To validate our findings that carnosol treatment ame-
liorated NASH by suppressing NLRP3 inflammasome
activation, we assessed the activation of the NLRP3
inflammasome using a NASH model. We determined that
treatment with carnosol or MCC950 resulted in a
decrease in IL-1P, TNF-a and profibrotic marker alpha-
smooth muscle actin (a-SMA) expression in MCD diet-
fed mice (Figs. 6e—g; S3c, d). In addition, the increase in
cleaved caspase-1 in MCD diet-fed mice was also sup-
pressed by carnosol or MCC950 treatment (Fig. 6g). Thus,
these findings suggest that carnosol improves NASH by
disrupting NLRP3 inflammasome activation.

Discussion

In this study, we demonstrated that carnosol has a
strong inhibitory effect on NLRP3 inflammasomes. Our
findings showed that carnosol inhibits inflammasomes by
binding to HSP90 and then inhibiting its ATPase activity,
which is essential for NLRP3 inflammasome activation.
We also demonstrated that carnosol can prevent or treat
NLRP3 inflammasome-driven human diseases, including
septic shock and NASH in mouse models. In addition, we
also confirmed that intraperitoneal administration of
carnosol (120 mg/kg) once daily for 2 weeks is well tol-
erated in mice. Thus, our study suggests that carnosol is a
safe and effective candidate for the treatment of NLRP3-
driven diseases.

Previous studies have demonstrated that carnosol tar-
gets the NF-kB signaling pathway**°”®, and our data
showed that carnosol indeed inhibited NF-kB-mediated
pro-IL-1B expression and IL-6 production in BMDMs
treated with carnosol before LPS stimulating, indicating it
could also prevent the inflammasome priming if added
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prior to the priming signal. Moreover, carnosol had no
effect on expression of pro-IL-1B and IL-6 in BMDMs
treated with carnosol after LPS stimulating, suggesting
that carnosol can inhibit the priming stage but also plays a
role in NLRP3 inflammasome activation step.

To further clarify the target of the carnosol-mediated
inhibition of inflammasomes activation, we investigated
the interaction between carnosol with inflammasome-
related proteins. Our results demonstrated that carnosol
can directly interact with HSP90, which is essential for
NLRP3-inflammasome activation®”. We also found that
carnosol treatment inhibited the ATPase activity of
HSP90, which is necessary for NLRP3 and NLRC4
inflammasome activation, as shown by 17-DMAG and
GA, inhibitors of the ATPase activity of HSP9Q3133:55,
Consistent with the effect of GA, our results showed that
carnosol also blocked NLRP3 and NLRC4, but not AIM2
inflammasome activation. Our results also showed that
carnosol had no effect on ASC oligomerization trans-
fected by poly(dA:dT) and subsequent AIM2 inflamma-
some activation and similar results were obtained in the
GA group. Thus, these results demonstrate that carnosol
treatment inhibits NLRP3 and NLRC4 inflammasome
activation by blocking HSP90 and disrupting its ATPase
activity.

Previous studies have shown that the inflammasome
components become secreted out of the cell together
upon inflammasome activation® ~®?, on the other hand,
recent studies show that the levels of inflammasome
components like ASC, caspase-1, and NLRP3 remain
unchanged in the cell lysate?*®*~®°, The contradiction
may be due to the difference in the cell type, stimuli and
the stimulation time or strength. In most of our experi-
ments, the expression of NLRP3 inflammasome complex
proteins were not affected by carnosol treatment, that’s
may be because of the weak stimuli and the short time of
stimulation in our study.

Our results also suggest that carnosol has definite
therapeutic effects in mouse models of various NLRP3
inflammasome-mediated diseases, including septic shock
and NASH. Although the initial effective dose of carnosol
needed to inhibit NLRP3 inflammasome activation was
higher than that of MCC950 in vitro, the rescue effect of
carnosol on inflammasome-related diseases was compar-
able to that of MCC950 in all tested animal models of
human diseases, suggesting that carnosol has a ther-
apeutic potential equivalent to that of MCC950 for
inflammasome-mediated diseases.

Many investigations have provided evidence that car-
nosol is well tolerated in short- and long-term toxicity
experiments® ~®°, Previous studies also suggested that
daily intraperitoneal administration of carnosol is well
tolerated’®”!. As for the application route, it has been
shown that the most common application route of
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carnosol is i.p. injection and lots of other molecules, such
as MCC950 and Formononetin, are also used in this
application route*”%~"2 Intraperitoneal administration of
carnosol with 200 mg/kg daily for 5 days has no effect on
liver weight73. Furthermore, we confirmed that carnosol is
well tolerated in mice when administered intraper-
itoneally at 120 mg/kg daily for 2 weeks. It has also been
reported that carnosol alleviates the colorectal cancer risk,
when used as an additive to cured meat, and ultraviolet-
induced erythema in the clinical trials’*”®, suggesting that
oral administration may an appropriate application route
in humans. However, the bioavailability and metabolism
of carnosol remains to be further studied. Thus, con-
sidering its protective effect and safety, carnosol is a
strong candidate for the treatment of inflammasome-
mediated diseases, but additional studies are needed to
determine its therapeutic effects in humans.

Materials and methods
Mice

Eight-week-old C57BL/6 mice were obtained from SPF
Biotechnology Co., Ltd. (Beijing, China). The animals
were allowed unlimited access to food and water for the
entire experiment except during fasting assays and were
kept under a 12-h light/dark cycle. The animal experi-
ments were conducted according to the guidelines for the
care and use of laboratory animals and were approved by
the Fifth Medical Center of PLA General Hospital, Beij-
ing, China. We tried our best to minimize both the suf-
fering and the number of animals used. When assessing
experimental outcomes, the investigators were blinded to
the treatments.

Cell culture

BMDMs were collected from the bone marrow of 10-
week-old female mice and then cultured for 6-7 days in
Dulbecco’s modified Eagle’s medium (DMEM) containing
10% fetal bovine serum (FBS), 1% penicillin/streptomycin
(P/S) and 50ng/mL murine macrophage colony-
stimulating factor (M-CSF). Human THP-1 cells and
human PBMCs were cultured in RPMI 1640 medium and
all of the culture media were supplemented with 10% FBS
and 1% penicillin/streptomycin (P/S). Cells were kept in a
humidified 5% (v/v) CO, incubator at 37°C. Human
THP-1 cells were a gift from Dr. Tao Li of the National
Center of Biomedical Analysis.

Antibodies and reagents

Nigericin, ATP, poly(dA:dT), poly(l:C), phorbol-12-myr-
istate-13-acetate (PMA), dimethyl sulfoxide (DMSO) and
ultrapure LPS were obtained from Sigma-Aldrich (Munich,
Germany). Silicon dioxide (SiO,) and Pam3CSK4 were
obtained from InvivoGen (Toulouse, France). MCC950,
carnosol, and geldanamycin (GA) were obtained from
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TargetMol (Boston, MA, USA). MitoTracker and MitoSOX
were manufactured by Invitrogen (Carlsbad, CA, USA).
Salmonella was a gift from Dr. Tao Li of the National
Center of Biomedical Analysis. Anti-mouse Caspase-1
(1:1000, AG-20B-0042) was from Adipogen (San Diego,
USA). Anti-human cleaved IL-1f (1:2000, 12242), Anti-
mouse a-SMA (1:1000, 19245s), anti-human Caspase-1
(1:2000, 4199S), anti-mouse IL-1f (1:1000, 12507) and anti-
NLRP3 (1:2000, 15101S) were from Cell Signaling Tech-
nology (Boston, USA). Anti-ASC (1:1000, sc-22514-R) was
from Santa Cruz Biotechnology (Dallas, USA). Anti-DDDK
tag (1:3000, 20543-1-AP), Anti-HSP90 (1:3000, 13171-1-
AP) and Anti-GAPDH (1:2000, 60004-1-1G) were from
Proteintech Group (Chicago, USA).

Human samples

Adult peripheral blood samples were collected from
three healthy donors following informed consent, and all
experimental protocols were conducted following the
guidelines of the Institutional Human Research Subjects
Protection Committee of the Ethics Committee of the
Fifth Medical Center of Chinese PLA General Hospital.

Inflammasome activation

BMDMs, THP-1 cells, and PBMCs were seeded into 24-
well plates at a density 5 x 10° cells/well, 7.5 x 10° cells/
well and 2.5 x 10° cells/well. After 12-18 h, we replaced
the culture medium with fresh media and cell priming was
performed using LPS (50 ng/mL), PMA (100 nmol/L), or
Pam3CSK4 (1 pg/mL) for 4h. Then, the cells were
exposed to carnosol in Opti-MEM for 30 min. Inflam-
masome activation was performed as described
previously”®.

Western blotting

Protein extraction of cell culture supernatants and
western blotting assays were performed as described
previously”®.

Caspase-1 activity assay

A Caspase-Glo' 1 Inflammasome Assay (Promega,
Madison, W1, USA) was employed to determine caspase-1
activity in cell culture supernatants following the manu-
facturer’s instructions.

Enzyme-linked immunosorbent assay (ELISA)

Cell culture supernatants, mouse serum and tissue
culture cells were assayed for mouse IL-1f (Cat:
SMLB0O0OC, R&D Systems, Minneapolis, MN, USA),
TNF-a (Cat: 1217202, Dakewei, Beijing, China), IL-6
(Cat: 1210602, Dakewei, Beijing, China), human IL-1f
(Cat: 1110122, Dakewei, Beijing, China) and TNF-a (Cat:
1117202, Dakewei, Beijing, China), according to the
manufacturer’s instructions.
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Lactate dehydrogenase (LDH) assay

The release of LDH into the culture supernatants was
assessed using a CytoTox 96 1 Non-radioactive Cyto-
toxicity Assay (Promega, Madison, WI, USA) following
the manufacturer’s instructions.

ASC oligomerization
The assay for ASC oligomerization was performed as
described previously”’.

Confocal microscopy
Confocal microscopy was conducted as described
previously*”.

ROS measurements

BMDM s were seeded at a density of 1 x 10° cells/mL in
100-mm cell culture dishes. The next day, the medium
was replaced and cell priming was performed using 50 ng/
mL LPS for 4 h. The cells were then incubated in a test
tube, and were later washed with Opti-MEM and stimu-
lated as described earlier. The supernatants were dis-
carded, and the cells were washed with EBSS, then stained
with 4 uM MitoSOX for 20 min at 37 °C. The cells were
then washed with EBSS, followed by flow cytometry. Data
were acquired with an LSRFortessa Cell Analyzer (BD
Biosciences, San Jose, CA, USA).

Determination of intracellular potassium

BMDMs were plated overnight in 12-well plates and
then primed with 50 ng/ml LPS for 4 h. After that, cells
were treated with CS for 30 min and then stimulated with
nigericin for 30 min. Culture medium was removed and
cells were washed three times in potassium-free buffer
(139 mM Na(Cl, 1.7 mM NaH,PO,4, and 10 mM Na,HPO,,
pH 7.2). 200 uL. Ultrapure HNO3; was added to lyse the
cells. Samples were transferred to glass bottles and then
boiled for 30 min at 100 °C. After that, ddH,O was added
to the samples for a total volume of 5 ml. Intracellular K+
measurements were performed by ICP-MS (Inductively
coupled plasma mass spectrometry).

Pull-down assay

Carnosol was conjugated with cyanogen bromide
(CNBr)-activated Sepharose 4B (GE Healthcare). BMDMs
were seeded at a density of 1x 106 cells/mL overnight,
followed by stimulation with or without nigericin. Then,
BMDMs were lysed with a lysis buffer (25 mM Tris-HCl
(pH 7.5), 0.5% Triton X-100, 150 mM NacCl, 0.5% sodium
deoxycholate and 1% cocktail) and then centrifuged at
6000 x g for 20 min at 4 °C. Then, the supernatants were
incubated with carnosol-conjugated Sepharose 4B at 4 °C
overnight. Sepharose was prewashed thrice with coupling
buffer. Carnosol was then mixed into the washed
Sepharose and incubated for 24 h with constant rotation
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at 4°C. The beads were washed thrice with lysis buffer.
Then, the proteins that were pulled down were analyzed
by immunoblotting.

HSP90 ATPase assay

To assess the ATPase activity of HSP90, we incubated
ATP with HSP90, DMSO, carnosol and GA for 1h at
37°C. To measure ATP levels, a CellTiter-Glo® Lumi-
nescent Cell Viability Assay kit (Promega, Madison, W1,
USA) was used, following the manufacturer’s instructions.

LPS-induced septic shock in vivo

Carnosol (25 mg/kg, 50 mg/kg orl00 mg/kg) and
MCC950 (50 mg/kg) were intraperitoneally (i.p.) injected
into eight-week-old female C57BL/6 mice (n = 10/group).
One hour later, the mice were injected with LPS (20 mg/
kg). The mortality rate was monitored at regular intervals.
In the second experiment, carnosol (20 mg/kg, 40 mg/kg)
and MCC950 (40 mg/kg) were ip. injected into eight-
week-old female C57BL/6 mice (n = 8/group). One hour
later, the mice were injected with LPS (20 mg/kg). After
4h, we collected serum samples and peritoneal lavage
fluids from the mice and cytokine levels were measured
using ELISA.

Toxicity of carnosol in vivo

Vehicle or carnosol (120 mg/kg/day) were injected into
eight-week-old male or female C57BL/6 mice (n=6/
group). The body weights of the mice were measured daily
for 14 days. At the end of the experiment, the mice were
anesthetized and plasma samples were collected and
assessed for AST, ALT and creatinine (CRE) levels
according to the manufacturer’s instructions.

Methionine- and choline-deficient diet model

Groups (n = 8/group) of eight-week-old male C57BL/6
mice were fed a methionine- and choline-deficient (MCD)
diet (518810, Dyets, Bethlehem, PA, USA), whereas con-
trols received an identical diet containing methionine and
choline (MCS) (518811, Dyets). The MCD-fed mice and
MCS-fed controls were separated into groups that
received carnosol or MCC950 (20 mg/kg in 0.9% NaCl
every day for a total of five days, and 40 mg/kg every
second day, for up to six weeks) or vehicle by gavage. The
mice were anesthetized at the end of the experiments and
the liver and plasma were isolated.

Statistical analysis

Statistical analysis was conducted using the GraphPad
Prism 6 (GraphPad Software, San Diego, CA, US) and
Microsoft Excel. The data are presented as the mean + SD
from at least four samples, the Mann—Whitney U test was
used in our statistical analysis. Differences with a P value
<0.05 were deemed statistically significant. Statistical
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significance is presented as *P<0.05, **P<0.01, ***P<
0.001 vs. the control; NS, not significant.
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