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ABSTRACT: We present a systematic study of two widely used
material structure prediction methods, the Genetic Algorithm and
Basin Hopping approaches to global optimization, in a search for
the 3 × 3, 5 × 5, and 7 × 7 reconstructions of the Si(111) surface.
The Si(111) 7 × 7 reconstruction is the largest and most complex
surface reconstruction known, and finding it is a very exacting test
for global optimization methods. In this paper, we introduce a
modification to previous Genetic Algorithm work on structure
search for periodic systems, to allow the efficient search for surface
reconstructions, and present a rigorous study of the effect of the
different parameters of the algorithm. We also perform a detailed
comparison with the recently improved Basin Hopping algorithm
using Delocalized Internal Coordinates. Both algorithms succeeded
in either resolving the 3 × 3, 5 × 5, and 7 × 7 DAS surface reconstructions or getting “sufficiently close”, i.e., identifying structures
that only differ for the positions of a few atoms as well as thermally accessible structures within kBT/unit area of the global minimum,
with T = 300 K. Overall, the Genetic Algorithm is more robust with respect to parameter choice and in success rate, while the Basin
Hopping method occasionally exhibits some advantages in speed of convergence. In line with previous studies, the results confirm
that robustness, success, and speed of convergence of either approach are strongly influenced by how much the trial moves tend to
preserve favorable bonding patterns once these appear.

■ INTRODUCTION

Finding the lowest energy of a molecule or crystalline structure
by means of unbiased global optimization is a fascinating,
prominent challenge in computational materials modeling. As
one may expect for a problem that has, in general, no
guaranteed solution, there is correspondingly no “foolproof”
approach to solve it. Thus, not surprisingly, a plethora of
different global optimization algorithms flourished over the last
two decades, from simple stochastic schemes as simulated
annealing1 and ab initio random structure search (AIRSS)2,3 to
sophisticated heuristics such as landscape paving,4 particle
swarm optimization,5 cascade genetic algorithms with multi-
step refinement of the target quantity,6 or neural-network
controlled dynamic evolutionary approaches.7 Among all, two
popular families of global geometry optimization techniques
include Monte-Carlo-based (“physics-” or “maths-inspired”)
methods, such as Basin Hopping (BH),8 and heuristic,
evolutionary principles-based (“biology-inspired”) Genetic
Algorithms (GA).9 No general rule for preferring a specific
algorithm has been identified, as the efficiency of classical
global optimization methods is both property- and system-
dependent.10 Recently, the global optimization challenge is
finding invaluable support in the employment of artificial

intelligence, in combination with standard techniques.
Surrogate energy models based on machine learning can be
incorporated to accelerate the global search, often with the
global screening itself concomitantly used to train the
model.11−13 Clustering allows exploration of the configura-
tional space efficiently,14,15 and Bayesian statistics can be used
to tune the balance between exploration and exploitation.16

Active learning is increasingly popular in conjunction with
both stochastic17 and evolutionary18 methods. Taking one step
even further ahead, the identification of plausible atomistic
structures, especially for materials discovery, can bypass the
“classical” exploration of the potential energy surface
altogether, by means of reinforcement learning19 and deep-
learning generative models.20 We note in passing that,
complementarily, global optimization approaches can in turn
aid the generation of machine-learning atomistic potentials, by
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providing a physically motivated protocol to hierarchically
refine training sets. Naturally, machine learning approaches can
benefit from the “energy landscape” perspective, as discussed,
for example, in ref 21. In the following, we will focus
exclusively on the “standard” GA and BH algorithms. A
schematic representation of the two basic algorithms is
depicted in Figure 1.
GAs have been proven successful in finding periodic organic

and inorganic crystal structures. For example, the GA of the
electronic structure package CASTEP has been tested
successfully on periodic, highly symmetric crystal structures
and polymorphs.22 Four surface reconstructions of rutile TiO2
(all in accordance with experiments) have been found by the
Genetic Algorithm in the USPEX program23 The Birmingham
parallel genetic algorithm (BPGA) introduced in 2003
identified the most stable configuration of Iridium clusters of
the sizes N = 10 to N = 20 atoms24 In 2018 GAtor, a Python
GA code coupled with structure clustering via the machine
learning module Scikit-learn has been presented and
tested on molecular crystals.25 In 2019 a GA was designed
which performs simultaneously an optimization of the crystal
and the magnetic structure.26

BH enjoys widespread success thanks to its simplicity,
unbiased character, and the need for only a few parameters.
The standard BH approach has proven highly reliable for the
optimization of clusters and biomolecules.27 A further
development was proposed in 2004 with the Basin Hopping
with occasional jumping (BHOJ), which introduces random
jumping processes without rejection to mitigate stagnation.28

The BH algorithm showed efficiency and robustness also in the
identification of all-atom protein foldings.29 In 2010 a BH
Algorithm was presented30 which was tweaked by optimizing
the escape steps such that the initial atomic and cell velocities
are aligned to low-curvature directions of the current local
minimum. So-called generalized BH approaches exploit the
quasi-combinatorial nature of the potential energy landscapes
of multicomponent systems, by defining bi- or multiminima in
more than one metric space. These approaches have been
successfully applied to nanoalloys,31−33 as well as to the
combined structure and sequence optimization of proteins.34 It
has been recently shown35,36 that the efficiency of BH in
finding relevant low-lying structures in covalent systems is
significantly improved by employing trial moves based on

Delocalized Internal Coordinates (DICs) that tend to preserve
favorable structural motifs throughout the simulation. BH can
also effectively resolve surface structures of complex
adsorbates,37 especially in conjunction with Bayesian frame-
works.38

Global optimization techniques for material structure
prediction inherently require a very large number of energy
and force evaluations, no matter how efficiently they are
designed, which to date has limited their application to either
small system sizes using accurate first-principles methods, or
large system sizes using more approximate methods. As a result
of the computational cost, global optimization of large
extended systems, such as those of interest in materials science
and surface science, is relatively scarce. Only recently have
global optimization methods been used on lower-dimensional
structures such as interfaces and grain boundaries,39 2D
spherical topologies,40,41 and adsorbates on surfaces.36,37,42−44

There are even fewer systematic studies of the effect of
algorithm parameter choice on efficiency. A most notable effort
is presented in ref 45; however, to the best of our knowledge,
no systematic investigation has been performed specifically for
surface science and materials science. This work is a systematic
study of global optimization for what is possibly the most
complex surface structure knownthe Si(111)-(7 × 7)
reconstruction. While the structure and energetics of this
reconstruction are known, the rationale for studying it here is
that this is a tough test of a surface reconstruction prediction
algorithmcan the full Si(111)-(7 × 7) reconstruction emerge
from an unbiased structure search method? Hence, the insights
gained from this study should be relevant to many (simpler)
systems. The Si(111)-(7 × 7) reconstruction is known to be
described by the so-called Dimer-Adatom-Stacking fault
(DAS) model46 which was finally derived after many years of
joint effort by experiments and theory. Every 7 × 7 supercell
contains 12 adatoms, a corner-hole, 8-rings, and double 5-rings
as structural motifs. The number of removed or additional
atoms ΔN with respect to the unreconstructed N × N surface
supercell (including the smaller and simpler 3 × 3 and 5 × 5
reconstructions which also follow the DAS model) is given by

Δ = − − −N
N

N
1

4
1

2

(1)

Figure 1. Schematic representation of how Genetic Algorithms (GA, left) and Basin Hopping (BH, right) explore the potential energy surface
(color online). Left: two (or more) local minima geometries (represented by crosses) are allowed to mate (heart) to produce two (or more)
offspring geometries that are relaxed to new local minima (wiggly arrow). If the offspring survives, it is in turn allowed to mate in the next
generation. Right: a local minimum geometry is randomly perturbed (dice) and relaxed (wiggly arrow) into a new local minimum. If accepted, the
new local minimum is perturbed in the next step. If successful, both procedures, repeated, will converge to the global minimum (GM).
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However, while the structural details of the 7 × 7
reconstruction of a Si(111) surface are now known,
“predicting” it from first-principles calculations has been a
major challenge in computational surface science. The
difficulties arise as one needs a very large unit cell to contain
the elaborate symmetry (at least 49 atoms in each layer) and
many layers to contain both the surface reconstruction and the
relaxation with depth to the bulk structure. While a pioneering
DFT calculation by Payne et al.47 of the 7 × 7 reconstruction
showed that it was stable and lower energy than the
unreconstructed surface (which was taken as an ab initio
proof of the accuracy of the DAS model), the input structure
was taken as the DAS model. The Payne et al. study also
showed that the 7 × 7 reconstruction was more stable than 5 ×
5 and 3 × 3, but they did not perform a global optimization or
“predict” the DAS structure. In this paper, a series of global
optimization searches were performed to see if (and under
what search conditions) the DAS reconstruction emerges as
the global minimum.

■ THEORY
In this study, the performance of the Genetic Algorithm (GA)
and Basin Hopping (BH) approaches in finding the global
minimum energy structurethe DAS surface reconstruction
are assessed, and the effect of key algorithm parameters is
systematically investigated. In the algorithms employed here,
the only additional feature with respect to the most basic
recipe is the implementation of “smart” trial moves, namely,
the DIC displacements mentioned above for BH, and a cut-
and-splice procedure tailored to surface reconstructions for
GA. In principle, feature-preserving ideas based on DIC
displacements can also be implemented in GA approaches, by,
e.g., introducing mutations in DICs. It has to be noted here
that the cut-and-splice procedure already facilitates the passage
of favorable structural motifs to the offspring, as entire groups
of atoms are preserved intact in the children structures at each
generation.
For completeness, we note that the concept of smarter trial

moves had also been previously introduced in the form of
symmetrization schemes in ref 45. Those have been proven to
perform equally well with both BH and GA.
Genetic Algorithm. A Genetic Algorithm (GA) is a very

general approach to global optimization and can be used to
optimize many different kinds of problems. It is based on
Darwin’s idea of “survival of the fittest”49 and was translated by
Holland into an algorithm that mimics natural selection50 to
solve the global optimization problem. The first implementa-
tion for materials structure prediction was for molecules9 and
then extended to periodic systems22 to study crystals. A full
description of the periodic system implementation is available
in ref 48. The key idea is to have a population of N structures
that are available for “breeding” and to evolve toward the
global optimum solution over a number of generations. The
periodic lattice vectors and the fractional coordinates of the
ions are used to represent the structure (“DNA”); a periodic
cut(s) is used to breed two parent structures to make two
children (“crossover”) and then allow for various random
mutations (such as displacement, swaps, etc.) in the new child
structures. Once the child structures have been generated, they
then undergo a local relaxation, and the final relaxed energy is
used to rank according to their fitness. To be precise, genetic
algorithms that involve a minimization step of the members
after each generation are regarded to be “Lamarckian” rather

than “Darwinian”, as discussed in refs 51, 52. The optimization
step is analogous to the local optimization after each step in
the basin hopping approach. As such, GA with local
optimization steps is expected to exhibit comparable perform-
ance with BH. Fitness is a function of the appropriate free
energy (usually the enthalpy), and fitter structures have lower
free energy. If the number of atoms in the children is allowed
to vary (a “grand canonical” search), then it is more
appropriate to use the Gibbs free energy per atom as the
input to the fitness function. Finally, the fitness is used to
reduce the 2N structures (parents and children) to N to make
the set of parents for the next generation. Fitness is also used
to select pairs of structures to act as parents, from which the
next generation may be bred.
In this study of elemental silicon, the only mutation

considered is a random displacement of any atom after
breeding, which has a “mutation amplitude” and occurs
randomly according to a prescribed “mutation rate”. It has
been found that a significantly larger mutation is advantageous
in generating the initial population of generation 0 so as to get
a broad sampling of configuration spacethe “initial ion
amplitude” (IIA). In global optimization, it is important to
explore as much as possible of the configuration space (or
equivalently, the potential energy surface (PES)) as well as to
find the best candidate for the global minimum. This is a
challenge, and no global optimization approach can guarantee
that the global minimum will be found, only that the longer the
run, the larger the chance of finding it. Normally, if the best
structure found has not been improved upon for a long time
(and ideally across multiple runs starting from different initial
conditions), then it is considered a good candidate for the
global minimum. Factors such as mutation rate, mutation
amplitude, and size of the population can all affect the ability of
the algorithm to find the global minimum.
If the drive to the global minimum is too aggressive, then

there is a risk of stagnation, where all of the members of a
population become too similar, and the ability to search for
new areas of configuration space is lost. The risk of stagnation
can be significantly reduced by measuring the similarity of
different structures in a population to the lowest-energy
structure found at that point, and penalizing structures that are
too similar.53 This encourages a wide range of structures to be
maintained in the population. The overall fitness of a structure
f i is then a weighted combination of two different fitness
measures: f i

energy based upon minimizing the free energy, and
f i
diss based upon maximizing the structural dissimilarity

= − +f f f(1 FW) FWi i i
energy diss

(2)

where FW ∈ [0,1] is the “fitness weight”. This is clearly not the
only possible strategy to mitigate stagnation in global
optimization algorithms. For example, niching54 has been
used in other GA algorithms and will be investigated in follow-
up studies. A different approach to balance exploration
(probing unknown regions) and exploitation (finding lower-
energy structures) is to design a GA with a Bayesian
acquisition function as a fitness function.16 This latter work
showed that the search for molecular compounds could be
made much faster, but crystalline surface reconstructions were
not found to be significantly faster than with a non-Bayesian
search.
The appropriate free energy can be the enthalpy (for a single

element, fixed number of atoms with variable volume
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calculation), the enthalpy/atom (for a single element, variable
number of atoms calculation), the Gibbs free energy/atom (for
a multielement, variable number of atoms calculation), or
others. The GA crossover operation results in two children
with the same total number of atoms as in the two parents, but
can also be constrained to ensure that both children have an
equal number of atoms. This flexibility can be useful in
performing variable stoichiometry searches but is not needed
here. The GA of Probert and Abraham22,48,53 was adapted to
be appropriate for finding surface reconstructions. Instead of
having two periodic cuts in the bulk, this study uses just one
periodic cut that goes through the surface layer(s) as shown in
Figure 2 (left). This surface cut has a random wavelength (but
commensurate with the box) and a random amplitude, with a
maximum amplitude of 1/10 of the height of the cell. In this
way, the bulk of the structure is not affected, but surface
structural motifs can propagate between generations, and
atoms can be added or removed from different parts of the
surface.
Basin Hopping. Basin Hopping samples the configuration

space through consecutive jumps from one local minimum of
the potential energy surface to another. The jumps are
achieved by randomly moving one or more or all atoms in the
system to new positions. Each move is followed by a local
geometry optimization. Acceptance or rejection of the thus-
created structure proceeds on some appropriate criterion
most commonly, the Metropolis criterion;55 however, different
acceptance schemes have been proposed, including threshold
acceptance56 and Tsallis statistics.57 In this work, displace-
ments were performed in Delocalized Internal Coordinates
(DICs) which have been shown to enable more efficient
exploration of the configuration space for covalent systems35,36

than traditional moves in Cartesian coordinates (CCs). The
DICs are nonredundant linear combinations of internal
coordinates, obtained by singular value decomposition
(SVD) of the transformation matrix between Cartesian
coordinates and internal coordinates. The latter are defined
as a redundant set automatically obtained by detecting bonded
atoms if separated by a distance equal to the covalent radius of
the species considered multiplied by a tolerance factor and
subsequently extracting the angles between them. For the
details of the coordinate transformation, the reader is referred
to refs 35, 36. The DICs resulting from the SVD constitute a
nonredundant, complete set of collective displacement

directions (modes). At each BH iteration, a pre-set number
of DIC modes is randomly drawn to construct the displace-
ment for the global trial move. The “chemically sensible” trial
moves generated as such mostly consist of concerted motions
of groups of atoms, which preserve favorable bonding patterns
and drive the random walk toward more relevant regions of the
configuration space than Cartesian trial moves, yielding a
preferential sampling of lower-energy regions of the PES.
Additionally, the generated trial geometries tend to be less
strained (reducing the number of relaxation steps to the
corresponding local minimum) and less prone to relax to
dissociated structures. Here specifically, the surface-adapted
DIC definition is used (Complete Delocalized Internal
Coordinates, CDIC, hereafter interchangeably referred to as
CDIC or DIC) as described in refs 35, 36. In the latter, the
system is partitioned into two (or more) subsystems. Each
subsystem is assigned its own set of coordinates, the
concatenation of which recovers a full-dimensional coordinate
vector that is equivalent to Cartesian coordinates. The system
is partitioned into bulk and surface layers and the DIC
displacement is applied to the surface layers only, as shown in
Figure 2 (right). In our definition of CDICs, translations and
rotations (which are naturally filtered out by the construction
of DICs), are re-included as separate displacement modes that
can be picked up in the random selection to construct the total
displacement. This is useful when sampling the adsorption of
molecules on surfaces,36 but not necessarily in the context of
sampling surface reconstructions; therefore, in this work,
translational and rotational displacements were turned off. The
cost function to minimize can be generally defined as the
formation energy of the surface reconstruction, as directly
derived from ref 58. This allows, in principle, to take into
account the variation of the number of particles naturally as the
corresponding Metropolis criterion will be a function of the
chemical potential, like in grand canonical and semi-grand
canonical BH approaches proposed before.59 Alternatively, one
may minimize the free energy directly.60 Throughout this
work, however, the number of atoms per structure was kept
constant and the different (known) compositions sampled
separately in the canonical ensemble.
Finally, as noted in the Genetic Algorithm section,

stagnation can be a problem in any global optimization
algorithm. For example, with BH the already mentioned in ref
45 makes use of a “taboo list”, while rejection-free moves, such

Figure 2. Schematic representation of (left) the surface cut procedure48 employed in the GA mating and (right) the Delocalized Internal
Coordinates displacement employed in the BH throughout this work. Left: a sinusoidal cut propagates groups of contiguous atoms together from
parents to children, facilitating the preservation of favorable bonding patterns. Right: gray arrows represent global displacements in DICs. DIC
displacements are concerted motions of groups of atoms, thus also facilitating the preservation of favorable bonding patterns. In both panels, dark
gray atoms represent the bulk layers, which are not modified during the mating or the trial moves but allowed to relax. Light gray atoms belong to
the “active” layers, which are modified by the mating or the trial moves.
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as in BHOJ,28 may also be implemented. Neither of these
approaches were used in this study.
Comparison. GA and BH explore the configuration space

in a profoundly different manner. While the GA evaluates a
number of structures (equal to the chosen population size) in
parallel for each generation, BH is sequential as it evaluates
only one structure per iteration. To clarify, we refer to BH as
“sequential” in its standard formulation. While parallel
formulations of BH exist, that exploit replicas in a parallel
tempering manner (e.g., ref 61), those are not considered here.
Therefore, one may expect that a comparable exploration of
the configuration space is achieved for a number of BH steps
equal to roughly population size times the number of
generations in the GA. To compare the two global
optimization methods taking into account this difference, a
normalized measure of efficiency η is used, which was
introduced in ref 62 for the purpose of comparing different
global optimization algorithms

η =
·

N
N N

succ

opt tot (3)

where Nsucc is the number of structures that are within some
acceptance window (see below) of the global minimum (if
known), Nopt is the number of structures evaluated before the
global minimum of the whole run is found, and Ntot is the total
number of structures evaluated in the entire run. For this test
system, the global minimumthe DAS structureis already
known and hence it is straightforward to see if the global
minimum (GM) has been found. More generally, the GM is
not known a priori and so may be taken as being the best
candidate structure found during (all) the run(s) so far.
Furthermore, the interest is not just in finding the global
minimum, but all structures which are thermally accessible, i.e.,
are within some appropriately chosen convergence window of
the global minimum. For simple bulk structures, an appropriate
choice would be kBT per atom, or in the case of the surface
reconstructions considered here, kBT per surface area. Defined
as such, η is simultaneously a measure of “how fast” (through
Nopt) and “how well” (through Nsucc) the algorithm explores
the configuration space.
Another key metric for comparing different algorithms and

parameter choices is robustness R, defined as the fraction of
attempted calculations that converged to the GMor, more
generously, to within the appropriate thermally accessible
energy of the GM. In this work, the stricter criterion is used.
Only runs that find at least one structure within the
convergence window of the global minimum (Nsucc ≠ 0)
were included in the efficiency calculation. Runs that fail to
meet this criterion (hence η = 0) contribute to reducing the
robustness R instead.
Runs that are within the thermally accessible range but fail to

reach the GM have Nopt = Ntot. As such, this will slightly
overestimate the efficiency, assuming that at best the run
would have identified the GM in the next step. However, these
runs also contribute to reducing the robustness R despite
having η ≠ 0 (and not necessarily small). A good algorithm will
therefore have high efficiency and high robustness. Different
algorithms, or different parameter choices for an algorithm, will
affect its location in this efficiency-robustness space, and an
optimal approach will lie on the Pareto front in this space (cf.
Supporting Information). In the GA approach used here,
structures are assigned to generations and a whole generation

is optimized before fitness is assigned and breeding takes place
for the next generation. Hence, Nopt is calculated as the
number of members in a generation (i.e., the population size)
times the number of generations evaluated, up to and including
the generation in which the GM is found. An alternative GA
approach, based upon breeding from a pool of structures and
continuously updating the fitness and parents without the
generational step would therefore be slightly more efficient.
For BH, Nopt is simply the iteration at which the GM is first
identified, Nsucc is the number of structures in the entire run
that fall within the convergence window of the GM, and Ntot is
the total number of iterations. Additionally, it is useful to
define one or more measures of stagnation S. One may
consider, e.g., the number of “stuck” runs where the best
energy found has not improved for a number of iterations;
additionally, if the global minimum is known, one may
partition the latter into “converged” (i.e., stuck to the GM), or
“stuck to suboptimal”. However, for both stochastic and
evolutionary searches, any chosen metric is somewhat
arbitrary. First, there is no direct way to evaluate how much
of the configuration space has been sampled, nor a guarantee
that something in the next step will or will not drive the
simulation to a new local minimum. For evolutionary methods,
one may identify stagnation either as the point at which the
entire population converges to a certain solution (quite
conclusive, less the effect of mutations), or if the fittest
member has not changed for a certain number of generations
(and, clearly, how many is completely arbitrary). For stochastic
methods, there is no direct equivalent to the “flat” population
convergence of the GA, but one may still identify stagnation if,
for example, no new local minimum is accepted, or no
significant gains in energy are achieved for a certain (again,
arbitrary) number of steps. In the following, stagnation S is
defined as the fraction of “stuck” runs (regardless of whether
converged to the GM or not). For GA, a simulation is
considered to be stuck if the average enthalpy of the current
population is within kBT/unit area from the enthalpy of its
fittest member, and/or if no new fittest member is identified in
a preconvergence window of + N10 atoms generations. In the
latter case, the GA algorithm stops the search automatically. Of
note, the two criteria do not necessarily coincide; therefore, the
stagnation number for GA is the fraction of runs that meet at
least one of those criteria. For BH, a simulation is stuck if no
gains in energy larger than kBT/atom have appeared for more
than 50% of the total steps. For this purpose, we assume a
temperature of 300 K.

■ COMPUTATIONAL DETAILS

All calculations were performed applying periodic boundary
conditions. The initial structure for each simulation contained
a slab of six layers of silicon atoms, of which the bottom three
layers were constrained to the bulk coordinates and the top
three layers are allowed to be optimized in any direction. A
vacuum layer of 10 Å is added above the surface to avoid
interactions with the periodic image. To enable an exhaustive
study of the different parameter combinations, which would be
prohibitive at the DFT level for the targeted system sizes,
energy and forces were evaluated with the surface-modified63

Stillinger−Weber model potential.64 The latter does not
require the addition of a hydrogen passivation layer. Local
relaxations were performed using the BFGS algorithm65−68 as
implemented in the electronic structure code CASTEP69 for
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the GA and in the python package Atomic Simulation
Environment (ASE)70 for the BH.
The GA was performed using a maximum of 40 generations

and 40 members for all runs of the system size 3 × 3, 60
generations and 60 members for 5 × 5, and 150 generations
times 150 members 7 × 7. To base the performance
assessment of the GA on a sufficient set of statistics to derive
meaningful statements, 10 runs with different random number
seeds were completed for each set of parameters. Structures in
generation zero for the GA runs were obtained by displacing
the reconstructed surface by the chosen initial ion amplitude
(IIA). The number of atoms was kept fixed in accordance with
eq 1 for all children. The deployed Genetic Algorithm is
implemented in a developers’ version of the electronic
structure code CASTEP71 and therefore not yet available to
the public; its release is planned for early 2022. A sinusoidal
surface cut of amplitude 3 Å was centered about the initial
surface layer so that only the two uppermost layers were
effectively involved in the reconstruction. The third layer was
allowed to relax together with the top 2, while the three
bottom layers mimicking the bulk were kept fixed.
For strict comparability, 10 BH runs for each reconstruction

size and each parameter combination were performed starting
from 10 initial structures drawn randomly from structures
created in the GA at generation zero with an initial ion
amplitude (IIA) of 1.4 Å. As BH has fewer parameters to
control, a full screening was performed varying both the step
size dr between 1.00, 1.20, 1.40, and 1.75 Å and, for each of
those, the number of DICs employed to construct the global
displacement between one single DIC, 25, 50 and 75% of the
maximum number of available modes. For each step size, BH
runs with Cartesian displacement were additionally performed
for comparison. All of the BH runs were performed at a
pseudo-temperature of 300 K. The effect of the temperature

was not investigated here, as the focus of the work is primarily
on the effect of the strictly geometric parameters. Similarly to
the GA mating protocol, in the BH, the DIC displacements
were applied to the two uppermost layers. The third layer was
allowed to relax, while the bottom three bulk layers were kept
fixed. To evaluate a number of structures comparable to the
number of structures evaluated in the corresponding GA run,
the number of steps was set to 1600, 3600, and 20 000 for 3 ×
3, 5 × 5, and 7 × 7, respectively. Of note, an exact
correspondence is not strictly necessary when using the
normalized efficiency metrics defined in eq 3; however, it is
sensible and fair to compare simulations with numbers of
evaluations of the same order of magnitude. The BH approach
employed here is implemented in the freely available python
package winak.35,36

■ RESULTS AND DISCUSSION

3 × 3 Reconstruction. In the following, we present an
extensive discussion on the effect of the various parameters
that can be tuned in GA and BH searches. While one may
generally choose them within sensible ranges, a systematic
screening can give insights into best practices to tune the
search toward desired outcomes, especially in the global
structure optimization of complex systems, where one is
typically not only interested in the GM, but more generally in a
wider range of thermally accessible configurations. To some
extent, many of the involved parameters provide some form of
control of the exploration−exploitation trade-off. For example,
introducing more frequent large-amplitude mutations in GA,
or employing a larger step size in BH, will push the simulations
more toward unexplored regions of the potential energy
surface. Similarly, one may tune up exploration by directly
modifying the cost function in GA (via the fitness weight) or
accepting more unfavorable structures (via the temperature) in

Table 1. Effect of Varying the Initial Ion Amplitude IIA on the GA Performance for the 3 × 3 Surfacea

IIA (Å) 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

η̅/10−5 148.6 87.8 74.8 31.6 22.2 13.7 9.8 3.9
R 1.0 1.0 1.0 0.8 0.9 0.6 0.5 0.2
S 1.0 1.0 0.9 0.6 0.3 0.3 0.1 0.1

Gopt 2.1 4.0 4.8 9.0 11.3 15.5 14.8 19.0

Nopt 84 160 192 360 453 620 592 760

ηmin/10
−5 44.6 24.5 18.8 4.4 4.3 2.5 1.7 0.1

ηmax/10
−5 237.7 234.9 226.5 103.8 74.9 71.2 27.0 13.1

aAll calculations were for a population size of 40 members per generation, and a maximum of 40 generations, and repeated 10 times. In addition to
the average efficiency η̅, robustness R, and stagnation S, results for the average GA generation Gopt and member Nopt at which the global minimum
is identified and the range of efficiency from ηmin and ηmax are reported. Note that values of η are quite small, typically 10−5, hence the notation used
in the table. The other GA parameters were FW = 0.5, MA = 0.2 Å, and MR = 0.1.

Table 2. Effect of Varying the Mutation Rate (MR) on the GA Performance for the 3 × 3 Surfacea

mutation rate (Å) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

η̅/10−5 74.8 74.5 77.6 78.2 73.1 82.8 84.9 80.0 80.5
R 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
S 0.9 1.0 1.0 0.9 1.0 0.9 1.0 1.0 1.0

Gopt 4.8 4.2 3.8 3.7 4.2 3.7 3.2 3.6 3.6

Nopt 192 168 152 148 168 148 128 144 144

ηmin/10
−5 18.8 26.1 26.6 29.9 31.3 31.2 41.6 35.5 35.7

ηmax/10
−5 226.5 219.5 214.4 223.0 227.3 219.4 230.2 225.5 228.4

aAll calculations were for a population size of 40 members per generation, and a maximum of 40 generations, and repeated 10 times. The other GA
parameters were FW = 0.5, IIA = 1.4 Å, and MA = 0.2 Å.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.2c00647
J. Phys. Chem. A 2022, 126, 3043−3056

3048

pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.2c00647?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


BH. Conversely, choices in the opposite direction will certainly
lead to a solution fasterhowever, the risk of stagnation to a
suboptimal solution increases concomitantly. Even though a

thorough screening of the effect of different parameters was
only performed for the 3 × 3 reconstruction, we expect similar
trends to apply to the 5 × 5 and 7 × 7 reconstruction and,
indeed, to any other structure search.

GA Results. Initial Ion Amplitude (IIA). To test the ability of
the GA to converge to the GM even from strongly distorted
structures, the initial random displacement (IIA) was increased
from 1.2 to 1.9 Å in steps of 0.1 Å. Table 1 shows the average
efficiency η̅, robustness R, and stagnation S (as defined in the
Comparison section). There were 10 independent repetitions
for each parameter set, and this was also used to calculate the
average generation Gopt and average member Nopt at which the
GM was found is noted along with the range of efficiency from
ηmin and ηmax.
Not surprisingly, larger initial ionic displacements result in

increasingly lower efficiency, as generations evolving from very
strained, high-energy initial populations take longer to enter
the kBT window and, subsequently, the GM will appear later.
This in turn can lower the robustness (for runs with a fixed
number of generations), as some runs will not converge to the
GM at all, unless the maximum number of generations is
increased to compensate for the more exhaustive search.
We additionally observed that, for small IIAs, a number of

GA runs found the GM in the initial population. In general,
GA runs with too small IIA are likely to stagnate very soonif
not to the GM, then to some local minimum in the super-basin
spanned by the IIA as can be seen by the value of S. To be
clear, determining whether convergence to the GM is
“premature” carries a certain degree of arbitrariness.
Finally, we note that a displacement of 1.2 Å equates to

∼50% of the Si−Si bond length, while 1.8 Å is ∼78%. The
latter is a situation where the system is completely disordered
and yet still the algorithm can find the ordered structure. Not
surprisingly, however, the highest efficiencies are observed for
IIA values between 1.2 and 1.4 Å, which are less likely to
completely break bonds in the initial generation and so
choosing IIA = 50% of the average bond length seems to be an
efficient and transferable heuristic. This suggests that
parameters that facilitate the preservation of bonding patterns
are generally favorable.

Mutation Rate (MR). The mutation rate was varied between
0.2 and 0.9 in intervals of 0.1. As shown in Table 2, the effect
of this parameter is relatively small. All of the values yield
similar performance both in terms of efficiency and robustness.
One may identify a weak trend of increasing efficiency with
increasing mutation rate; however, the fluctuations are too
prominent to consider it significant. The stagnation is also
minimally affected.

Mutation Amplitude (MA). As shown in Table 3, increasing
the mutation amplitude MA, by which the atoms are randomly
displaced after breeding two different structures, has a similar,
but slightly less pronounced, effect as the IIA. When the MA is
increased, the efficiency drops, albeit less dramatically than for
variations in the IIA. The robustness (for a fixed maximum
number of generations) is almost unaffected, only starting to
decrease for MA = 1 Å. Much larger is the effect on stagnation:
already a value of MA = 0.5 Å almost completely eliminates the
probability to get stuck in a local minimum (here GM) basin.

Fitness Weight (FW). Varying the fitness weight (FW) has a
modest effect on the GA performance, as shown in Table 4.
Previous studies on bulk structures53 have found a broad
plateau of values around FW = 0.5 were optimal. If the FW is

Table 3. Effect of Varying the Mutation Amplitude (MA) on
the GA Performance for the 3 × 3 Surfacea

mutation amplitude (Å) 0.2 0.5 0.75 1

η̅/10−5 74.8 68.3 38.6 12.1
R 1.0 1.0 1.0 0.8
S 0.9 0.5 0.5 0.6

Gopt 4.8 4.4 5.5 6.5

Nopt 192 176 220 260

ηmin/10
−5 18.8 32.1 8.2 1.1

ηmax/10
−5 226.5 225.8 141.3 62.7

aAll calculations were for a population size of 40 members per
generation, and a maximum of 40 generations, and repeated 10 times.
The other GA parameters were FW = 0.5, IIA = 1.4 Å, and MR = 0.1.

Table 4. Effect of Varying the Fitness Weight (FW) on the
GA Performance for the 3 × 3 Surfacea

fitness weight 0.1 0.3 0.5 0.7 0.9

η̅/10−5 61.6 61.3 74.8 83.5 81.6
R 1.0 1.0 1.0 1.0 1.0
S 1.0 0.9 0.9 0.9 1.0

Gopt 5.0 5.3 4.8 3.4 3.7

Nopt 200 212 192 136 148

ηmin/10
−5 18.1 17.0 18.8 34.0 37.9

ηmax/10
−5 219.7 211.3 226.5 216.6 235.1

aAll calculations were for a population size of 40 members per
generation, and a maximum of 40 generations, and repeated 10 times.
The other GA parameters were IIA = 1.4 Å, MA = 0.2 Å, and MR =
0.1.

Table 5. Effect of Varying the DIC Displacement Step Size
dr on the BH Performance for the 3 × 3 Surfacea

dr (Å) 1.00 1.20 1.40 1.75

η̅/10−5 24.7 13.3 18.3 0.5
R 0.4 0.2 0.5 0.1
S 0.7 0.7 0.9 0.6

Nopt 521 167 117 901

ηmin/10
−5 1.9 1.4 0.3 0.1

ηmax/10
−5 138.2 66.1 65.6 2.2

aAll calculations were for roughly 1600 steps and repeated 10 times.
The number of DICs was kept fixed at 25% of all of the available
modes.

Table 6. Effect of Varying the Different Percentages of DICs
(1 Single Randomly Chosen DIC, and 25−75% of the
Available DICs), as well as with CC Displacements, for the
3 × 3 System Sizea

DICs/CC 1 25% 50% 75% CC

η̅/10−5 14.9 18.3 62.9 2.0 0.01
R 0.4 0.5 0.5 0.2 0.0
S 0.9 0.9 0.8 0.7 0.5

Nopt 338 294 117 1024 --

ηmin/10
−5 0.5 0.3 1.0 0.8 0.01

ηmax/10
−5 73.3 65.6 426.3 5.9 0.01

aThe step size dr was kept fixed at 1.40 Å.
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low, then the fitness is dominated by the enthalpy contribution
but may be prone to stagnation, while a high FW favors

structural dissimilarity and generates a broader range of
structures but may therefore be slower to converge to the GM.
Here, we find that due to the complexity of the search space, a
higher FW is favored but that the GA is capable of finding the
GM with any reasonable value of FW.

BH Results. Basin Hopping has overall fewer parameters to
control, namely, the pseudo-temperature for the Metropolis
acceptance (here kept fixed at 300 K throughout), the
displacement step size dr, and, in the case of DIC-based trial
moves, the number of curvilinear modes employed to
construct the displacement. The latter is chosen randomly
among all of the available DIC modes to construct the global
displacement at every BH iteration. We performed runs
varying the step size dr for values of 1.0, 1.2, 1.4, and 1.75 Å.
For each dr, the number of delocalized internal modes used to

Figure 3. Enthalpy of the best member by generation, with the corresponding geometries overlaid, for a representative GA run with IIA = 1.4 Å,
FW = 0.5, MA = 0.2 Å, MR = 0.1, and a population size of 40 members per generation. A clear pattern can be observed: each step in enthalpy
corresponds to the appearance of one or more distinct geometric features increasingly similar to those characterizing the DAS reconstruction, such
as a corner-hole, dimers, 5-atom rings, etc. Such favorable features are then subsequently passed on to the next generations. A similar trend is
observed in DIC-BH runs.

Figure 4. Target structure (left) and representative results from BH (top right) and GA (bottom right) for the 3 × 3 reconstruction. The atoms are
color-coded proportionally to the deviation of their positions with respect to the target. As both algorithms succeed in identifying the target
solution, here, we show the second-best structure and the highest-energy structure within kBT per unit area. The second-best structure coincides for
both methods. Interestingly, the two structures just within the kBT tolerance are profoundly different. The one from GA is much more structurally
similar to the target, with just a handful of atoms displaced, while the BH one is very dissimilar, which suggests that completely different alternative
reconstructions are, in principle, thermally accessible.

Table 7. Effect of Varying the DIC Displacement Step Size
dr and %DICs on the BH Performance for the 5 × 5
Surfacea

dr (Å), DIC 1.2, 25% 1.4, 25% 1.2, 50% 1.4, 50%

η̅/10−5 2.4 1.7 2.4 2.0
R 0.1 0.0 0.0 0.0
S 0.5 0.4 0.4 0.4

Nopt 1373

ηmin/10
−5 0.7 0.2 1.6 0.7

ηmax/10
−5 6.8 2.3 2.7 2.4

aAll calculations were for roughly 3600 steps and repeated 10 times.
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build the displacement was varied between one single mode,
25%, 50%, and 75% of all of the available DIC modes, and for
comparison, Cartesian-based BH was also performed. For each
parameter combination, 10 different runs were launched
starting from 10 different initial structures chosen as described
in Computational Details section.
Step Size. Table 5 reports the average efficiency η,

robustness R, and stagnation S as a function of the step size
dr for BH runs where the displacement mode was kept fixed at
25% of the available DICs. It is not straightforward to identify
a clear trend for the efficiency, except for the observation that
best results are for step sizes between 1.00 and 1.40 Å. A too
large step size (1.75 Å) most likely causes the largest fraction
of the trial moves to relax to structures outside the kBT/unit
area window, thus reducing the efficiency. The low efficiency
for 1.20 Å is somewhat surprising, with the latter being the
“natural” step size one would expect for this system (about half
the bond length of diamond silicon, cf. GA results as well as ref
35).
It is worth noting however how the smaller step sizes present

an extremely large spread in efficiency values, as apparent from
the values of minimum and maximum efficiency. This is an
indication that occasionally the random walk in BH takes a
particularly “lucky” (or “unlucky”) path, not particularly
dependent on the combination of parameters (provided that

those are chosen sensibly among the ones capable of yielding
good results). This aspect of BH may well translate into more
sluggish statistics than GA when it comes to the convergence
of the effect of parameters with respect to the number of
repetitions. In this light, the lower efficiency for 1.20 Å, as well
as the fuzziness of the trend may be due to insufficient
statistics. Further studies with a higher number of repeats
might generate better statistics and hence clarify this issue, but
the aim of this study is to get an indicative trend and so 10
repetitions were used for all parameter combinations for
consistency.
Similarly, a clear trend cannot be identified for the

robustness R, which only roughly decreases for increasing
step size, as would be expected. This rough trend is consistent
with the expectation that larger step sizes will favor exploration
over exploitation, causing many runs to fail to reach the GM
within the predefined number of iterations. Nonetheless, the
value for 1.40 Å falls out of trend, also for the stagnation value.
This may be an indication that 1.40 Å is an outlier, rather than
1.20 Å. However, no conclusive statement can be made.
Of note, none of the parameter combinations here reaches

full robustness (i.e., R = 1.0). This is due to the fact that BH is
prone to getting stuck in super-basins with local minima, as will
be further discussed in the DiscussionGeneral Trends
section. Therefore, even for parameter combinations with a
high efficiency, the algorithm may (efficiently!) stagnate into
suboptimal super-basins, as can be seen with the value of S.

Percentage of DICs. Table 6 reports the average efficiency
η, robustness R, and stagnation S as a function of the number
of DICs employed to construct the global displacement.
Similarly to the step size, no clear monotonic trend can be
identified for the efficiency. No clear monotonic trend can be
identified for the robustness either. Overall, percentages of
DICs between 1 and 50% seem to perform comparably, and,
consistently with the previous work,35 optimal results are
obtained with some intermediate percentage of DIC around

Figure 5. Target structure (left) and representative results from BH (top right) and GA (bottom right) for the 5 × 5 reconstruction. The atoms are
color-coded proportionally to the deviation of their positions with respect to the target. As both algorithms succeed in identifying the target
solution, here, we show the second-best structure and the highest-energy structure within kBT per unit area. The second-best structure does not
coincide for both methods, but both are similar with just one adatom in the wrong place, which, as shown in Figure 3, was the last feature to emerge
from the 3 × 3 optimization study as well. Here, the two structures just within the kBT tolerance are much more similar to each other and to the
target than those for the 3 × 3 reconstruction.

Table 8. Comparison of Efficiencies of GA and Basin
Hopping Approaches for Optimal Parameter Setsa

Genetic Algorithm Basin Hopping

system η̅/10−5 R S η̅/10−5 R S

3 × 3 74.8 1.0 0.9 13.3 0.2 0.7
5 × 5 3.4 0.8 0.0 2.4 0.1 0.5
7 × 7 0.16 0.0 0.4 2.1 0.0 0.1

aFor GA, the parameters are; MA = 0.2 Å, MR = 0.1, IIA = 1.40 Å,
FW = 0.5. For BH, dr = 1.20 Å and %DIC = 25%.
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25−50%. The marked spike in efficiency for 50% is most likely
due to the strong outlier in ηmax. The stagnation decreases
steadily with the percentage of DIC.
As a final remark, we note how the “traditional” BH with

Cartesian coordinate (CC) displacements is profoundly
inadequate to sample extended surface reconstructions, despite
presenting a lower risk of stagnation. Of all 10 runs with dr =
1.40 Å, none identified the GM, only one entered the kBT/unit
area window and did so with extremely low efficiency. To be
fair, two runs in Cartesian coordinates with dr = 1.00 Å do
identify the GM, with an efficiency of 2.19. However, it is
evident that standard BH in Cartesian coordinates is not a
viable choice for the global optimization of extended structures
such as large surface reconstructions, unless specific strategies
are put into place to enhance the sampling with smarter moves
(such as the already mentioned approximate continuous
symmetry measures).45

Evolution in Action. As a visual representation of the global
optimization procedure, Figure 3 shows an exemplar GA run
for the 3 × 3 surface. We plot the enthalpy of the best member
by generation. Of note, since for each generation the member
with the lowest enthalpy is automatically allowed to breed, but
not directly passed to the next generation, its children may or
may not beat it in enthalpy. For this reason, before
convergence, the best enthalpy might temporarily increase, as
shown by the spikes in Figure 3. This plays an analogous role
to accepted uphill moves in BH. The geometries of the best
members per generation are overlaid at their corresponding
energies. A clear evolution can be observed: each major step
downward in enthalpy corresponds to the appearance of one or
more distinct geometric features, increasingly similar to those
characterizing the DAS reconstructions (corner-hole, dimers,
5-rings, etc.). Such favorable features are then subsequently
passed on to the next generations. A similar trend is observed
in DIC-BH runs, where the preservation of favorable binding

motifs is ensured by the employment of DIC global
displacements.
The corner-hole is the first to appear, immediately followed

by dimers and 5-rings. Not surprisingly, the last feature to fall
into place is the location of one of the two adatoms. In general
(especially for the larger 5 × 5 and 7 × 7 reconstructions), we
observe a certain difficulty for the global optimization
algorithm (more precisely, for the mating in GA and the trial
moves in BH) to find the best location for the adatoms. Many
candidate solutions above the GM but still within the kBT
window have adatoms (or small clusters of adatoms) that are
subtly misplaced (see below for more detail). Intuitively, one
may argue that such features are not too energetically
unfavorable compared to, e.g., ring defects, where the latter
generate a larger strain compared to the most favorable ones.
Qualitatively, this is compatible with the smaller gains in
enthalpy observed for the correct placement of an adatom,
with respect to, e.g., the formation of the corner-hole and the
rings. The difficulty for a BH displacement to correctly place
the adatom is straightforward to understand, as an adatom that
is far from where it should be would require a rather
improbable displacement to move it to its target position.
However, the same difficulty for GA trial moves, which do not
suffer from this limitation, can only be explained on the
energetic grounds discussed above.

Best Structures. As a final remark, we briefly discuss some
candidate solutions found for the global optimization problem
by inspecting some representative structures as shown in
Figure 4. As both algorithms succeed in identifying the target
solution, here we show the second-best structure and also the
highest-energy structure within kBT per unit area. The second-
best structure coincides for both methods. Interestingly, the
two structures just within the kBT tolerance are profoundly
different. The one from GA is much more structurally similar
to the target, with just a handful of atoms displaced. The one
from BH is very dissimilar, which suggests that completely

Figure 6. Target structure (left) and representative results from BH (top right) and GA (bottom right) for the 7 × 7 reconstruction. The atoms are
color-coded proportionally to the deviation of their positions with respect to the target. As neither algorithm succeed in identifying the target
solution, here, we show the best structure and the highest-energy structure within kBT per unit area. The best structure from BH has only one atom
displaced, while in the one from GA, some top atoms are grouped in a small Si4 cluster. As seen with the 5 × 5 reconstruction, the two structures
just within the kBT tolerance are not too structurally dissimilar to the target, but the BH structure shows a higher degree of disorder than the one
from GA, despite having essentially the same energy.
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different alternative reconstructions are, in principle, thermally
accessible.
5 × 5 Reconstruction. The identification of the 5 × 5

surface reconstruction is expected to require many more
structure evaluations with either GA or BH. Each structure has
25/9 times more atoms than the 3 × 3 surface reconstruction,
and, it is well known (at least in the case of atomic clusters)
that the PES has an exponential scaling of the number of
minima with the number of atoms.72

We therefore fixed the GA parameters at the near-optimal
ones found in the earlier study (IIA = 1.4 Å, FW = 0.5, MA =
0.2 Å, MR = 0.1) and increased the population size to 60
members per generation and allowed a maximum of 60
generations per run. Each calculation was again performed 10
times with different random number seeds. With these
parameters, 8 of 10 runs found the GM and hence R = 0.8
and the efficiency was found to be η = 3.4 × 10−5. No runs
were deemed to have stagnated by either of the criteria chosen
for GA.
For the BH study, we followed the same procedure as

before, with initial BH structures drawn from the initial
population of the GA run. However, due to the less clear trend
in performance wth respect to the parameter combinations
seen in the 5 × 5 surface study, we also studied the effect of
changing displacement step size dr and %DICs for this system
size, restricting the screening to step sizes of dr = 1.20 and 1.40
Å with 25 and 50% of DICs.
The results are shown in Table 7. These clearly illustrate that

the DIC-BH is only weakly dependent on the choice of
parameters (as long as the latter are chosen within reasonable
boundaries). The parameter combination which was best for
the 3 × 3 reconstruction (that is, dr = 1.40 Å with 50% of
DICs) is not the best for the 5 × 5 reconstruction, and instead,
dr = 1.20 Å with 25% of DICs is optimal. This is the only
parameter set for which DIC-BH found the GM and that in
only one run out of 10 repetitions. This parameter
combination also produces the best structures closest in
average to the solution (cf. Supporting Information), where all
10 of the final results are within the kBT/unit area window.
This is in line with the intuitive expectation that a
displacement mode preserving the covalent bonding patterns35

should generally be preferred.
As for the 3 × 3 reconstruction, we also inspect some

representative candidate structures for the 5 × 5 reconstruction
as shown in Figure 5. This time, we find structures with similar
energy are much more similar; however, the higher-energy one
from BH appears more disordered.
7 × 7 Reconstruction. The ultimate aim of this study was

the 7 × 7 reconstruction. Obviously, this is significantly larger
than the 5 × 5 and so the GA was run with a population size of
150 members per generation and a maximum of 150
generations. The GA parameter choices were the same as for
the 5 × 5 study. An equivalent number of structures (around
20 000) was also used in the DIC-BH study. Again, 10 runs of
each were performed. The results are shown in Table 8, along
with the corresponding data for the 3 × 3 and 5 × 5 surfaces.
Unlike with the smaller system sizes, neither GA nor DIC-

BH was able to find the exact DAS reconstruction (GM) for
the 7 × 7 structure. Instead, the GA found a structure at 2.9 eV
above the GM, corresponding to ∼0.17 kBT/unit area at 300
K, and the best DIC-BH result was 2.7 eV above the GM,
corresponding to ∼0.16 kBT/unit area. For GA, no runs
stagnated with the criterion of the average enthalpy converging

to a certain value for the entire population, while four runs
were prematurely ended by the GA algorithm as no new fittest
member was identified in the convergence window. As such,
the S value is 0.4. For BH, one run stagnated, hence S = 0.1.
Both approaches found good structures that upon inspection
are very close to the exact DAS reconstruction, differing only in
the position of one atom, as shown in Figure 6. In both cases,
the difference from DAS is in the position of an adatom, which
as shown in Figure 3, was the last feature to emerge from the 3
× 3 optimization study as well. This suggests that this feature
too would emerge here if the runs were made longer.

■ DISCUSSIONGENERAL TRENDS
As a final remark, we compare the efficiency and the robustness
(with the optimal parameter sets) with respect to system size.
Not surprisingly, both efficiency and robustness decrease with
system size for both GA and BH, as the complexity of the PES
increases. Interestingly, while GA is a clear winner for the 3 × 3
reconstruction, for the 5 × 5 reconstruction, the two
approaches show comparable efficiency, while for the 7 × 7
reconstruction, BH becomes more efficient than GA.
Conversely, the robustness of GA remains higher than that
of BH throughout, and stagnation rates are similar for each
system size.
Some qualitative explanation for this behavior may be found

in the intrinsic difference in the way the two algorithms
traverse the configuration space. In GA, each iteration
(generation) uses information from a large portion of
configuration space at the same time, as the population is
scattered across it (unless it stagnates). As such, it is to be
considered a more “global” approach. In a way, with such
exhaustive harvesting of information from different regions of
the PES, it is reasonable to think that the GM solution would
be hard to miss.
In contrast, BH is inherently “locally local”, as its sequential

nature (in its standard implementations) only allows new trial
moves in the immediate vicinity of the previously accepted
minimum, and one at a time. This explains the tendency for
BH to get stuck, if the path taken is not particularly favorable,
thus lowering robustness. At the same time, when the random
walk goes in the right direction, the convergence to the
solution is extremely quick. Very often, complex potential
energy surfaces exhibit distinct super-basins, which may be
significantly separated in terms of configuration distance as
seen in disconnectivity graphs.73

In the context of Si(111) reconstructions, let us consider the
following thought experiment. A certain structure may be very
close to the solution, but with a single atom displaced with
respect to its correct position by a distance larger than the BH
step size (this is the case, for example, of the best 7 × 7
structure found by both GA and BH as shown in Figure 6). As
such, it would be impossible for any trial move with that finite
step size to exactly place the atom where it should be. This is
still possible with multiple moves; however, the path would
have to contain intermediate local minima that would need to
be accepted. It is then intuitive to understand that, if that is not
the case, the two super-basins are disconnected. Conversely, by
its nature, the GA would not run into such problems because it
would be sufficient that the portion of the structure containing
the displaced atom is replaced with a portion with the correct
local geometry during mating.
These shortcomings are expected to be alleviated by

introducing a similar form of “globality” in BH as well, as it
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has been proposed in the already mentioned parallel tempering
BH.61 The latter has been successfully applied to tackle
multifunnel potential energy landscapes of disordered
proteins,74 but, to the best of our knowledge, never in
materials science.

■ CONCLUSIONS
We have performed a systematic study of the effect of
parameter choice on the performance of two widely used
global optimization algorithms on a challenging test system
the Si(111) surface reconstruction.
It has been shown that both GA and BH approaches are able

to find the true global minimum of both the 5 × 5 and 3 × 3
Si(111) surface reconstructions, starting from initial guesses
with highly disordered surface layers. Both algorithms
struggled to find the exact GM of the 7 × 7 reconstruction,
and instead found a nearby structure with only one or few
atoms displaced from the recognized DAS reconstruction, and
an energy well within the experimentally accessible kBT/unit
area criterion. We believe that this narrow failure is only due to
an insufficiently exhaustive search of the PES and that
generating more structures according to the algorithm would
fix this, but at a higher computational expense.
We have systematically explored the effect of the different

parameters on the performance of the GA and the DIC-BH for
this complex system. Our general conclusion is that mutating
the initial ionic coordinates in the GA, or analogously
displacing in the BH, by IIA = dr = 1/2 of the average bond
length in the GA is optimal, and this parameter can make a big
difference to the efficiency. The other parameters can also
make a significant difference to the algorithm performance, and
we have evaluated their effect on efficiency, robustness, and
stagnation. On the basis of this, we have found a good
parameter set for both algorithms that we recommend being
used in other studies, without the need for further system-
specific optimization.
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