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Objective: Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease that displays
a significant gender difference in terms of incidence and severity. However, the underlying
mechanisms accounting for sexual dimorphism remain unclear. The aim of this work was to
reveal the heterogeneity in the pathogenesis of SLE between male and female patients.

Methods: PBMC were collected from 15 patients with SLE (7 males, 8 females) and 15
age-matched healthy controls (7 males, 8 females) for proteomic analysis. The proteins of
interest were validated in independent samples (6 male SLE, 6 female SLE). Biomarkers
for neutrophil activation (calprotectin), neutrophil extracellular traps (cell-free DNA and
elastase), and reactive oxygen species (glutathione) were measured, using enzyme-linked
immunosorbent assay, in plasma obtained from 52 individuals.

Results: Enrichment analysis of proteomic data revealed that type I interferon signaling
and neutrophil activation networks mapped to both male and female SLE, while male SLE
has a higher level of neutrophil activation compared with female SLE. Western blot
validated that PGAM1, BST2, and SERPINB10 involved in neutrophil activation are more
abundant in male SLE than in female SLE. Moreover, biomarkers of neutrophil activation
and reactive oxygen species were increased in male SLE compared with female SLE.

Conclusion: Type I interferon activation is a common signature in both male and female
SLE, while neutrophil activation is more prominent in male SLE compared with female
SLE. Our findings define gender heterogeneity in the pathogenesis of SLE and may
facilitate the development of gender-specific treatments.
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INTRODUCTION

Systemic Lupus Erythematosus (SLE) is a complex disease
characterized by abnormal activation of immune cells,
production of autoantibody, immune complex deposition as
well as multiple organs damage (1). The global prevalence of
SLE ranges from 13 to 7,713.5 per 100,000 persons, and there are
great differences among different races (2). In China, it generally
affects 38.6 in every 100000 individuals (3). Emerging data show
that the prevalence of SLE is rising over time, and now SLE is one
of the leading causes of death in young women (2, 4).

The pathogenesis of SLE is not fully understood. Genetic,
environmental, and hormonal factors all contribute to disease
risk (5). Genetic studies (especially genome-wide association
studies) have reported approximately 180 susceptibility loci,
including those genes involved in type I interferon (IFN)
activation, lymphocyte activation, and innate and adaptive
immune response (6). Other omics studies also made great
progress in understanding SLE pathogenesis. For instance,
gene expression studies have revealed key biological pathways
including IFN signaling and neutrophil activation (7–9).
However, these studies were mainly focused on transcriptomic
profiles with little known about proteome modulation and
protein function. Previously studies have shown that in many
cases, transcript levels are insufficient to predict protein levels
(10) and the average correlation between mRNA and protein
expression is below 0.5 (11–13). Therefore, studies at the
proteomic level will be crucial and have the potential to reveal
new disease pathogenesis absent from transcriptomics data.

SLE has been reported to be highly heterogeneous in terms of
gender. The disease is particularly prevalent in women of
childbearing age, with a male-to-female incidence ratio
of about 1:9. In contrast, men with SLE present with a more
severe form of the disease than women in terms of clinical
manifestations and prognosis. Studies have shown that male SLE
has a more aggressive clinical course with rapid accrual of organ
damage (i.e. kidneys, cardiovascular and neuropsychiatric
systems), resulting in a poorer prognosis and lower survival
rate compared with female SLE (14–16). However, the
pathophysiological mechanisms that account for sexual
dimorphism are still unclear. In the present study, we
performed a whole proteomic profile in male and female SLE
to reveal gender heterogeneity in the pathogenesis of SLE. Our
study provides new molecular mechanisms in male SLE and may
help to develop gender-specific treatment and management.
MATERIALS AND METHODS

Sample Cohorts
Patients with SLE (7 males, 8 females; cohort 1) and age- and sex-
matched healthy controls (7 males, 8 females; cohort 1) were
recruited from The First Affiliated Hospital of Anhui Medical
University. Clinical information, including sex, age,
autoantibody, and proteinuria were retrieved from the medical
records by at least two investigators. Disease activity was
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recorded using the systemic lupus erythematosus disease
activity index (SLEDAI) score. One cohort (6 male SLE, 6
female SLE; cohort 2) was used for western blot, and one
cohort (9 male SLE, 35 female SLE, 4 male HC, 4 female HC;
cohort 3) was used for plasma biomarker assessment, also
recruited from The First Affiliated Hospital of Anhui Medical
University. This study was approved by the institutional ethics
committee of the First Affiliated Hospital of Anhui Medical
University, and written informed consent was obtained from
all participants in accordance with the Declaration of Helsinki.

Preparation of Lysates for Proteomics
We collected 10ml of peripheral blood from individuals in cohort
1. Peripheral blood mononuclear cell (PBMC) was isolated with
density-gradient centrifugation, then washed twice with ice-cold
PBS and lysed in fresh lysis buffer consisting of 0.1M
tetraethylammonium bromide (TEAB) (Thermo Fisher
Scientific, MA, USA), 0.5% sodium dodecyl sulfate (SDS)
(ST628, Beyotime, China), and 1X HALT™ protease and
phosphatase inhibitor cocktail (78420, Thermo Fisher
Scientific , MA, USA) (200µL) for 10 min. Protein
concentration of the lysate was quantified by the BCA protein
assay according to the manufacturer’s instructions (A53225,
Thermo Fisher Scientific, MA, USA). Protein integrity was
assessed by SDS-polyacrylamide gel electrophoresis (PAGE).

Mass Spectrometry and Data Analyses
Detailed analyses were described as previously (17). In brief,
Peptides were separated on an EASY-Spray C18 column (75 mm x
50cm inner diameter, 2 mm particle size, and 100 Å pore size,
Thermo Fisher Scientific). Peptide fractions were gradient from 4%-
22% solvent B (100% acetonitrile and 0.1% formic acid) over 70min,
22%-30% solvent B over 14min, 30%-80% solvent B over 3min, and
80% solvent B over 3min at a rate of 450 nL/min. An electrospray
voltage of 2.0 kV was applied to the eluent via the EASY-Spray
column electrode. the Lumos was operated in positive ion data-
dependent mode, using Synchronous Precursor Selection (SPS-
MS3) 7. Full scan MS1 was performed in the Orbitrap with a
precursor selection range of 100–1700 m/z at a nominal resolution
of 17500. The AGC was set to 4 x 105, then MS2/MS3 analysis was
conducted with the top ten precursors. Mass filtering was
performed by the quadrupole with 0.7 m/z transmission window,
followed by CID fragmentation in the linear ion trap with 35%
normalized collision energy in rapid scan mode and a parallelizable
time option was selected. SPS was applied to co-select 10 fragment
ions for HCD-MS3 analysis.

For quality control of the expression data, we filtered low
abundant proteins (< 1 in > 80% of samples) and converted
expression data to logarithm form, which meets the normal
distribution. Limma package (v.3.50.1) (18) was applied to define
differentially expressed proteins (DEPs) between two groups
with a 1.5-fold change and p-value less than 0.05. Dimension
reduction and visualization of data were generated using
Uniform Manifold Approximation and Projection (UMAP)
with n_neighbors = 8 and min_dist=0. Gene Ontology (GO)
and Kyoto Encyclopedia Genes and Genomes (KEGG) pathway
enrichment analyses were conducted respectively using over-
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cai et al. Gender Heterogeneity of SLE
representation analysis implemented in the ClusterProfiler R
package (v.3.14.3) (19). Hallmark gene set enrichment analysis
was performed using GSEA (v.4.1.0) (20, 21). To find modules
(highly correlated proteins) that are related to clinical
information, we employed the WGCNA R package (v.1.70-3)
(22) to construct a signed network with soft-thresholding powers
of 4, minimum module size of 30, and cut height for merging of
modules of 0.30. Pearson test was used to test for the association
of modules with SLE characteristics.

Western Blot
We collected 5 ml of peripheral blood from individuals in cohort 2.
PBMCs were isolated with density-gradient centrifugation, then
washed twice and lysed in RIPA buffer (Sigma-Aldrich, MO, USA)
supplemented with protease and phosphatase inhibitor cocktail
(Thermo Fisher Scientific, MA, USA). Protein concentration of
lysates was determined using the BCA Protein Assay Kit according
to the manufacturers’ instructions (A53225, Thermo Fisher
Scientific, MA, USA). Cell lysates were boiled for 10 min at 95°C
with SDS and subjected to 12%SDS–PAGE, and then transferred to
nitrocellulose membranes (HATF00010, Millipore). The
membranes were blocked and then incubated with anti-ELANE
(ab131260, Abcam), anti-CD14 (DF13278, Abcam), anti-S100A11
(ab169530, Abcam), anti-PGAM1(DF12693, affinity), anti-
SERPINB10(DF9894, affinity), anti-BST2 (DF3846, affinity), and
anti-b-actin (AF7018, affinity) overnight at 4°C. The membranes
were washed and incubated with anti-rabbit or -mouse IgG-HRP
(S0001, affinity) for 1 h. Protein bands were visualized with the
westernblottingdetection systemTanon-5200 (Bio-Tanon,China).
Gray value analysis was done by ImageJ (v.1.50g, NIH) software.

Measurement of Biomarkers in
Plasma Samples
We collected 5ml of peripheral blood from individuals in cohort 3,
The cells are removed by centrifugation 3000g for 5min. The
supernatant, designated plasma is carefully collected from the cell
pellet using a Pasteur pipette. Levels of calprotectin (S100A8/A9)
and glutathione in plasma samples were analyzed using a
commercial enzyme-linked immunosorbent assay (ELISA)
(ab267628, Abcam, USA) kit and Micro Reduced Glutathione
(GSH) Assay Kit (BC1175, Solarbio, Beijing) respectively. Then
elastase and cell-free DNA (cfDNA) were included for detecting
NET(23).The level ofElastasewasquantified viaELISA (ab119553,
Abcam,USA). For the detectionof cell-freeDNA(cfDNA),we used
PicoGreen dsDNA Assays Kits (P7589, Thermo Fisher Scientific,
China) to quantify the cfDNA, the protocol is as follows: 1. Dilute
the concentrated PicoGreen® Dye stock two-hundred (200) fold
with 1×TE; 2. Prepare Standard Curve with 1mg Deoxyribonucleic
acid from calf thymus Type XV(D4522-1MG, Sigma, USA); 3.
Measurement of fluorescence via Modulus Luminometer (9200-
003, Turner BioSystems) and calculate cfDNA concentrations.

Statistical Analysis
Shapiro-Wilk test of normality was performed using R (v.3.6.0,
https://www.r-project.org/). All continuous variables conform to a
normal distribution are expressed as Mean ± SD. All categorical
variables are expressed as number and percentage of counts. The
Frontiers in Immunology | www.frontiersin.org 3
statistical significance was determined by unpaired two-tailed
Student’s t-test for two-group comparisons and by one-way
ANOVA followed by Bonferroni’s multiple-comparisons test for
multi-group comparisons using R (v.3.6.0, https://www.r-project.
org/). P values of < 0.05 were considered statistically significant.
RESULTS

Diversity in Protein Abundance Between
Sex and Disease Status
A total of 15 HC and 15 SLE (females: n=8/group, males: n=7/
group) were included for proteomic analysis. We applied a
stringent quality control to remove low abundant proteins (in
methods) and included male SLE and female SLE with a
comparable phenotype including age, SLEDAI scores,
proteinuria, and the proportion of anti-dsDNA antibody
(Supplementary Table 1), which may otherwise bias our results.

Using mass spectrometry analysis, we identified a total of
4830 proteins, of which 383 (7.9%) and 768 (15.9%) were
detected only in male SLE and female SLE compared to male
and female HC, respectively. With a random-effects model,
clinical diagnosis (SLE and non-SLE) and gender differences
explained non-zero variance of gene expression for
approximately 25% of genes, and clinical diagnosis explained a
higher variance of expression than gender differences
(Figures 1A, B ) . Furthermore , Uniform Manifo ld
Approximation and Projection for Dimension Reduction
(UMAP) and heatmap of differentially expressed proteins
(DEPs) demonstrated that male SLE, female SLE, male control,
and female control have a heterogeneous proteomic profile
(Figures 1C, D), indicating that proteomic studies with
different gender samples could help to reveal the pathogenesis
of SLE in different genders.

Weighted Gene Co-Expression Network
Analysis Highlights Important
Gene Modules
Weighted gene co-expression network analysis (WGCNA) is a
systematic biology method for describing the correlation patterns
(modules) among highly correlated genes, suggesting genes with
coordinated changes in expression are more likely to be involved
in similar biological significance. One of the advantages of this
approach is that WGCNA can use all gene expression
information to calculate modules and further relate modules to
external sample traits. Here, we applied WGCNA to generate a
network from the PMBC protein profiles of 30 individuals (22).
We chose soft-thresholding powers = 4 based on the criterion of
approximate scale-free topology (Figure 2A), which identified 12
modules of highly correlated proteins, represented by different
colors. We further related these modules to external disease
diagnosis as well as gender information (male SLE, female SLE,
male HC and female HC, Figure 2B), and found that red (r =
0.58, p = 5×10−04) and grey (r=0.38, p = 0.04) modules are
positively correlated with male SLE, while yellow (r=0.48,
p=0.01) and green (r=0.55, p=0.002) modules are positively
June 2022 | Volume 13 | Article 911997
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correlated with female SLE. In addition, the magenta module is
positively correlated with both male SLE (r=0.48, p=0.007) and
female SLE (r=0.43, p=0.02). Subsequently, we performed gene-
ontology biological processes analysis and found that proteins in
Frontiers in Immunology | www.frontiersin.org 4
red and grey modules (positively correlated with male SLE) were
mapped to known signaling pathways including neutrophil
activation networks, Fc receptor signaling pathway, platelet
activation, and antigen processing and presentation
A B

D
C

FIGURE 1 | Diversity in protein abundance among SLE and healthy control with different gender. (A, B) Proportion of gene-expression variance explained by
diagnosis and gender. (C) UMAP plot of all identified proteins. (D) Heatmap plot showing differentially expressed proteins in any comparison group among male HC,
male SLE, female HC, and female HC. HC_F, female healthy control; HC_M, male healthy control; SLE_F, female SLE; SLE_M, male SLE.
A

B

C

FIGURE 2 | SLE-associated modules and their functional meaning. (A) Summary network indices (y-axes) as functions of the soft thresholding power. (B) Relationships
of consensus module eigengenes and clinical traits. Numbers in the table report the correlations of the corresponding module eigengenes and traits, with the p-values
printed below the correlations in parentheses. (C) Heatmap comparing enrichment p-value of pathway among five modules. The stronger the red color, the more
significant the p-value is.
June 2022 | Volume 13 | Article 911997
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(Supplementary Figures 1A, B), while proteins in yellow and
green modules (positively correlated with female SLE) were
mapped to cellular respiration, oxidative phosphorylation, and
neutrophil activation networks (Supplementary Figures 1D, E).
Notably, proteins in the magenta modules (positively correlated
with both male SLE and female SLE) were mapped to type I IFN
production and response to virus (Supplementary Figure 1C).
To further compare the significance of biological processes
among five modules, we generated a heatmap (Figure 2C),
which shows the red module was most enriched in neutrophil
activation works, while yellow and grey modules mapped to
neutrophil activation works with a moderate significance.
Consistently, the magenta module was most enriched in IFN
signaling and the green module was most enriched in
metabolism pathways including cellular respiration and
oxidative phosphorylation. Taken together, type I IFN
signaling and neutrophil activation networks mapped to both
male and female SLE, while cellular respiration and oxidative
phosphorylation only mapped to female SLE.

We also related modules to external clinical traits including
proteinuria, systemic lupus erythematosus disease activity index
(SLEDAI), and anti-dsDNA antibody (Figure 2B). The yellow
module is positively correlated with proteinuria (r = 0.47, p =
0.009), indicating that neutrophil activation networks may be
involved in renal damage. The yellow and magenta module that
positively correlated with anti-dsDNA, indicating type I IFN and
neutrophil activation networks promote the production of
autoantibody. The magenta, green and red modules are
Frontiers in Immunology | www.frontiersin.org 5
positively correlated with SLEDAI and C3 levels, suggesting
type I IFN response, neutrophil activation networks, and
oxidative phosphorylation all contribute to SLE activity
(Supplementary Figure 1).

Differential Protein Analysis Revealed
Shared Pathogenesis and Gender-Specific
Pathogenesis of SLE
To further decompose the pathogenesis of SLE, we performed
differential protein analyses of three binary comparison groups:
female SLE versus female HC; male SLE versus male HC; male
SLE versus female SLE. Indeed, 133 proteins were more
abundant and 88 proteins were less abundant at the
proteomics level in female SLE compared with female HC
(Figure 3A), while 202 proteins were more abundant and 84
proteins were less abundant in male SLE compared with male
HC (fold change > 1.5 or <0.67; p < 0.05, Figure 3). In contrast,
male SLE and female SLE showed a similar proteomic profile,
with only 67 proteins up-regulated and 50 proteins down-
regulated in male SLE compared with female SLE (Figure 3C).
Strikingly, DEPs in male SLE versus male HC were highly
distinct from those in female SLE versus female HC, only a
proportion of DEPs was common in the two comparison groups
(Figure 3D), suggesting heterogeneity may exist in the
pathogenesis of male SLE and female SLE.

It is well documented that SLE patients display elevated type I
IFN-stimulated genes (ISGs) in multiple cells and organs
including peripheral blood mononuclear cells (PBMCs), low-
A

B

D

C

FIGURE 3 | Proteomic heterogeneity among SLE and healthy control with different gender. (A–C) Volcano plot showing DEPs between female SLE versus female
HC, male SLE versus male HC, and male SLE versus female SLE. (D) Venn diagram showing number of proteins with significant upregulation or downregulation
comparing SLE with healthy control.
June 2022 | Volume 13 | Article 911997

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cai et al. Gender Heterogeneity of SLE
density granulocytes (LDG), skin, and kidney (9, 17, 24, 25). To
determine whether SLE PBMC also displays increased ISG
expression at the proteomic level, we performed a GSEA of
up-regulated proteins in female SLE and male SLE relative to
female HC and male HC respectively. As expected, our
proteomic analysis showed that type I IFN signaling pathway
is up-regulated in both male SLE and female SLE (Figure 4A, B).
We further included a panel of 109 ISGs (54 were detected in our
data) to construct an IFN score, as described previously (26).
Indeed, IFN scores were significantly higher in both female SLE
and male SLE relative to female HC (p = 0.0057) and male HC (p =
Frontiers in Immunology | www.frontiersin.org 6
0.0065). while no significant difference between male SLE and
female SLE (p > 0.05, Figure 4C). These results verified the
aforementioned WGCNA findings that magenta module, the
shared module positively correlated with both male SLE and
female SLE, is most enriched in type I IFN signaling. Therefore,
our data provide strong evidence that high type I IFN activity is a
common feature in both male SLE and female SLE.

Enrichment analysis also revealed that proteins more
abundant in male SLE relative to male HC were most enriched
in neutrophil activation networks (Supplementary Figure 2A).
However, proteins more abundant in female SLE relative to
A B

C

FIGURE 4 | Interferon signaling activation is a common feature in male SLE and female SLE. (A) Hallmarks gene set enrichment analysis (GSEA) showing pathways
enriched in SLE compared to healthy control with different gender. NES: normalized enrichment score, p: p-value of enrichment analysis. (B) Boxplot showing type I
interferon score among SLE and healthy control with different gender. (C) Heatmap showing the expression of core proteins that contribute to type I interferon
pathway enrichment (red, high abundance; blue, low abundance).
June 2022 | Volume 13 | Article 911997
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femaleHCwere notmapped to neutrophil activation networks and
oxidative phosphorylation pathway (Supplementary Figure 2B),
inconsistent with WGCNA finding that proteins in the yellow and
greenmodule (positively correlatedwith female SLE)were enriched
in neutrophil activation networks and oxidative phosphorylation.
We suspect that a subset of weaker up-regulated proteins in female
SLE enriched in these twopathways. Thus, we selected up-regulated
proteins in female SLE (fold change > 1.2 and <1.5) relative to
female HC and re-conducted gene-ontology biological processes
enrichment analysis, in which we detected these proteins mapping
to neutrophil activation networks and oxidative phosphorylation
pathway (Supplementary Figure 2C). Finally, we directly
compared male SLE with female SLE and found that proteins
more abundant in male SLE also mapped to neutrophil activation
networks (Figures 5A, B). These findings verified that although
neutrophil activation networks were up-regulated in both female
SLE andmale SLE, the level of neutrophil activation is significantly
higher in male SLE compared with female SLE.

Western Blot Validation of Proteins in
Neutrophil Activation Networks
Based on the fold change (fold change > 1.8 in male SLE
compared with female SLE) and P value (p < 0.05), we selected
the top 6 proteins (ELANE, CD14, PGAM1, S100A11,
SERPINB10, and BST2) that involved in neutrophil activation
and performed western blot to verify our proteomic finding.
According to the Western blotting analysis, we found that the
relative expression levels of PGAM1, BST2, and SERPINB10
were significantly increased in male SLE compared with female
SLE (p < 0.05). Although not reaching statistical significance,
ELANE and S100A11 were also more abundantly expressed in
male SLE relative to female SLE (Figure 6).

Biomarkers of Neutrophil Activation Is
Higher in Male SLE
We further determined the biomarkers of neutrophil activation
(calprotectin), NETosis (cfDNA and elastase) (27), and ROS
(glutathione) (28) in an independent sample cohort (n=52,
Frontiers in Immunology | www.frontiersin.org 7
Supplementary Table 2). To exclude the effect of confounding
factors such as disease activity, we included male SLE and female
SLE with comparable age, SLEDAI scores, proteinuria, and the
proportion of anti-dsDNA antibody. In contrast to healthy
control, both male and female SLE have a higher level of
calprotectin, cfDNA, elastase, and ROS (low glutathione),
suggesting exaggerated neutrophil activation participates in
SLE through the production of reactive oxygen species (ROS)
and the formation of neutrophil extracellular traps (NETs). More
importantly, male SLE has a higher level of calprotectin and ROS
(lower level of glutathione) in relative to female SLE (Figure 7).
These results verified that male SLE has a higher level of
neutrophil activation, which may promote rapid disease
progression by releasing large amounts of ROS.
DISCUSSION

To our knowledge, ours is the first study to explore the gender
heterogeneity in the pathogenesis of SLE at the protein
expression level. Based on the bioinformatic analysis and
biomarkers validation, we found that type I IFN activation is a
common pathogenic pathway in male and female SLE, while
neutrophil activation is more prominent in male SLE relative to
female SLE. Here, we were able to successfully decompose the
pathogenesis of SLE into a shared component and a gender-
specific component.

Over the past decade, an increasing number of omics studies
have been conducted in SLE cohorts (29). However, most of the
studies have been conducted at the transcriptional level and
focused primarily on females. These studies have repeatedly
identified the activation of type I IFN signaling as manifested
by upregulation of ISG in multiple cells and organs (9, 17, 24,
25). Consistently, our proteomic analysis of PBMC revealed that
ISG levels were significantly higher in female SLE relative to
female HC. In addition, we revealed that ISGs were also up-
regulated in male SLE and that IFN scores were comparable in
male SLE and female SLE. Therefore, our findings at the
A B

FIGURE 5 | Neutrophil activation works is more prominent in male SLE relative to female SLE. (A) Bar plot showing top enriched pathways upregulated in male SLE
versus female SLE. (B) Heatmap showing the expression of core proteins that contribute to neutrophil activation pathway enrichment (red, high abundance; blue, low
abundance). HC_F, female healthy control; HC_M, male healthy control; SLE_F, female SLE; SLE_M, male SLE.
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proteomic level demonstrate that type I IFN activation is a
common feature in male SLE and female SLE.

Neutrophil activation and the formation of neutrophil
extracellular traps (NETs) are hallmarks of innate immune
activation. Recently, studies have shown that neutrophil
dysregulation is implicated in the pathogenesis of SLE (9, 17).
Frontiers in Immunology | www.frontiersin.org 8
Neutrophils are viewed as a heterogeneous cell population,
including normal density neutrophils (NDNs) and low-density
granulocytes (LDGs). The two neutrophil subsets, especially
LDGs are more likely to activate and form neutrophil
extracellular traps (NETs), contributing to the cycle of
inflammation. Of note, after density-gradient centrifugation,
A B

DC

FIGURE 7 | The level of neutrophil activation and oxidative stress is higher in male SLE. (A) Boxplot showing serum level of calprotectin in male SLE, female SLE,
and healthy control. (B) Boxplot showing serum level of glutathione in male SLE, female SLE, and healthy control. (C) Boxplot showing serum level of cell-free DNA in
male SLE, female SLE, and healthy control. (D) Boxplot showing serum level of elastase in male SLE, female SLE, and healthy control. ns, not significant.
A
B

DC

FIGURE 6 | Western Blot Validation of Proteins in Neutrophil Activation Networks. (A) Western blot analysis of BST2, PGAM1 and SERPINB10 in male SLE and
female SLE. (B) Boxplot showing gray value of BST2 in male SLE and female SLE. (C) Boxplot showing gray value of PGAM1 in male SLE and female SLE.
(D) Boxplot showing gray value of SERPINB10 in male SLE and female SLE.
June 2022 | Volume 13 | Article 911997
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the neutrophils were in the bottom layer with red blood cells
while LDGs are present in PBMC layer. Indeed, early in 2003,
Bennett et al. (8) discovered a high expression of neutrophil-
specific genes in pediatric SLE patients, and this “granulocyte
signature” was due to the increase of LDGs in the PBMC layer.
Thus, our findings of high levels of neutrophil activation,
especially in male SLE, may be the result of LDG activation.
Previous study also reported that LDG activation and their
formed NETs could induce endothelial and organ damage
including cardiovascular disease and lupus nephritis (30). In
our study, we demonstrated that male SLE has a higher level of
neutrophil activation signaling than female SLE, which may
explain why SLE is more likely to cause organ damage in men
relative to women. In addition, oxidative stress is increased in
SLE, which contributes to immune system dysregulation,
abnormal activation of cell death signals and autoantibody
production (31). It is reported that ROS, products of oxidative
stress released by neutrophils, are key signaling molecules that
cause inflammation and organ damage in SLE and inflammatory
diseases (28, 32, 33). Our study revealed a decreased glutathione
(representing an increase in ROS) in SLE relative to healthy
control. Moreover, male SLE presents with a lower level of
glutathione (an increase level of ROS) and a higher level of the
inflammatory pathways (i.e. TNF production; Figure 5A) than
female SLE. These results suggest that stronger neutrophil
activation in male SLE may promote rapid disease progression
and organ damage by releasing large amounts of ROS.

Overall, our results decompose the pathogenesis of SLE into a
shared component and a gender-specific component. Male SLE
has the highest level of neutrophil activation accounts for the
most significant associations with organ damage and poor
prognosis. This study adds to our understanding of gender
heterogeneity in the pathogenesis of SLE, an area that lagged
far behind compared to clinical heterogeneity. Future studies
should reveal why neutrophil activation is higher in male SLE
and the key molecules through which the pathway functions.
Furthermore, this study suggests that specifically targeting key
markers in neutrophil activation networks may play important
role in the treatment of male SLE.
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