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Cancer-associated fibroblasts (CAFs) have long been known as one of the most

important players in tumor initiation and progression. Even so, there is an incomplete

understanding of the identification of CAFs among tumormicroenvironment cells as

the list of CAF marker genes varies greatly in the literature, therefore it is imperative

to find a better way to identify reliable markers of CAFs. To this end, we summarized

a large number of single-cell RNA-sequencing data of multiple tumor types

and corresponding normal tissues. As a result, for 9 different types of cancer, we

identifiedCAF-specificgeneexpression signatures and found 10proteinmarkers that

showed strongly positive staining of tumor stroma according to the analysis of

IHC images from the Human Protein Atlas database. Our results give an insight

into selecting the most appropriate combination of cancer-associated fibroblast

markers. Furthermore, comparison of different approaches for studying differences

between cancer-associated and normal fibroblasts (NFs) illustrates the superiority of

transcriptomeanalysis offibroblasts obtained from fresh tissue samples.Using single-

cell RNA sequencing data, we identified common differences in gene expression

patterns between normal and cancer-associated fibroblasts, which do not depend

on the type of tumor.
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1 Introduction

It is now increasingly accepted that cancer progression and

response to chemotherapy depend not only on genetic and

epigenetic variations in the tumor cells themselves but also on

their microenvironment (Sahai et al., 2020). The tumor

microenvironment (TME) is a heterogeneous system that

consists of tumor and stromal cells, including fibroblasts,

neuroendocrine, adipose, immune-inflammatory, and the

blood and lymphatic vascular cells (Wang et al., 2017).

Stromal cells closely interact with tumor cells, contributing to

the development and progression of cancer. Cancer-associated

fibroblasts (CAFs) constitute a significant part of the cells in TME

(Alkasalias et al., 2018). Numerous studies show that CAFs

promote tumor development by regulating several processes,

including secretion of different signaling molecules,

extracellular matrix remodeling, altering metabolic state,

inducing chronic inflammation, and developing a pro-

angiogenic and immunosuppressive microenvironment

(Zhuang et al., 2019; Sahai et al., 2020). Despite the wide

range of tumor-stimulating CAF functions discovered so far,

there is no established definition of CAFs in the literature.

Additionally, CAFs are still poorly characterized as their

origin and subtypes are still unknown.

Currently, proteins such as α-smooth muscle actin (αSMA

or ACTA2), platelet-derived growth factor receptor alpha

(PDGFRα), platelet-derived growth factor receptor beta

(PDGFRβ), fibroblast activation protein (FAP), vimentin

(VIM), calvasculin (S100A4), periostin (POSTN),

podoplanin (PDPN), asporin (ASPN), integrin α11β1
(ITGA11), collagen type XI alpha I chain (COL11A1), and

microfibril associated protein 5 (MFAP5) are commonly used

genes for identifying CAFs (Kalluri, 2016; Nurmik et al.,

2020). However, these existing marker genes, which have

been used to identify CAFs in various studies, are not

universal for all types of cancer. Moreover, these genes are

not exclusive to CAFs as they are also found to be expressed by

other cells in the tumor microenvironment (Bergers and Song,

2005; Berdiel-Acer et al., 2014; Funa and Sasahara, 2014;

Kalluri, 2016). The absence of specific markers for CAFs

unfortunately often leads to the isolation of other cells

from TME (Nurmik et al., 2020).

Another limitation in the field of CAFs’ research is the lack

of accurate and detailed information about their differences

relative to normal fibroblasts of healthy tissues (NFs). It has

been repeatedly demonstrated that CAFs are phenotypically

and functionally different from NFs due to reciprocal

crosstalk between cancer cells and stromal cells (Bhowmick

et al., 2004; Kalluri and Zeisberg, 2006; Erez et al., 2010).

Multiple studies have highlighted the contribution of CAFs in

tumor progression and metastasis (Kalluri, 2016; Sahai et al.,

2020). It is noteworthy that opposed to CAFs, NFs are capable

of inhibiting the proliferation and motility of adjacent cancer

cells, thereby playing a tumor-suppressive role in cancer

progression (Alkasalias et al., 2018). However, there are

many studies that provide conflicting information

regarding the differences between CAFs and NFs (Berdiel-

Acer et al., 2014; Chen et al., 2014; Chen and Song, 2019;

Nurmik et al., 2020). In our view, the lack of systematic

information has arisen due to the considerable variability

in experimental cell models and methods used to study the

transcriptome of CAFs and NFs. Most often, CAFs are isolated

from a heterogeneous population of tumor cells using CAF

specific markers. An obvious disadvantage of this method is

the difficulty in the accurate selection of CAF populations. It

should be noted that in order to implement this approach, it is

necessary to establish a primary culture. Several studies have

shown that long-term cell cultivation leads to the loss of the

primary phenotype of CAFs (Fuyuhiro et al., 2011; Wang

et al., 2015). In vitro generation of CAFs by co-culturing NFs

with cancer cell lines is an attractive alternative to the classical

approach. However, due to the lack of distinguishing

characteristics of CAFs and NFs, it is impossible to detect

changes in fibroblast phenotype in time and accurately during

co-cultivation. Another approach is to analyze the

transcriptome of CAFs obtained from fresh tumor tissue

samples. Initially, there is a limited amount of CAF

material in the fresh tissue for isolation and sequencing.

Analyzing such a small amount of material is possible only

by using single-cell sequencing approaches. A significant

advantage of this approach is the ability to accurately

determine the population of fibroblasts among all other

cells without their prior isolation.

In this study, for the first time, we provide deeper insights

into transcriptional features of CAFs derived from various types

of tumors. To identify candidate CAF markers, we integrated

published scRNA-seq of >450,000 cells from 119 patients and

10 cancer types. Analysis of gene expression in all cells of various

types of tumors enabled us to identify genes whose expression is

unique to tumor fibroblasts and is absent in tumor cells and its

microenvironment. Also, we investigated the transcriptomic

differences between NFs and CAFs using 3 different existing

approaches. We found that single-cell RNA sequencing data

from fresh tumor and normal tissues is best suited for

comparing the transcriptome of CAFs and NFs. By analyzing

scRNA-seq data from different tumor types and normal tissues,

we identified common differences in gene expression patterns

between NFs and CAFs.
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2 Materials and methods

2.1 Single-cell RNA-seq analysis

A collection of 10 publicly available scRNA-seq datasets were

downloaded from the NCBI Gene Expression Omnibus (GEO)

data repository (Table 1) (Edgar et al., 2002). If the FASTQ files

were publicly available for the dataset, raw gene-barcode matrices

were obtained by aligning reads to the 10X Genomics

GRCh38 reference genome (refdata-Gex-GRCh38-2020-A)

using CellRanger software (v. 4.0.0) (Zheng et al., 2017).

Otherwise, ready-made gene-barcode matrices or text files

with TPM values created by the authors were used for analysis.

Raw gene expression matrices were imported in R and processed

using the Seurat R package (v. 3.4.1). A Seurat object was created for

each tumor/normal tissue samples (Stuart et al., 2019). Filtering was

conducted by removing cells with a small number of unique

molecular identifiers (UMIs), a small or, conversely, a large

number of detected genes compared to other cells in the sample,

and cells with high percentages of mitochondrial genes. At least

100 detected genes and 500 UMIs were generally required for each

cell, and nomore than 20%mitochondrial readswere allowedper cell.

However, the upper limit has been increased to 30% or lowered to

10% for a small number of samples. Next, gene expressionmatrices of

the remaining set of high-quality cells were normalized by the

“LogNormalize” method using the default scale factor of 10,000.

Thereafter, the top 2000 variable genes were selected with the Seurat

FindVariableFeatures and all samples of each dataset were combined

using the integration method implemented in the Seurat package

(Butler et al., 2018). Cell cycle scores and percentage of mitochondrial

genes were used to regress out unwanted sources of variation (using

Seurat Scale. Data function). Clustering was conducted with the

FindClusters function using different principal components (PCs).

Then the original Louvain algorithm was utilized for modularity

optimization (Stuart et al., 2019). The resulting clusters were

visualized with the Uniform Manifold Approximation and

Projection (UMAP) and were annotated for known biological cell

types using canonical marker genes (Table 2).

To compare gene expression profiles between tumor and

normal tissue fibroblasts, a pseudo-bulk approach was applied.

We summarized the number of reads at the gene level of all

fibroblasts in each individual patient sample. Differential

expression analysis was performed with DESeq2 (v 1.28.1) (Love

et al., 2014). To correct for multiple comparisons, the Benjamini-

Hochberg method (FDR) was used. Changes in expression were

considered significant if FDR<0.05 and |LogFC| ≥1.

2.2 Algorithm for detection of CAF marker
genes

The first stage of selection of CAF specific marker genes was

carried out using single-cell RNA-sequencing data from

10 different types of tumors (Table 1). As already described,

for each type of tumor, all cells were divided into 5 types:

endothelial cells, epithelial cells, immune cells, fibroblasts,

myofibroblasts/mural cells. Next, for each tumor type we

selected those genes that meet the following criteria:

• Gene expression is observed in more than 15% of

fibroblasts or myofibroblasts/mural cells;

• Gene expression is observed in less than 5% of epithelial

cells;

• Gene expression is observed in less than 5% of endothelial

cells;

• Gene expression is observed in less than 1% of immune

cells.

At the second stage of CAF markers selection, we used

transcriptome data from 934 human tumor cell lines from the

Broad-Novartis Cancer Cell Line Encyclopedia, as well as tumor

transcriptomes from various patients from The Cancer Genome

Atlas (TCGA) project. RNA-seq count matrices were

downloaded from the Google Cloud Pilot RNA-sequencing for

CCLE and TCGA open-access repository: https://osf.io/gqrz9. In

each dataset, we selected only tumor cell lines or tumor types that

were analyzed in the first selection step. For laryngeal squamous

cell carcinoma (LSCC) and gastrointestinal neuroendocrine

cancer (GINET), gene filtering was not performed at this

stage due to the lack of relevant data in the two projects. In

addition, since the TCGA data includes the transcriptomes of

mixtures of cancer and stromal cells, we only selected samples

with 90% tumor purity. Tumor purity estimates for all TCGA

samples using the ABSOLUTE method were downloaded from

the TCGA PanCanAtlas publications website: https://gdc.cancer.

gov/about-data/publications/pancanatlas. For each of the

2 datasets, we calculated the median of gene expression in

TPM (transcript per million) values among all samples of the

same tumor type. Further, from the lists of genes obtained at the

first stage of selection, we eliminated those genes whose median

expression exceeded 2 TPM in each dataset.

For the third stage of CAF markers selection, we used

publicly available single-cell RNA sequencing data from the

Human Protein Atlas (HPA) project for the following normal

tissues: colon, rectum, small intestine, breast, prostate, lung, liver,

pancreas and skin. Accordingly, for laryngeal squamous cell

carcinoma (LSCC) and head and neck squamous cell

carcinoma (HNSC), gene filtering was not performed at this

stage due to the lack of relevant data in the HPA project.

Furthermore, for each type of tumor, we removed genes from

the list that meet the following criteria:

• Gene expression is observed in more than 1% of any

immune cells;

• Gene expression is observed in more than 5% of any other

cells (except fibroblasts and smooth muscle cells).
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As a result, we our analysis revealed a total of 414 genes that

meet all the criteria above in at least one of the 10 types of tumors.

For each of these genes, we visually analyzed images of stained

sections of 9 different types of tumors obtained using

immunohistochemistry methods (from the HPA project):

colorectal cancer, breast cancer, liver cancer, lung cancer, head

and neck squamous cell carcinoma, pancreatic cancer, prostate

cancer, skin cancer and stomach cancer.

TABLE 1 RNA-Seq data used in this study. The dataset title is used here as a dataset identifier.

I. Single-cell RNA-sequencing

GEO data & Link Tumor type Number of samples

GSE161529 Pal et al. (2021) Breast cancer (BRCA) 31 primary tumor samples

GSE132465 Lee et al. (2020) Colorectal adenocarcinoma (CRC or COADREAD) 23 primary tumor samples and 10 matched normal mucosa samples

GSE131907 Kim et al. (2020) Lung adenocarcinoma (LUAD) 11 primary tumor samples and 11 matched normal lung samples

GSE144236 Ji et al. (2020) Squamous cell carcinoma (SCC) 10 primary tumor samples and 10 matched normal skin samples

GSE138709 Min Zhang et al. (2020) Intrahepatic cholangiocarcinoma (CHOL) 5 primary tumor samples

GSE164690 Kürten et al. (2021) Head and neck squamous cell carcinoma (HNSC) 15 primary tumor samples

GSE141445 Chen et al. (2021) Prostate adenocarcinoma (PRAD) 12 primary tumor samples

GSE154778 Lin et al. (2020) Pancreatic adenocarcinoma (PAAD or PDAC) 9 primary tumor samples

GSE150321 Song et al. (2020) Laryngeal squamous cell carcinoma (LSCC) 2 primary tumor samples

GSE140312 Rao et al. (2020) Gastrointestinal neuroendocrine cancer (GI-NET) 1 primary tumor sample

II. Bulk RNA-sequencing CAFs and NFs

GEO data & Link Tumor type Number of samples Information

NFs CAFs

GSE83314 Kaukonen et al., (2016) Head and neck squamous cell
carcinoma (HNSC)

3 3 Primary culture, number of passages unknown

GSE83834 Ishimoto et al., (2017) Diffuse-type gastric cancer (DGC) 11 11 Primary culture, number of passages unknown

GSE83611 Breast cancer (BRCA) 6 3 Primary culture, 2 passages, normal fibroblasts at
1cm and 5 cm from tumor

GSE67945 Knuchel et al., (2015) Colorectal cancer (CRC) 3 3 Primary culture, 4–7 passages

GSE85606 Pidsley et al. (2018), Lam
et al. (2020)

Prostate cancer (PRAD) 4 4 Primary culture, 2–6 passages

GSE101665Wiley et al. (2018), Sriram
et al. (2019)

Pancreatic adenocarcinoma
(PAAD or PDAC)

1 primary culture of normal
pancreatic stellate cells

3 Primary culture, 5 passages

III. Microarray gene expression data

GEO data & Link Description of cell lines Number of samples Cultivation
duration

Cultivation without
tumor cells

Cultivation in the presence
of tumor cells

GSE41678 Rajaram et al.,
(2013)

Four different fibroblast strains: HFFF2,
HFF1, CCD1112Sk and Wi38

15 28 6 days

Basal breast cancer cell lines: Cal51 and
MDAMB231

GSE116167 Naito et al.,
(2019)

Immortalized stomach fibroblasts (iNF-
58 and iNF-60)

4 8 7 days

DGC cell lines: HSC-44PE and 44As3
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2.3 Analysis of bulk mRNA sequencing
data

Published unprocessed RNA-Seq reads of NFs, CAFs and one

primary culture of normal pancreatic stellate cells samples were

downloaded from the NCBI Gene Expression Omnibus (GEO)

data repository (Table 1) (Edgar et al., 2002). Quality filtering of

the sequence reads was performed using Trimmomatic software

(v. 0.38) (Bolger et al., 2014). Transcript-level abundances were

quantified for each sample using a quasi-mapping approach with

Salmon (v. 0.12.0) (Patro et al., 2017) on the Gencode reference

transcriptome GRCh38. p12 (Harrow et al., 2012) with default

parameters. Then transcript-level abundances were aggregated to

the gene-level abundances using the Tximport R package (v.

1.16.1) (Soneson et al., 2015). Differential expression analysis was

performed with DESeq2 (v 1.28.1) (Love et al., 2014) using the

Wald test. Changes in expression were considered significant if

pvalue<0.05 and |LogFC| ≥1. Importantly, in all the previous

steps, each dataset was analyzed separately.

2.4 Analysis of microarray gene expression
data

Two microarray datasets were downloaded from the NCBI

Gene Expression Omnibus (GEO) data repository (Table 1)

(Edgar et al., 2002). Microarray gene expression data for 4

fibroblast samples from healthy donors stimulated for 24 h

without or with TNFα (accession number GSE132830) were

also downloaded from the GEO repository. Raw microarray

data from Affymetrix microarrays (GSE41678 and

GSE132830) were processed using the oligo (v. 1.58.0) and

affy (v. 1.72.0) R packages (Carvalho and Irizarry, 2010;

Gautier et al., 2004) with standard parameters (quantile

normalization, rma background correction). Uploaded

microarray data from Agilent microarrays (GSE116167) were

already normalized. Gene expression was compared between two

groups of cells (normal fibroblasts cultured in the presence and

absence of cancer cell lines) using the limma (v. 3.50.3) R package

(Ritchie et al., 2015). To correct for multiple comparisons, the

Benjamini-Hochberg method (FDR) was used. Changes in

expression were considered significant if FDR < 0.05 and |

LogFC| ≥ 1.

2.5 Transcriptome correlations

To compare the transcriptome profiles of the fibroblast

samples, batch effects between datasets were eliminated using

the Combat-seq function (or Combat function for microarray

datasets) from sva R package (v. 3.42.0) (Leek et al., 2012; Zhang

Y. et al., 2020). To compare transcriptome profiles of fibroblasts

within the same dataset, the median values of the Spearman’s

correlation coefficients were calculated as follows:

- median value of Spearman’s correlation coefficients

between all CAF samples and all NF samples;

- the median value of the Spearman’s correlation coefficients

between all CAF samples;

- the median value of the Spearman’s correlation coefficients

between all NF samples.

Next, to compare every two datasets, the median values of the

Spearman’s correlation coefficients were calculated as follows:

- median value of Spearman’s correlation coefficients

between all CAF samples of one dataset and all NF

samples of another dataset;

- the median value of the Spearman’s correlation coefficients

between all CAF samples of one dataset and all CAFs

samples of another dataset;

- the median value of the Spearman’s correlation coefficients

between all NFs samples of one dataset and all NF samples

of another dataset.

2.6 Functional enrichment analysis

Functional Reactome pathways enrichment analysis and

gene set enrichment analysis (GSEA) were performed using

TABLE 2 Marker genes used to identify different types of cells.

Marker genes

Fibroblasts and Myofibroblasts/Mural cells ACTA2, FAP, POSTN, ASPN, MFAP5, PDPN, ITGA11, PDGFRA, PDGFRB, S100A4, VIM, COL11A1

Immune cells CD68, CD163, CD14, CSF1R, CD3E, CD3D, FGFBP2, CCR7, CX3CR1, CXCR1, CD19, MS4A1, IGHG1, MZB1, CD79A, KIT

(Markers of T-cells, B-cells, NK-cells, monocytes and macrophages, plasma cells and MAST cells.)

Endothelial cells PECAM1, VWF

Epithelial cells EPCAM, SOX9

(Markers specific to certain types of cancer have also been used

The absence of a marker gene of other cell types has been taken into account.)
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the clusterProfiler R package (v. 3.16.1) (Yu et al., 2012), the

ReactomePA R package (v. 1.32.0) (Yu and He, 2016) and the

msigdbr (v. 7.4.1) R package (Liberzon et al., 2011) individually

for each dataset. p-value cutoff of 0.05 were considered as

statistically significant.

2.7 Cell culture

The human dermal fibroblast primary cultures, breast cancer

cell line MDA-MB-231, prostate cancer cell line PC3, colon

cancer cell line HT29 and colorectal cancer cell line

Caco2 were available from a laboratory collection of cell

cultures of the Federal Research and Clinical Center of

Physical-Chemical Medicine of Federal Medical Biological

Agency of Russia. All cell lines were incubated as adherent

cultures at 37°C in a humidified atmosphere containing 5%

CO2 and tested as mycoplasma-free. Cells at passage no older

than 10 were used for analysis. The work was carried out under

aseptic conditions, and cell cultures were regularly tested as

mycoplasma-free.

The dermal fibroblast primary cultures, cell lines MDA-MB-

231, PC3, HT29, and Caco2 were grown in DMEM supplemented

with 10% FBS, 2 mM glutamine and 10 μg/ml gentamicin.

2.8 Fibroblasts co-culture with cancer
cells

2.8.1 Direct co-cultures of fibroblasts and cancer
cells

The dermal fibroblasts and MDA-MB-231, PC3, HT29, or

Caco2 cancer cells were cultured together on 60mm Petri dishes

at an initial ratio of 4:1 (80,000 fibroblasts and 20,000 cells of the

corresponding cancer cell line) for 4 weekswithout passaging. Culture

medium was replaced 2 times weekly. Monocultures of fibroblasts

were performed in parallel for the same duration. At the end of the

co-cultivation period, fibroblasts were isolated from the co-cultures

using the MACS Anti-Fibroblast MicroBeads kit (cat. #130-050-601,

Miltenyi Biotec) and used immediately for total RNA isolation.

2.8.2 Co-cultivation of fibroblast in the presence
of conditioned medium from cancer cells

The dermal fibroblasts and MDA-MB-231, PC3, HT29, or

Caco2 cancer cells were cultured separately on 60 mm Petri

dishes for 4 weeks without passaging. Every 3 days the culture

medium was replaced with a fresh portion of culture medium in

case of cancer cells; or with a fresh culture medium diluted 50:

50 with the conditioned medium from cancer cell in case of

fibroblasts. Fibroblasts growing under the same conditions, but

treated with conditioned media from fibroblasts itself, were used

as controls.

2.9 RNA isolation

Total RNA was isolated from about 1 million fibroblasts

or cancer cells using the RNeasy Mini Kit (cat. #74104,

Qiagen) following the manufacturer’s instructions,

including a DNase I treatment step (cat. #79254, Qiagen).

RNA from the column was eluted with 30 µl of RNase-free

water (from the kit).

Photometrical adsorption measurements at 280 nm and

260 nm confirmed purity and quantity of the purified DNase-

treated RNA (NanoQuant, Tecan).

2.10 Reverse transcription (cDNA
synthesis)

First-strand cDNA was synthesized from 4 μg of total RNA

per sample in a volume of 20 µL using the SuperScript III Reverse

Transcriptase (Invitrogen) and 40 pmol of random decamer

primer (Evrogen) according to the manufacturer’s protocol.

Experimental variation was reduced by simultaneous synthesis

of cDNA for all samples.

2.11 Real-time quantitative RT-PCR

The oligonucleotides were used from previously published

articles or designed by using Primer-BLAST (NCBI). Primer

sequences are shown in Supplementary Table S1.

For each RT-qPCR reaction 4 μl of 5X qPCRmix-HS SYBR

(Evrogen), 5 pmol of the respective forward and reverse primers

and 1 μl of the cDNA were used. RNase-free water (Evrogen) was

added to a total volume of 20 μl qRT-PCR was carried out in

0.2 ml UltraFlux i 8-Strip PCR tubes (SSI-Bio) on CFX96 Touch

Real-Time PCR Detection System (Bio-Rad). All cDNA samples

were tested as three or four replicates per gene and during the

same run in 45 cycles (95°C for 3 min, per cycle 95°C for 10 s,

60°C for 30 s). Non-template controls and reverse transcription

controls were additionally performed. A single amplification

product of the expected size for each gene was verified by

electrophoresis on a 1.5% agarose gel and staining with

ethidium bromide.

The quantification of each PCR product was normalized to

GLO1 using the 2−ΔΔCt method. To select a reference gene, we

considered those genes whose median expression values for

NF samples and CAF samples in each dataset were at least

1 TPM. Additionally, the expression level should not differ

significantly between CAFs and NFs in any dataset. Thus,

GLO1 meets these requirements and has lower variance over

datasets (standard-deviation log2 (TPM)) than one of the

most commonly used reference genes, GAPDH

(Supplementary Figure S1).
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3 Results

3.1 Single-cell RNA sequencing atlas
revealed transcriptional features of CAFs

Compared to traditional sequencing technology, single-cell

technologies have the advantage of detecting differences in cell

populations, including the identification of specific cell group

markers in tumor tissue (Tang et al., 2019). Therefore, we

created a single cell expression atlas that includes publicly

available single-cell RNA-seq (scRNA-seq) datasets of different

tumor types from 119 patients (total 459,699 cells) (Figure 1A).

All datasets consist of primary tumor samples collected immediately

after surgery without additional in vitro cultivation of primary cells

for the following cancer types: breast cancer (BRCA), colorectal

adenocarcinoma (COADREAD), lung adenocarcinoma (LUAD),

intrahepatic cholangiocarcinoma (CHOL), squamous cell

carcinoma (SCC), laryngeal squamous cell carcinoma (LSCC),

prostate adenocarcinoma (PRAD), head and neck squamous cell

carcinoma (HNSC), pancreatic adenocarcinoma (PAAD),

gastrointestinal neuroendocrine cancer (GINET) (Table 1).

To account for the transcriptional heterogeneity of

fibroblasts across individual tissues, all the datasets were

analyzed independently (Figure 1B). For each tumor type, we

used recently developed integration methods implemented

in the Seurat (Butler et al., 2018) to align the single-cell

profiles from different patients. We then conducted

dimensional reduction analysis to cluster the cells into

groups based on the similarity of their gene expression

profiles. Cell clustering revealed the presence of four

major cell populations in the tumor microenvironment:

epithelial cells, endothelial cells, immune cells (T-, NK-,

B-, MAST-cells, monocytes and macrophages) and

fibroblasts. In each dataset, CAFs were clustered by cell

type rather than individual patients. Detailed data

processing procedures are available in the “Materials and

Methods” section.

CAF marker genes are expected to be highly expressed in

fibroblasts and not expressed in other types of tumor stroma cells

and cancer cells. Since the scRNA-seq data allows researchers to

perform gene profiling at the individual cell level, we considered

the percentage of Y cells with non-zero expression of the X gene

as a measure of the specificity of the X gene for Y cells. Therefore,

for each type of cancer, we selected genes that were expressed in

more than 15% of fibroblasts, less than 5% of endothelial cells,

less than 5% tumor cells, less than 1% immune cells (Figure 1B).

As a result, we identified genes that could be proposed as markers

of CAFs for 10 different types of tumors.

scRNA-seq data does not give a sense of the specificity of

gene expression for CAFs relative to the incredibly heterogeneous

cancer cell population in other patients with different tumor

subtypes. However, to consider genes as CAF markers, we need

to ensure that they are not expressed in cancer cells. Therefore,

we examined the expression level of selected genes in the mRNA

sequencing dataset of 934 human cancer cell lines from the

Cancer Cell Line Encyclopedia (CCLE) and 10000 patient tumor

tissue from The Cancer Genome Atlas (TCGA). Each of these

two datasets has its own limitations. In vitro cultivation of cancer

cell lines fromCCLE likely could lead to the loss of their epithelial

phenotype due to the epithelial-mesenchymal transition (Piao

et al., 2017; Rice et al., 2017). To address this problem, we added

mRNA sequencing dataset from TCGA project into analysis. As a

result, we excluded only highly expressed in cancer cells genes

from consideration according to the data from both projects (see

“Materials andMethods” section for additional information). We

also excluded genes with high expression in normal non-

fibroblast cells according to open access Single Cell Type Atlas

from the Human Protein Atlas (HPA). Altogether, analyses of

scRNA-seq datasets from 10 different cancer types, RNA-seq

data of the TCGA and CCLE projects, scRNA-seq data of

9 normal tissues from the open access HPA Single Cell Type

Atlas, led us to a final list of 414 genes that are specifically

expressed in CAFs, at least in one tumor type (Supplementary

Tables S2–S12).

Transcriptomics enables examination of simultaneous

expression of the entire set of protein-coding genes, which

is an undoubted advantage in the identification of cell

population markers. Nevertheless, to isolate CAFs from

tumor tissue, it is necessary to have an idea of the

abundance of proteins rather than transcripts. The

standard method for visualizing proteins with a single-cell

resolution is antibody-based proteomics and

immunohistochemistry (IHC). IHC is a reliable method

for validating cell-specific expression patterns identified by

scRNA-seq data, as it reveals the expression and localization

of the target-protein in the context of different cell types.

Within the framework of the HPA project, the protein

expression of >80% was stained in tissue sections of

different tumor types. Analysis of IHC images for

320 proteins (there is no information for 94 proteins on

HPA project), demonstrated that 10 proteins were showed

strongly positive staining of stroma in 9 tumor types

(Figure 1C). In addition, we found several proteins that

are predominantly localized in the stroma of certain

tumor types (Supplementary Table S2). These verifications

implied that the proteins we found might be CAF-specific

markers.

Among the identified 10 CAF markers, 4 proteins (ASPN,

PDGFRA, PDGFRB, MFAP5) have previously been

described as reliable markers. However, 6 markers had

never been considered before from this perspective

(CDH11, EMILIN1, COL12A1, COL6A3, NEXN, MFAP2).

The most promising among these 10 proteins are PDGFRA,

PDGFRB, CDH11, NEXN, as they have membrane

localization and can be used for CAFs isolation by

fluorescence-activated cell sorting (FACS).

Frontiers in Cell and Developmental Biology frontiersin.org07

Kazakova et al. 10.3389/fcell.2022.825014

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.825014


3.2 Fibroblasts or mural cells: features of
the proposed marker

As already noted, we have proposed a list of 414 marker

genes, the expression of which is specific for CAFs of at least one

tumor type (Table 2). It should be observed that initially, at the

stage of scRNA-seq data analysis, we identified the CAF

population using the expression of commonly used CAF

markers (ACTA2, FAP, POSTN, ASPN, MFAP5, PDPN,

ITGA11, PDGFRA, PDGFRB, S100A4, VIM, COL11A1). Cells

FIGURE 1
Identification of CAF markers. (A) The total number of analyzed cells in each of the scRNA-seq datasets. (B) Schematics of the study to identify
CAF markers. Blue boxes indicate the datasets used in the analysis. Orange boxes indicate the algorithm used to generate significant gene list. (C)
Immunohistochemistry (IHC) staining images showing protein expressions of ASPN, PDGFRA, PDGFRB, MFAP5, CDH11, EMILIN1, COL12A1, COL6A3,
NEXN, and MFAP2 in different tumor types from the Human Protein Atlas database. (D) Visualization of CAF marker gene expression across cell
type and tumor type. Darker color indicates higher average gene expression from the cells in which the gene was detected, and larger dot diameter
indicates that the gene was detected in greater proportion of cells from the cluster. Types of tumor: BRCA—breast cancer, HNSC—head and neck
squamous cell carcinoma, COADREAD—colorectal adenocarcinoma, LUAD—lung adenocarcinoma, PRAD—prostate adenocarcinoma,
SCC—squamous cell carcinoma, CHOL—intrahepatic cholangiocarcinoma, LSCC—laryngeal squamous cell carcinoma, PAAD-pancreatic
adenocarcinoma, GINET-gastrointestinal neuroendocrine cancer.
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that reliably expressed commonly used CAF markers formed

2 separate clusters in each tumor type (Supplementary Figure

S2). We found that the expression of the PDGFRA, FAP,

COL11A1, PDPN, and MFAP5 genes is specific to the first

cluster (Supplementary Figure S3). The remaining marker

genes reveal both clusters of cells. However, ACTA2, the most

commonly used CAF marker gene, is expressed at significantly

higher levels in cells of the second cluster (Supplementary Figure

S3). In addition, we found a significant expression level of S100A4

and VIM in all types of cells (Supplementary Figure S3), which

confirms the non-specificity of these genes for both types of

fibroblasts.

By analyzing previously published scRNA-seq cancer

studies, we found that researchers often identify clusters

among all tumor cells that have similar expression profile to

that we have identified, but the approach to the cell type

annotation of these clusters differs significantly. Some

researchers initially take into account the presence of

pericytes and smooth muscle cells in the tumor

microenvironment when annotating cell clusters.

Accordingly, they identify 2 or more cell clusters: fibroblasts

and smooth muscle cells/pericytes/mural cells (Hutton et al.,

2021; Pal et al., 2021; Song et al., 2022). In line with these

studies, we found that the second cluster of cells we identified is

similar to mural cells. Furthermore, Muhl and colleagues

proposed the 90-gene signature capable of discriminate

fibroblasts from mural cells in scRNA-seq data analysis

(Muhl et al., 2020). We found that this set of 90 gene

signature was consistent with a gene signature which is

distinguish the clusters we have identified. However, other

researchers do not classify mural cells into a separate cluster,

but annotate several different fibroblast populations, for

example, inflammatory CAFs and myofibroblast-like CAFs,

CAF-A and CAF-B, fibroblasts and fibroblast-like cells, etc.

(Li et al., 2017; Guerrero-Juarez et al., 2022; Kim et al., 2022). In

this case, we noticed that the cell clusters we identified are

similar to the various fibroblast populations described in these

studies, respectively. According to Muhl and colleagues, we are

of the opinion that the second cluster we identified represents

mural cells (Muhl et al., 2020). Given the existence of different

approaches to cell annotation, we selected CAF markers based

on both cell clusters. We named one cluster “Fibroblasts” and

another “Myofibroblasts/Mural cells”.

To take the difference between the two cell types into

consideration, we analyzed gene expression in each cluster

separately. Thus, at the stage of selecting fibroblast-specific

genes, we chose genes with high expression in any cell cluster.

We found that the expression of 414 proposed genes is specific to

either only one cluster or both (Figure 1D). For example, among

10 markers that are localized in the tumor stroma according to

IHC images, 4 genes (MFAP2, MFAP5, PDGFRA, CDH11) are

specifically represented in “Fibroblasts”, while the remaining

markers are expressed in both cell types (Figure 1D). To aid

in better understanding, we provide information on the

expression of all 414 proposed CAF marker genes in each of

the two clusters (“Fibroblasts” and “Myofibroblasts/Mural

cells”), as well as in all other tumor stromal cells and cancer

cells (Supplementary Tables S3–S12). Accordingly, the reader

can choose markers suitable for their research, taking into

account the expression of these genes in each type of tumor

cells, as well as the localization of the corresponding proteins in

the tissues of 9 tumor types.

3.3 Identification of distinctive CAF
characteristics according to single-cell
RNA-seq data

In the first part of our work, we identified marker genes and

proteins that allow us to reliably identify the fibroblast

population among all tumor cells and their

microenvironment. But the ultimate goal of researchers after

isolating the pure fraction of fibroblasts from tumor tissues was

to identify the functional differences of these cells from

fibroblasts obtained from healthy tissues. Numerous studies of

NFs and CAFs can be found in the literature, revealing distinctive

features of their transcriptomic profiles and hence biological

functions (Fuyuhiro et al., 2011; Berdiel-Acer et al., 2014; Chen

et al., 2014; Kalluri, 2016; Li et al., 2017; Nguyen et al., 2019;

Druzhkova et al., 2020). However, the information is largely

contradictory and inconclusive (Berdiel-Acer et al., 2014; Chen

et al., 2014; Chen and Song, 2019; Nurmik et al., 2020).

To comprehensively explore the distinctive features of CAFs

and NFs, we examined the transcriptomes of CAFs and NFs

obtained by researchers using three different approaches

(Figure 2A). Isolation of fibroblasts from tumor and

corresponding normal tissues is the most commonly used

method for this task. For brevity, we will call this approach

bulk-CAFs-NFs, since it involves the average global gene

expression analysis of all fibroblasts. Another approach we

will call cult-CAFs-NFs according to the method of CAF

generation (co-cultivation NFs with cancer cell lines). Both of

these approaches are based on traditional sequencing methods

on pooled cells cultured in vitro. Another approach is to analyze

the transcriptome of fibroblasts obtained from fresh tumor tissue

and normal tissue located at some distance from the tumor. We

call this approach sc-CAFs-NF, since transcriptome analysis that

does not require a large amount of cell material is possible only

using single-cell sequencing approaches.

First of all, we focused on studying the transcriptome features

of CAFs and NFs within the sc-CAFs-NFs approach. We selected

3 publicly available scRNA-seq datasets, which include samples

of tumors and normal tissues (Figure 2B and Table 1). In total, we

examined scRNA-seq expression profiles of 196787 individual

cells from 75 patients spanning 3 several tumor types: colorectal

cancer (CRC), lung adenocarcinoma (LUAD), and squamous cell

Frontiers in Cell and Developmental Biology frontiersin.org09

Kazakova et al. 10.3389/fcell.2022.825014

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.825014


FIGURE 2
Comparison of gene expression between CAFs and NFs within the sc-CAFs-NFs approach. (A) Schematic diagram showing the workflow for
each of the three approaches to comparing CAFs and NFs. (B)Workflow for comparing gene expression between CAFs and NFs by analyzing scRNA-
seq data from tumors and normal tissues. (C) Venn diagram representing the intersection of genes differentially expressed between CAFs and NFs
(upper diagram), up-regulated in CAFs (lower left diagram) and down-regulated in CAFs (lower right diagram) for colorectal cancer (purple
circle), lung adenocarcinoma (yellow circle) and squamous cell carcinoma (blue circle). The boxes indicate the names of the genes that are included
in the list of 414 CAF markers proposed by us. (D) Heatmaps showing differences in the gene expression level in CAFs relative to NFs. At the top is a
heat map for common CAF marker genes, and at the bottom for our proposed CAF marker genes. Asterisks indicate significant differences in the
expression (|logFC|≥1 and FDR< 0.05). Blue = increased gene expression in CAFs compared to NFs, orange = decreased gene expression in CAFs
compared to NFs. (E) Heat map of the Reactome Pathway enrichment analysis. It represents the genes differentially expressed between CAFs and
NFs. The x-axis shows the types of tumor; the y-axis shows the signaling pathways. The numbers in the boxes are the number of genes associated
with the certain pathway for the given type of tumor, with a p-value <0.05. (F) Dot plots of GSEA results illustrating the enrichment of the common
Reactome pathway gene sets identified by the enrichment analysis in the sc-CAFs-NFs approach. Types of tumor: CRC- colorectal cancer,
LUAD—lung adenocarcinoma, SCC—squamous cell carcinoma.
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carcinoma (SCC). All the datasets were analyzed independently

as described in the first part of the work (“Single-cell RNA

sequencing atlas revealed transcriptional features of CAFs”

part). It should be noted that we considered only the cells of

the “Fibroblasts” cluster for later analysis. To comparatively

assess gene expression levels in NFs and CAFs, a pseudo-bulk

approach was applied. Briefly, pseudo-bulk samples were

generated by summing all reads per fibroblast cluster for each

individual tissue sample.

By comparing differentially expressed genes between pseudo-

bulk CAFs and NF samples, we identified 2785 protein-coding

genes that were differentially expressed in at least one tumor type

(|logFC|≥1 and FDR <0.05) (see “Materials andMethods” section

for additional information). The vast majority of common

differentially expressed genes are regulated in the same

direction (co-regulated). We identified 52 genes with increased

expression and 81 genes with decreased expression in all CAF

samples, compared to NF samples (Figure 2C). Interestingly,

among these genes, we found some of our proposed CAFs

markers, including 3 markers that allow us to identify stroma

cells based on IHC images - MFAP2, COL6A3, and MFAP5

(Figure 2C). This means, changes in the expression of many of

CAF markers we proposed can indicate the transition of normal

fibroblasts to a cancer-associated state. Together with this,

Spearman’s pairwise correlation based on the transcription

profiles of fibroblast pseudo-bulk samples showed that the

expression profile of the 414 marker genes proposed by us

makes it possible to reliably distinguish CAF and NF samples,

in contrast to the expression profile of all protein-coding genes

(Supplementary Figure S4). We provided data on the gene

expression changes between CAFs and NFs for each of the

414 marker genes in Supplementary Table S13. Also, among

the commonly used CAF markers, we observed a significant

increase in the expression level of the COL11A1, POSTN genes in

CAFs compared to NFs (Figure 2D). In addition, the ACTA2,

ASPN, PDGFRB, PDPN, COL12A1, EMILIN1, and CDH11 genes

were upregulated in CAFs of several tumor types (Figure 2D).

To identify biological processes responsible for the

transcriptomic differences between NFs and CAFs, we

analyzed the enrichment of differentially expressed genes for

each dataset separately using the Reactome database. All

common biological processes could be divided into three

groups. The first group included the pathways involved in the

rearrangement of the extracellular matrix (ECM). Specifically, we

observed a significant change in the expression level of genes

involved in the assembly of collagen fibrils and other multimeric

structures, cell junction organization, collagen biosynthesis and

activation of matrix metalloproteinases, etc., (Figure 2E). These

results are in accordance with the existing opinion in the

literature that CAFs play a key role in cancer progression by

modifying ECM organization and stiffness (Kalluri, 2016; Sahai

et al., 2020). The second group consisted of genes involved in

several signaling pathways: PDGF, retinoic acid, interleukins,

regulation of insulin-like growth factor, etc. (Figure 2E). The

third group included genes that carry out the processes of

metabolism (glycosaminoglycan metabolism, chondroitin

sulfate biosynthesis, etc.) (Figure 2E). Gene Set Enrichment

Analysis (GSEA) for the complete list of ranked genes showed

that most of the functional changes associated with the

rearrangement of the ECM and signaling pathways were up-

regulated in CAFs (NES>0 and pvalue<0.05) (Figure 2F). Only
4 sets of genes were down-regulated in CAFs: signaling by

nuclear receptors, signaling by retinoic acid, retinoic acid

biosynthesis pathway and phase I functionalization of

compounds (NES<0 and pvalue<0.05) (Figure 2F). It is worth

noting once again that the sc-CAFs-NFs approach revealed the

consistency of gene expression changes between CAFs and NFs

for several types of tumors, which indicates similar distinctive

features and functions of CAFs in various oncological diseases.

3.4 The bulk-CAFs-NFs approach fails to
distinguish CAFs and NFs

To quantify the differences in gene expression levels between

CAFs and NFs within the bulk-CAFs-NFs approach, we collected

the raw data of publicly available mRNA sequencing datasets

across 6 different cancer types: head and neck squamous cell

carcinoma (HNSC), diffuse gastric cancer (DGC), breast cancer

(BRCA), colorectal cancer (CRC), prostate cancer (PRAD), and

pancreatic ductal adenocarcinoma (PDAC) (Figure 3A).

Collectively, all datasets include 22 fibroblast samples derived

from the tumors, 19 fibroblast samples derived from non-

malignant regions of the corresponding tissues, and one

primary culture of normal pancreatic stellate cells (paired

samples for PDAC CAFs) (Table 1). First of all, we examined

the expression level of well-known markers of fibroblasts,

endothelial cells, and epithelial cells to verify the purity of

isolated fibroblasts (Berdiel-Acer et al., 2014; Kaukonen et al.,

2016; Pidsley et al., 2018). All CAF andNF samples demonstrated

high ACTA2, VIM, and FAP expression (more than 50 TPM in

each sample) and low E-cadherin, EPCAM and VE-cadherin

expression (less than 1 TPM in each sample).

In order to assess the concordance between fibroblast

samples from different tissues, we performed a pairwise

comparison of gene expression profiles by Spearman’s

correlation. We observed a high level of correlation between

the expression of all protein-coding genes for all fibroblast

samples (Spearman’s R > 0.93) due to their similar phenotype.

However, we did not find the expected clear separation between

CAFs and NFs despite a batch correction (Supplementary Figure

S5). We also expected to see a high level of Spearman’s

correlation between CAF samples obtained by different

approaches (sc-CAFs-NFs and cult-CAFs-NFs), and a low

level of correlation between CAF and NF samples. However,

comparison of transcriptome profiles of fibroblasts obtained by
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FIGURE 3
Comparison of gene expression between CAFs and NFs within the bulk-CAFs-NFs approach. (A) Workflow for comparing gene expression
between CAFs and NFs by analyzing bulk RNA-seq data of fibroblast derived from the tumors and fibroblast derived from non-malignant regions. (B)
The Spearman’s correlation analysis of gene expression profiles of bulk and pseudo-bulk NF and CAF samples (414 CAFmarker genes). Spearman’s R
values are the medians of all pairwise Spearman’s correlation coefficient values between samples. (C) UpSet plot indicating the number of
common differentially expressed genes between CAF and NF samples for all tumor type. Gene subset intersections are highlighted in red if these
genes are up-regulated in CAFs in the indicated tumor types, in blue if they are down-regulated, in black if they are down-regulated in some types of
cancer and up-regulated in others. (D)Heatmaps showing differences in the gene expression level in CAFs relative to NFs. On the left is a heatmap for
common CAF marker genes, and on the right for our proposed CAF marker genes. Asterisks indicate significant differences in the expression (|
logFC|≥1 and pvalue< 0.05). Blue = increased gene expression in CAFs compared to NFs, orange = decreased gene expression in CAFs compared to
NFs. (E)Dotplots of GSEA results illustrating the enrichment of the common Reactome pathway gene sets identified by the enrichment analysis in the
sc-CAFs-NFs approach. Types of tumor: HNSC—head and neck squamous cell carcinoma, DGC—diffuse-type gastric cancer, BRCA—breast cancer,
CRC—colorectal cancer, PRAD—prostate cancer, PDAC—pancreatic ductal adenocarcinoma.
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two different approaches showed the expected trend only for

breast fibroblasts (Figure 3B).

By comparing differentially expressed genes between CAFs

and NFs for each dataset, we identified 4621 protein-coding

genes that were differentially expressed in at least one tumor type

(|logFC|≥1 and Pvalue< 0.05). It is worth noting that not a single

gene was differentially expressed between CAFs and NFs in all six

datasets. Moreover, the number of common differentially

expressed genes for any 3 datasets did not exceed 20

(Figure 3C). If we consider all genes that are differentially

expressed in at least 2 datasets, then more than half of them

are regulated in the opposite direction. In addition, we did not

observe a consistent change in expression between CAFs and NFs

for both the commonly used CAFmarkers and those proposed by

us (Figure 3D).

Pathway enrichment analysis for differentially expressed

genes revealed a total of 5 common biological pathways for

6 types of tumors: neuronal system, extracellular matrix

organization, integrin cell surface interactions, laminin

interactions, ECM proteoglycans. Since the list of statistically

enriched pathways for 6 datasets showed a little overlap, we

decided to investigate whether GSEA would reveal significant

enrichment of those sets of genes whose expression significantly

changed between CAFs and NFs in the sc-CAFs-NFs approach.

For all 6 datasets, we observed an overall significant enrichment

for only 2 sets of genes associated with collagen degradation and

extracellular matrix organization (Figure 3E). However, in

contrast to the sc-CAFs-NFs approach, this analysis revealed

an inconsistency in gene expression change between CAFs and

NFs for different tumor types (Figure 3E). Thus, for the bulk-

CAFs-NFs approach, we did not observe consistency in changes

in gene expression, as well as similarities in the biological

processes that underlie the transcriptomic differences between

CAFs and NFs.

3.5 Co-cultivation of normal fibroblasts
with cancer cell lines induces
proinflammatory genes expression

Within the cult-CAFs-NFs approach, we retrieved two

microarray mRNA expression datasets from the GEO database

(Figure 4A). In the first dataset, two immortalized stomach

fibroblast cultures (NF-58 and NF-60) were co-cultured with

one of two diffuse gastric cancer cell lines (HSC-44PE and

44As3). In the second study, 4 different fibroblast cultures

(Wi-38, CCD1112Sk, HFFF2 and HFF1) were co-cultured

with one of two basal breast cancer cell lines (MDA-MB-

231 and Cal51) (Table 1). First of all, microarray expression

profiles were compared using pairwise Spearman’s correlation

based on the expression of all protein-coding genes as well as

414 CAF marker genes. As seen in Figure 4B and Supplementary

Figure S6, samples of fibroblast cultures Wi-38, CCD1112Sk and

NF-58 are grouped together regardless of culture conditions.

However, some samples were separated corresponding to the

culture conditions (in the presence and absence of cancer cells)

(Figure 4C). It can be concluded that different fibroblast cell lines

respond differently to co-cultivation with cancer cell lines within

the same time period. Further analysis was performed only for

the fibroblast samples indicated in Figure 4C.

By comparing the gene expression profile between fibroblasts

cultured with cancer cell line and mono-cultured fibroblasts, we

found 1446 protein-coding differentially expressed genes (|

logFC|≥1 and FDR< 0.05). Enrichment of differentially expressed

genes for each dataset revealed 2 groups of common biological

processes (Figure 4D). As with the sc-CAFs-NFs approach, we

observed a significant change in gene expression involved in

different signaling pathways and rearrangement of the

extracellular matrix. However, in this approach, most signaling

pathways were associated with the release of interleukins and

chemokines (Figure 4D). GSEA revealed similar significant up-

regulation of gene sets involved in these signaling cascades

(Figure 4E). Interestingly, the gene sets associated with the

extracellular matrix were not significantly enriched in some

culture systems (Figure 4E). Moreover, co-cultivation of the

HFFF2 fibroblast cell line with the breast cancer cell line MDA-

MB-231 resulted in down-regulation of genes involved in

extracellular matrix organization and elastic fiber formation

(Figure 4E). Consistent with this finding, many common up-

regulated genes in CAFs are cytokines (Figure 4F). It is worth

noting that we did not observe such a significant upregulation of the

expression of interleukins and chemokines in CAFs within the sc-

CAFs-NFs approach (Figure 4F). On the other hand, the expression

of genes involved in extracellular matrix organization did not

change in fibroblasts co-cultured with cancer cell lines versus the

mono-culture (Figure 4F). Among the commonly used CAF

markers, only the expression of the PDPN gene increased during

the cultivation of normal fibroblasts with cancer cells (Figure 5A).

We also found a decrease in the expression level of the COL11A1,

ASPN, and ACTA2 genes, which is inconsistent with the results of

the sc-CAFs-NFs approach. Among our proposed CAF marker

genes, we observed a significant change in expression under at least

three cultivation conditions for the NEXN gene only (Figure 5A).

One of the reasons for these results may be the insufficient

time of co-cultivation of fibroblasts with cancer cell lines. In

the datasets we considered, the duration of cultivation did not

exceed 6–7 days. To check whether the expression profile of

the marker genes we proposed changes with longer cultivation,

we co-cultivated normal skin fibroblasts with 4 different tumor

cell lines (PC3, Caco-2, MDA-MB-231, HT-29) for 4 weeks

(Figure 5B). We used both direct co-cultivation of fibroblasts

with cancer cells and cultivation with secretomes from the

same cancer cells. We observed the same change in gene

expression during cultivation of normal fibroblasts either

with the tumor cell line PC3 or with its secretome. For

other cell lines, changes in the level of gene expression
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FIGURE 4
Comparison of gene expression between CAFs and NFs within the cult-CAFs-NFs approach. (A) Workflow for comparing gene expression
between normal fibroblasts cultured in the presence and absence of cancer cell lines. (B) The Spearman’s correlation analysis of gene expression
profiles of NF andCAF samples (414 CAFmarker genes). Spearman’s R values are themedians of all pairwise Spearman’s correlation coefficient values
between samples. The sample order is based on single-linked hierarchical clustering of the matrix, shown by the dendrogram. (C) The same
Spearman correlation matrix as in point c, only for samples selected for further analysis. The sample order is based on single-linked hierarchical
clustering of thematrix, shown by the dendrogram. (D)Heatmap of the Reactome Pathway enrichment analysis. It represents the genes differentially
expressed between CAFs and NFs. The x-axis shows the types of tumor; the y-axis shows the signaling pathways. The numbers in the boxes are the
number of genes associated with the certain pathway for the given type of tumor, with a p-value <0.05. (E) Dotplots of GSEA results illustrating the
enrichment of the common Reactome pathway gene sets identified by the enrichment analysis in the cult-CAFs-NFs approach. (F) Heatmap
showing differences in the gene expression level in CAFs relative to NFs in sc-CAFs-NFs and cult-CAFs-NFs approaches. On the right is a heatmap for
cytokine and interleukin genes. The left heatmap is for genes involved in processes of extracellular matrix organization. Asterisks indicate significant
differences in the expression (|logFC|≥1 and FDR< 0.05). Blue = increased gene expression in CAFs compared to NFs, orange = decreased gene
expression in CAFs compared to NFs. Types of tumor: CRC- colorectal cancer, LUAD—lung adenocarcinoma, SCC—squamous cell carcinoma.
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during direct and indirect cultivation do not always coincide

(Figure 5C). It can be concluded that the presence of direct

contact with tumor cells has a greater effect on the change in

the fibroblast phenotype. We also noted a change in the

expression level of 3 genes (PDGFRB, EMILIN1 and ASPN)

during cultivation of the primary cell line of skin fibroblasts in

the absence of cancer cells for 4 weeks (Figure 5C). This

suggests that the cultivation conditions themselves lead to a

change in the level of expression of some genes in normal

fibroblasts.

In contrast to the results obtained by other researchers, the

results of our study showed a significant increase in the expression

level of the ASPN gene in fibroblasts (|logFC|≥1 and pvalue<0.05)
after cultivation with 3 different tumor cell lines (Figure 5C).

However, during the cultivation of fibroblasts with the PC3 cell

line, the level of ASPN expression decreased. We also observed an

increase inMFAP2 gene expression and a decrease inMFAP5 gene

expression in fibroblasts for some culture systems (Figure 5C). This

is consistent with the results of the sc-CAFs-NFs approach.

However, the expression of the PDGFRA, PDGFRB, CDH11, and

EMILIN1 genes was mainly reduced in fibroblasts after co-

cultivation with cancer cells. In addition, during the cultivation

of fibroblasts with the HT-29 cell line, the expression of most of the

markers we proposed decreased (including the expression of the

COL6A3 gene, which was proposed as a distinguishing marker gene

between CAFs and NFs in the sc-CAFs-NFs approach) (Figure 5C).

Thus, the approach based on co-cultivation of normal fibroblasts

with cancer cells does not result in complete conversion of normal

fibroblasts to the cancer-associated state that is characteristic of

native CAFs.

It is difficult to say whether the observed increase in the

expression of interleukins and chemokines is due to the

transition of normal fibroblasts to a cancer-associated

phenotype or the response of cells to stress. Interestingly,

we found that similar cytokine activation can be observed

when normal fibroblasts are stimulated with tumor necrosis

FIGURE 5
Comparison of gene expression between fibroblasts cultured with cancer cell line and mono-cultured fibroblasts. (A) Heatmaps showing
differences in the gene expression level in CAFs relative to NFs in sc-CAFs-NFs and cult-CAFs-NFs approaches. On the left is a heatmap for common
CAF marker genes, and on the right for our proposed CAF marker genes. Asterisks indicate significant differences in the expression (|logFC|≥1 and
FDR< 0.05). Blue = increased gene expression in CAFs compared to NFs, orange = decreased gene expression in CAFs compared to NFs. (B)
Experimental design for comparing the expression of the proposed CAF marker genes between normal fibroblasts cultured in the presence and
absence of cancer cell lines. (C) Heatmaps showing differences in the proposed CAF marker gene expression level in CAFs relative to NFs, based on
the analysis of publicly available data (cult-CAFs-NFs approach data) and the results of our experiment (PCR). Asterisks indicate significant differences
in the expression (|logFC|≥1 and FDR< 0.05 for cult-CAFs-NFs approach, |logFC|≥1 and pvalue< 0.05 for bulk-CAFs-NFs approach). Blue = increased
gene expression in CAFs compared to NFs, orange = decreased gene expression in CAFs compared to NFs. Types of tumor: CRC- colorectal cancer,
LUAD—lung adenocarcinoma, SCC—squamous cell carcinoma, HNSC—head and neck squamous cell carcinoma, DGC—diffuse-type gastric
cancer, BRCA—breast cancer, PRAD—prostate cancer, PAAD-pancreatic adenocarcinoma.
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factor-α (TNFα) (Figures 4E,F). The absence of changes in the

expression of ECM genes during cultivation of normal

fibroblasts with cancer cells may be due to the fact that the

cult-CAFs-NFs approach does not allow taking into account

the influence of other cells and factors of the tumor

microenvironment on fibroblasts. Altogether, the results of

the analysis of the cult-CAFs-NFs approach are not consistent

with the results of the sc-CAFs-NFs approach, as well as with

the existing data from the literature. Therefore, methods for

obtaining CAFs in vitro require further research. It is also

worth using this approach with caution when studying the

features of the CAFs.

4. Discussion

Even though many studies over the years have suggested a

prominent functional role for CAFs in tumor development

(Kalluri, 2016; Zhuang et al., 2019; Sahai et al., 2020), there is

still no clear definition of CAFs. As a consequence, the methods

for their detection are not universal and not always precise

enough (Ping et al., 2021). Inability of accurately isolating

pure CAF population could be one of the reasons for

existence of several studies with contradictory information

about CAFs role in tumor development. Despite the fact that

each of the CAF markers that exist in the literature has been

repeatedly criticized, studies of the specificity of these markers

based on a comprehensive analysis of gene expression in all

tumor cells and their microenvironment have not yet been

conducted. For this reason, in this study, we proposed a

systematic approach for identification more specific CAF

markers.

We have integrated many RNA sequencing data of CAFs and

tumor microenvironment cells isolated from patients with

different types of tumors obtained from various studies:

10 scRNA-seq datasets of different tumor tissues, mRNA-seq

datasets of 934 human cancer cell lines from the Cancer Cell Line

Encyclopedia, mRNA-seq datasets of 10000 patient tumor tissues

from The Cancer Genome Atlas, 9 scRNA-seq of different

normal tissues from Human Protein Atlas database. Through

a comprehensive analysis of gene expression for 9 different types

of tumors, we offer a list of 414 marker genes. Interestingly,

5 existing markers (ACTA2, VIM, S100A4, POSTN, PDPN) are

not specific for any of the 9 tumor types we studied.

According to our analysis of the scRNA-seq data, we clearly

detected 2 different clusters of cells expressed existing CAF

markers (“Fibroblasts” and “Myofibroblasts/Mural cells”). It

should be noted that the existence of several phenotypically

and functionally different populations of CAFs within a single

tumor has been repeatedly confirmed by many researchers both

in vivo and in vitro, as well as in single-cell analysis of pre-sorted

CAFs (Orimo et al., 2005; Li et al., 2017; Lambrechts et al., 2018;

Zhang M. et al., 2020; Kieffer et al., 2020; Kim et al., 2020). In

colorectal cancer, Li and colleagues identified two different

populations of cancer-associated fibroblasts (CAF-A and CAF-

B) based on RCA cell clustering (Li et al., 2017). They showed

that CAF-A cells, in contrast to CAF-B, actively express genes

MMP2, DCN, COL1A2, CXCL12, FBLN1, LUM, FAP. In turn,

CAF-B cells are characterized by ACTA2, TAGLN, PDGFA,

MUSTN1, NOTCH3, and MYH11 genes. Bartoschek et al.

identified four CAF populations in breast cancer: vascular

CAFs, matrix CAFs, cycling CAFs and developmental CAFs

(Bartoschek et al., 2018). However, many investigators

studying the tumor microenvironment using scRNA-seq have

detected multiple populations of CAFs due to the presence of

other mesenchymal cells in the tumor with a similar expression

profile to fibroblasts. For example, genes that are overexpressed

in CAF-A and vascular CAFs have been proposed as distinctive

markers of mural cells (Muhl et al., 2020). We believe that one of

these cell clusters identified by our analysis as “fibroblast-like”

consists of mural cells. It is confirmed by the fact that most genes

specific to this cluster are actively expressed in mural cells

according to HPA Single Cell Type Atlas. However, in

accordance with the existence of several opinions concerning

the annotation of fibroblasts and mural cells, we provided

markers for both cell clusters we detected (Supplementary

Tables S2–12).

Analysis of immunohistochemistry images from the Human

Protein Atlas allowed us to identify those proteins among 414 our

marker genes that are predominantly localized in the stroma of

tumor tissue. As a result, we detected 10 universal proteins,

whose expression are specific to fibroblasts in 9 tumor types

(ASPN, PDGFRA, PDGFRB, MFAP5, CDH11, EMILIN1,

COL12A1, COL6A3, NEXN, MFAP2). We provide

information obtained from the analysis of scRNA-seq and

immunohistochemistry images for all our proposed

414 markers for each type of tumor, so that the reader can

independently choose the combination of markers that is most

suitable for his study.

Moreover, to the best of our knowledge, we have for the first

time compared several different approaches which allowed us to

identify what changes fibroblasts undergo during the

transformation from a normal to a tumor-associated state,

regardless of the type of cancer. We found that scRNA-seq

data from fresh tumor and normal tissues (sc-CAFs-NFs

approach) are best suited to this task as it reveals the same

gene changes between CAFs and NFs for several tumor types.

Functional analysis of differentially expressed genes between

CAFs and NFs revealed multiple pathways associated with

extracellular matrix remodeling. These results support the

current view that CAFs are a major component of the tumor

stroma, which is involved in the organization of the tumor matrix

(Sahai et al., 2020). It is known that CAFs actively produce

matrix-crosslinking enzymes and ECM-degrading proteases, and

thus, on the one hand, make a significant contribution to an

increase in the stiffness of tumor tissue and, on the other hand,
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promote metastasis (Boire et al., 2005; Kalluri, 2016; Zeltz et al.,

2020). In addition, differences in the expression levels of genes is

associated with the various signaling pathways: PDGF, retinoic

acid, interleukins, regulation of insulin-like growth factor, etc.

Many studies have demonstrated that the activation of these

signaling cascades in tumors promotes tumor growth and

development. At the same time, we noticed the upregulation

and downregulation of genes involved in several metabolic

processes in CAFs. To the best of our knowledge, the critical

role of CAFs as regulators of metabolic processes in cancer has

been repeatedly confirmed by both in vitro and in vivo studies (Li

et al., 2021). Increased production of glycosaminoglycans

(including chondroitin sulfate) has been shown in some

studies to be a feature of tumor fibroblasts and to promote

proliferation and migration of tumor cells (Olsen et al., 1988;

Fthenou et al., 2009; Wu et al., 2021). sc-CAFs-NFs analysis

revealed a significant increase in CAFs expression of 3 exiting

marker genes (FAP, COL11A1 and POSTN) and 2 newly

proposed markers (COL6A3 and MFAP2) in all tumor types

we studied.We consider that theMFAP2 protein is of the greatest

interest for further study since it has membrane localization and

can be used to isolate CAFs by FACS or magnetic particles. We

also found that the expression profile of our proposed 414marker

genes can reliably distinguish between CAFs and NFs. Thus,

changes in the expression of many of our proposed markers

(including COL6A3, MFAP2 and MFAP5) can indicate the

transition of normal fibroblasts to a cancer-associated state

(e.g., in in vitro experiments).

Surprisingly, the traditional approach (bulk-CAFs-NFs), which

is based on identifying transcriptomic differences between

fibroblasts isolated from tumor tissue and normal tissue located

at some distance from the tumor, has been shown to be invalid. We

observed no consistency in gene expression changes and no

similarity in the biological processes behind the transcriptomic

differences between CAFs and NFs in different cancer types.

Furthermore, analysis of bulk RNA-seq data demonstrated that

none of the currently used CAF markers (ACTA2, FAP, POSTN,

ASPN,MFAP5, PDPN, ITGA11, PDGFRA, PDGFRB, S100A4, VIM,

COL11A1) could specifically distinguish CAFs from NFs. Most

probably, the results of the bulk-CAFs-NFs approach depend

significantly on the methods used to isolate fibroblasts from the

tissue, as well as the marker proteins used for isolation. As

mentioned above, most of the controversies in CAFs studies

have been attributed specifically to the use of different CAF

populations. It is worth noting that the methodology of isolating

fibroblasts from the tumor differed in each of the studies whose bulk

RNA-seq data we used for analysis. Also, most of these studies did

not indicate the distance from which the tumor normal fibroblasts

were isolated. There is a lack of research into differences in the

phenotype of fibroblasts close to the tumor to the ones that would be

isolated from healthy donors. Another disadvantage of the bulk-

CAFs-NFs approach is the need for in vitro additional cultivation to

generate primary cell culture. In general, cells are grown for

2–10 passages before gene expression analysis. Although,

through use of normal fibroblasts, it has been shown that

cultivation significantly alters their morphology (Wang et al.,

2015). Moreover, prolonged cultivation of normal fibroblasts can

cause the gene expression changes (Neumann et al., 2010; Agorku

et al., 2019; Machaliński et al., 2020). Our results also show that

prolonged cultivation of normal skin fibroblasts significantly

changes the expression levels of three fibroblast specific genes:

ASPN, PDGFRB and EMILIN1. In addition, maintenance of a

particular fibroblast phenotype is highly dependent on

cultivation conditions. For example, culturing normal fibroblasts

on high-stiffness polyacrylamide gels or increasing the

concentration of fetal calf serum in the medium promotes a

significant increase in ACTA2 expression and subsequent

differentiation into myofibroblasts (Huang et al., 2012; Asano

et al., 2017; Baranyi et al., 2019). In addition, it has not yet been

shown that CAFs do not change their expression profile outside the

tumor and its microenvironment (Sahai et al., 2020). Despite the

common belief that a cancer-associated fibroblast phenotype

remains stable in vitro, the opposite has already been

demonstrated in some studies (Fuyuhiro et al., 2011; Wang

et al., 2015). Thus, it is very difficult to understand whether the

observed differences in gene expression obtained by bulk-CAFs-NFs

approach are inferred from different fibroblast phenotypes or from

the methods of cell isolation and cultivation conditions.

By analyzing data from the cult-CAFs-NFs approach we

found that co-cultivation of normal fibroblasts with different

tumor cell lines for 5-6 days significantly increased the

expression of interleukins and chemokines in fibroblasts but

did not alter the expression level of genes related to

extracellular matrix remodeling. Moreover, the expression of

ACTA2, ASPN and COL11A1 genes are reduced in fibroblasts

after cultivation with tumor cells. Although it has been repeatedly

shown that the level of expression of these genes are much higher

in tumor fibroblasts compared to fibroblasts from normal tissues

in vivo (Bai et al., 2015; Jia et al., 2016; Sasaki et al., 2021). It is

worth emphasizing that the challenges associated with in vitro

cultivation discussed in the context of the bulk-CAFs-NFs

approach are also relevant to the cult-CAFs-NFs approach.

In this regard, due to the lack of reliable markers for CAFs as

well as recognized distinguishing characteristics of NFs and

CAFs, it is impossible to say at what point of co-cultivation with

tumor cells, fibroblasts acquire the cancer-associated

phenotype. In addition, there is currently no reliable

information in the literature whether tumor cells alone are

sufficient to cause fibroblasts to switch to a cancer-associated

state. In the tumor microenvironment, fibroblasts are exposed

to a variety of factors, including cell-cell interactions, hypoxic

stress, nutritional deficiency etc. (Li et al., 2021; Ping et al.,

2021). For example, hypoxic conditions, which are typical for

the tumor microenvironment, have been found to activate the

expression of ACTA2 and some collagens in dermal fibroblasts

(Zhao et al., 2017). Therefore, we could not claim that the
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transcriptional profiles of tumor fibroblasts and fibroblasts

obtained by cultivation with tumor cells would be identical.

We found that stimulation of normal fibroblasts with TNFα,
which is actively expressed by tumor cells, leads to similar

changes in the fibroblast transcriptome that are observed

during co-cultivation with cancer cells. Nevertheless, the

transcriptional profiles of CAFs and fibroblasts obtained by

co-cultivation with tumor cells are not the same and results

obtained using this method should be interpreted with

caution.

To summarize, we have established a new method to identify

CAFmarkers. The genes identified in this study are mostly different

regarding currently used conventional markers. These genes can be

used as novel markers to identify CAF population. Also, the

comparison of several approaches to the analysis of the

transcriptome of CAFs and NFs allowed us to explain the

conflicting results of many studies devoted to the study of CAFs.
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