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Background: Myostatin (Mstn), a member of the TGF-β superfamily, is a negative

regulator of skeletal muscle mass in mammals. Precise regulation of Mstn expression is

important for somite growth in fish. MicroRNA (miRNA), a type of small non-coding RNA,

regulates gene expression at the post-transcriptional level and participates in various

physiological functions. A growing amount of evidence has emphasized the importance

of miRNA in the development of skeletal muscle.

Aims: This study aims to study how miRNAs regulate myostatin b (mstnb)

post-transcriptionally in tilapia.

Methods/Results: Mstnb 3′ UTR sequences were obtained, and the results of tissue

distribution showed that mstnb was expressed in several tissues, including brain, white

muscle, gut, and adipose tissue. A total of 1,992 miRNAs were predicted to target

mstnb in tilapia using bioinformatics, and a dual-luciferase reporter experiment confirmed

that miR-181a/b-5p, miR-30-3p, miR-200a, and miR-27a were the target miRNAs of

mstnb. Mutagenesis of the miR-181b-5p binding sites of mstnb significantly increased

the luciferase signal compared to the wild-type mstnb. In tilapia primary muscle cells,

overexpression of miR-181b-5p led to the downregulation of MSTNb expression, and

the inhibitory effect of MSTNb on the downstream genes was dismissed, while inhibition

of miR-181b-5p could reverse these phenomena.

Conclusion: Taken together, our results suggested that miR-181b-5p could promote

the growth of skeletal muscle by decreasing the MSTNb protein level in tilapia.

Keywords: myostatin, tilapia, microRNA, growth, muscle, primary muscle cells

INTRODUCTION

Genetic Improvement of Farmed Tilapia (GIFT), a freshwater fish with a fast growth rate and
high disease resistance, is a popular aquaculture fish worldwide that provides premium protein
for people. Since the major edible part of the fish is skeletal muscle, the fish growth performance
is mainly determined by the development of skeletal muscle. Skeletal muscle development is an
accurate process that is regulated by positive factors, includingmuscle-specificmyogenic regulatory
transcription factors (MRFs) (1) and negative factors such as myostatin (Mstn).

Myostatin, a member of the transforming growth factor β (TGFβ) superfamily, is regarded
as a specific muscle negative regulatory factor (2). Mstn, a secretory protein in skeletal muscle,
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is composed of 376 amino acids, including a signal peptide,
an N-terminal precursor peptide, and a C-terminal mature
peptide that contains nine conserved cysteine amino acids (3).
In mammals, mstn is specifically expressed in skeletal muscle,
whilemstn is widely distributed in teleosts. In addition,mstn has
several different types in teleosts as a result of gene duplication.
According to the genome listed in the NCBI, for example,
mstn-1 (or mstnb) and mstn-2 (or mstna) exist in Nile tilapia.
Tissue distribution revealed thatmstnb is mainly expressed in the
brain, eye, gill, gut, and skeletal muscle in Nile tilapia (4). Mstn
can inhibit the growth of skeletal muscle in mammals, but its
functions in teleosts are not clear. In tilapia, scientists reported
that prolonged fasting reduced the mRNA level of mstn, but
short-term fasting elevated the mRNA level (5, 6). Moreover, the
proliferation was inhibited and differentiation was consequently
activated after MSTN-1 incubation of the myosatellite cells in
rainbow trout (7). Regardless, Mstn is an important factor for
skeletal muscle in teleosts.

Due to the strong inhibitory effect on muscle growth
in mammals, it is particularly important to regulate the
expression of Mstn. On the one hand, Mstn can be tightly
regulated at the transcriptional level. E-Box sequence motifs, the
canonical binding site for the basic Helix-Loop-Helix (bHLH)
transcription factors (MyoD, Myogenic Differentiation Antigen;
Myf5, Myogenic factor 5; and MyoG, Myogenin), were found
in the mstn promoter (8, 9). The putative myocyte enhancer
factor 2 (mef2) transcription factors binding motifs were also
observed in the mstn promoter (9–12), and they were shown
to increase Mstn expression in myoblasts (11). On the other
hand, Mstn can be regulated at the post-transcriptional level.
MiRNAs, a type of short non-coding RNA, inhibit translation or
degrade the mRNA by binding to the 3′ UTR of targeted mRNAs
(13). MiRNAs take part in numerous developmental processes,
including the development of skeletal muscle (14, 15). Several
muscle-specific miRNAs, including miR-1, miR-133a, miR-133b,
and miR-206, were identified and shown to regulate myogenesis
in mammals (16). For example, miR-1 and miR-206 affected
muscularity by targeting mstn in Texel Sheep due to a mutation
in the 3′ UTR (17). There is a complex regulatory network
between miRNAs and genes; one gene can be regulated by several
miRNAs and one miRNA can regulate multiple genes (18). In
mammals, miR-27 was reported to regulate mstn expression by
directly targeting the 3′ UTR (19–22). For example, MSTN could
inhibit its own expression by upregulating miR-27 expression
through a smad3-dependent mechanism (21). In teleosts, only
miR-181a-5p was reported to target themstn 3′ UTR in Siniperca
chuatsi (23). MiRNAs regulating the expression of Mstn post-
transcription levels have attracted more attention in recent
years. However, it is unclear whether miRNA regulates Mstn
in tilapia.

In our previous study, a deep sequencing of the Nile
tilapia miRNA transcriptome was conducted in our lab
(24). In this study, the candidate miRNAs that target mstn
were predicted based on the miRNA transcriptome database.
We screened the miRNAs that targeted mstn using the
dual-luciferase reporter system and verified the regulation
of miRNA on mstn in tilapia primary muscle cells. The

objective of this study was to find miRNAs that target
mstn and regulate the growth of tilapia. Clarifying the
regulatory mechanism of mstn using miRNA for skeletal
muscle growth would help deepen the understanding of
tilapia growth. In addition, it is a new paradigm to study
miRNA in fish with economic value. This could increase
economic benefits and make an important contribution to the
aquaculture industry.

MATERIALS AND METHODS

Experimental Fish and Tissue Sample
Preparation
Tilapia were obtained from the local farm of Guangdong Tilapia
Breeding Farm. They were maintained in a water circulation
system with water temperature at 28◦C under a 12/12 h
light/dark photoperiod. The fish were fed to satiety daily with
commercial extruded feed (Tongwei, Foshan, China). The time
of domestication was longer than 1 week. They were narcotized
with eugenol before decollating. Skeletal muscle samples were
collected from fish weighting 6–8 g.

Prediction of mstnb-Binding miRNAs
First, the sequences of the mstnb and mstna 3′ UTR were
obtained using PCR with KOD neo plus (TOYOBO, Osaka,
Japan). To predict miRNAs that potentially bind to mstnb, a
tilapia miRNA transcriptome was conducted (data not shown)
and the PITA targets (http://genie.weizmann.ac.il/pubs/mir07/
mir07_prediction.html) were queried (24).

Luciferase Assay
A recombined psiCHECK2 vector (Promega, Madison, USA)
containing the mstnb 3′ UTR downstream of the stop codon
of the Ranilla luciferase gene was constructed, and the firefly
luciferase was used as a reference gene. The mutant mstnb 3′-
UTR reporters were created using site-directed mutagenesis at
the binding sites of the predicted miR-181b-5p, and primers
were designed using Primer X (http://www.bioinformatics.org/
primerx/). These reporters and miRNA mimics (synthesized by
GenePharma, Shanghai, China) were co-transfected into HEK
293T cells, and the relative luciferase activity was detected using
the Luciferase Assay Systems kit (Promega, USA) according
to the manufacturer’s protocol. All primers are listed in
Table S1.

Tissue Distribution of mstnb/a mRNA and
miR-181b-5p in Tilapia
For miR-181b-5p cloning, the specific primers were designed
according to the miRNA transcriptome, and the sequence
of miR-181b-5p was further verified. For tissue distribution,
total RNA was extracted from the tissue samples of the
telencephalon, diencephalon, cerebellum, medulla oblongata,
spinal cord, hypothalamus, pituitary, gill, heart, liver, spleen,
stomach, foregut, midgut, hindgut, adipose tissue, red muscle,
white muscle, testis, and kidney of three adult male tilapia (BW
150–180 g). All samples were snap-frozen in liquid nitrogen once
removed, followed by storage at −80◦C until RNA extraction.
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After RNA extraction and reverse transcription, the tissue
distribution of mstnb/a and miR-181b-5p was assayed using
real-time PCR.

Real-Time PCR
Total RNA from each well (n = 3–4) was extracted from
primary muscle cells using Trizol reagent (Invitrogen, Carlsbad,
CA, USA), and the RNA concentration was determined
using a Nanodrop200C spectrophotometer (Thermo Scientific,
Waltham, USA). A total of 1 µg of total RNA was reverse-
transcribed into cDNA with the M-MLV Reverse Transcriptase
(Life Technology, Carlsbad, USA), and the PCR reaction
was amplified with the Thunderbird SYBR Green qPCR Mix
(TOYOBO, Japan) according to the manufacturer’s protocol. For
mRNA quantitative analysis, β-actin was detected as the internal
normalization control. Specifically, miRNA stem-loop primers
were used in reverse transcription and U6 snoRNA was used as
the internal control. Gene expression was normalized against the
expression of the control using the comparative Ct method (25).
Each experiment was repeated three times independently.

Preparation of the Polyclonal Antibody
Against Recombinant MSTNb
First, the sequence of the tilapia mstnb ORF without the signal
peptide was subcloned into the pET-32a vector. The recombinant
expression vector pET-32a-rMSTNb was transformed into
Escherichia coli BL21. The method of recombinant protein
expression was based on previous reports (26). Briefly, the cells
were induced using 1mM IPTG for 4 h at 37◦C when the optical
density (OD 600) reached 0.5–0.6. RMSTNb (recombinant
MSTNb) was purified by cutting the object tape in SDS-PAGE.
Western blots targeting a 6×His-tag were used to assess the
production of the purified protein. Second, the purified rMSTNb
was injected into a New Zealand White rabbit for 4 weeks
to produce the polyclonal antibody. The serum was sampled
and stored at −80◦C after the final immunization. All of the
procedures involving the polyclonal antibody and specificity
determination were based on previous reports (26).

Immunoblotting
To detect the MSTN protein expression, rMSTNb protein was
expressed using the prokaryotic expression system and a rabbit
polyclonal antibody against rMSTNb was developed. Before
protein extraction, PMSF (phenylmethanesulfonyl fluoride) and
protease inhibitor (Beyotime, Nantong, China) were added to
a cell lysis reagent radio immunoprecipitation assay buffer
(Beyotime, China) at a ratio of 1:100. First, the concentration
of protein was determined, and 10 µg total protein was
separated on an SDS-PAGE and transferred to a polyvinylidene
fluoride membrane (0.45µm, Millipore, New York, USA).
Next, 5% BSA (dissolved in TBST) was used to block the
membrane for an hour at room temperature, and the specific
antibody was incubated at 4◦C overnight. The internal control
was β-actin (Proteintech, Chicago, USA) or GAPDH (Cell
Signaling Technology, Boston, USA). Third, HRP-conjugated
goat anti-rabbit or anti-mouse IgG antibody (Boster, Wuhan,
China) was incubated for an hour at room temperature after

washing the membrane three times (10min each). Finally,
the membranes were washed, and the immunoreactivity was
determined by an enhanced chemiluminescence ECL detection
kit (Amersham, Buckinghamshire, UK). The gray intensity
analysis was conducted using Image J 1.45 (NIH, Bethesda, USA).

Primary Muscle Cell Isolation and
Identification
The primary muscle cell culture was conducted as previously
described with some modifications (27). Briefly, white muscle
was obtained from the latero-dorsal muscle of juvenile tilapia (6–
8 g, n = 25–30) and collected in an ice-cold isolation medium
(DMEM, 9mM NaHCO3, 20mM HEPES, 100 U/ml penicillin,
100 U/ml streptomycin, and 15% horse serum). After removing
the remaining red muscle and skin, the samples were sliced
and hydrolyzed with collagenase (2 mg/ml, Sigma-Aldrich, St.
Louis, MO, USA) at 28◦C for 20min. After washing twice
with washing medium (isolation medium without horse serum),
trypsin (1 mg/ml, Sigma-Aldrich, USA) was used to digest
the remaining sample at 28◦C for 20min. This mixture was
diluted with additional isolation medium (1:4) to neutralize
the digestion of trypsin. After centrifugation, the cells were
resuspended with complete medium (washing medium with
10% FBS) and filtered through a sterile nylon sieve (100-, 200-,
and 400-mesh). Then, the myosatellite cells were collected in
complete medium, and seeded onto 24-well or 12-well plates
(Corning, NY, USA) at a density of 4 × 105 cells/cm2 for
different experiments. After 24 h, the adhered myosatellite cells
were covered with fresh complete medium. To further verify the
adhered myosatellite cells, an immunofluorescence experiment
with MyoD (ab203383, Abcam, Cambridge, UK) and MyoG (M-
225; Santa Cruz Biotechnology, Santa Cruz, USA) antibody was
conducted as previously described (27). Both MyoD and MyoG
are myogenic regulatory factors with dynamic expression in the
process of muscle differentiation (28).

Regulation of miR-181b-5p in vitro
To detect the transfection efficiency, we transfected miR-181b-
5p (with or without CY3-label, synthesized by GenePharma,
China) into primary muscle cells using Lipofectamine3000
(Life Technologies, USA) at 80 nM for 24 h, and the inverted
fluorescent microscope ECLIPSE Ti-E (Nikon, Tokyo, Japan)
was used to observe the fluorescence. Transfection efficiency
was defined as the ratio of cells in red (CY3-labeled) and
number of cells in blue (DAPI stained). MiRNA mimics and
antagomir (synthesized by GenePharma, China) were used in the
overexpression and inhibition experiments. The negative control
was a scrambled RNA duplex that was not homologous to the
tilapia genome. All oligonucleotides were 2′-OMe modified, and
the end of the antagomir was conjugated to cholesterol. MiRNA
mimics were transfected into the dispersed cells at 80 nM for 24 h,
while antagomir was incubated at 100 nM for 24 h, and cells were
harvested for RNA extraction or western blot. Each experiment
was repeated three times independently.
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Statistical Analysis
Data are expressed as the means ± SEM unless otherwise stated.
Statistical significance was assessed by one-way ANOVA followed
by Bonferroni’s multiple comparison tests. Statistical significance
was defined as p < 0.05. p < 0.05 was noted with ∗p < 0.01
with ∗∗, and p < 0.001 with ∗∗∗.

RESULTS

Molecular Cloning and Tissue Distribution
of Mstnb and Msnta in Tilapia
The 3′ UTRs of Mstna and Mstnb were cloned. The results
showed that the Mstnb 3′ UTR was 1,307 bp, which was
consistent with the Mstnb sequences in the Nile tilapia
genome (Figure 1A and Data Sheet S1). The Mstna 3′ UTR
was 879 bp, which differed from Mstna sequences in the Nile
tilapia genome (Figure 1B and Data Sheet S1). QPCR analysis
showed that Mstnb mRNA was abundantly expressed in the
telencephalon, diencephalon, cerebellum, and white muscle,
and weakly expressed in the pituitary and gut (Figure 1C).

However, Mstna mRNA was only expressed in the brain of
tilapia (Figure 1D). Therefore, our present study was focused
onMstnb.

Screening of miRNAs Targeting Mstnb
To predict miRNAs that potentially target Mstnb, the PITA
prediction program was employed based on the database of
the tilapia miRNA transcriptome. After the prediction, 1,992
miRNAs were predicted to target the 3′ UTR of Mstnb (data
not shown). Subsequently, a preliminary screening was carried
out with the principle of conservation, and, finally, 32 miRNAs
with high scores were selected to conduct different experiments.
The Mstnb 3′ UTR was subcloned into the psiCHECK2 reporter
plasmid and used in a dual luciferase reporter experiment. The
results showed that miR-30a-3p, miR-181a-5p, and miR-181b-
5p downregulated the relative Renilla/Firefly luciferase ratio
(Rluc/Fluc) of the Mstnb 3′ UTR (P < 0.001) (Figures 2A,D,E);
miR-338, miR-455b, miR-200a, miR-27b, miR-27a, miR-31, miR-
221, and miR-222 downregulated the Rluc/Fluc (P < 0.01)

FIGURE 1 | The expression pattern of tilapia mstnb and mstna by qPCR. Mstnb and mstna clones were identified by PCR in (A) tilapia brain and (B) white muscle.

Relative mRNA expression of (C) mstnb and (D) mstna in the tissues of tilapia (n = 3, males). Te, telencephalon; Di, diencephalon; Ce, cerebellum; My,

Myelencephalon; Sc, spinal cord; Hy, Hypothalamus; Pi, pituitary; Gi, gill; He, Heart; Li, Liver; Sp, spleen; St, stomach; Fg, foregut; Mg, midgut; Hg, hindgut; Ad,

adipose tissue; Rm, red muscle; Wm, white muscle; Te, testis; Ki, Kidney. Bar: mean ± SEM.
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FIGURE 2 | Screening the targeting miRNA of Mstnb. Dual luciferase assay with psiCHECK2-Mstnb and predicted target miRNA, and the y-axis is represented by the

ratio of ranilla luciferase to firefly luciferase. (A–F) Showed different miRNA may target mstnb. (A) miR-338, miR-30a-3p, and miR-455b; (B) miR-141-3p and

miR-200a; (C) miR-27b, miR-27a, and miR-27c; (D) miR-181a-5p, miR-31, miR-221, and miR- 222; (E) miR-181b-5p and miR-206-3p; (F) miR-181, miR-181a/b,

and miR-30b-3p. Bar: mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001 One-way ANOVA analysis, n = 3.

(Figures 2A–D); and miR-132-5p, miR-141-3p, miR-107, miR-
22a, miR-27c, miR-27e, miR-72-5p, miR-25-5p, and miR-206-
3p downregulated the Rluc/Fluc (P < 0.05) (Figures 2A–E).
Specially, overexpression of miR-181a/b-5p and miR-30a-3p
decreased the Rluc/Fluc by more than 50%. The other members
of miR-181 and miR-30 were also included in the dual
luciferase reporter experiment. The results showed that miR-
181, miR-181a, miR-181b, and miR-30b-3p also downregulated
the Rluc/Fluc (Figure 2F). Among these miRNAs, miR-181 was
reported to be abundantly expressed in muscle and related to
skeletal muscle growth in mammals (29). Thus, miR-181 was
chosen for further study.

miR-181b-5p Directly Targets the Mstnb 3′

UTR
To further verify the miR-181 expression pattern, we attempted
to clone the miR-181 family, but the results showed that
only miR-181b-5p was cloned in tilapia (Figure 3A and
Data Sheet S1). Therefore, miR-181b-5p was chosen for further
study. Subsequently, the results of tissue distribution showed that
miR-181b-5p had very high expression in the diencephalon and a
lower expression in the telencephalon, spinal cord, adipose tissue,
white muscle, and kidney (Figure 3B).

As PITA predicted, the seed sequence of miR-181b-5p is
completely complementary to the Mstnb 3′ UTR at 307–313

nt and 1022–1029 nt (Figure 3C). To determine whether miR-
181b-5p directly binds to the 3′ UTR ofMstnb, nucleotides TGT
were converted to ACA at both sites by site-directed mutagenesis
(Figure 3C). Dual luciferase assay results showed that the wild-
type Mstnb 3′ UTR dramatically downregulated the Rluc/Fluc,
while mutagenesis of theMstnb 3′ UTR could reverse miR-181b-
5p-induced suppression (Figure 3D).

The Development of a Polyclonal Antibody
Against rMSTNb
To detect the MSTNb protein level in the following experiment,
an antibody against MSTNb was produced (Figure 4). First,
the mstnb ORF was amplified by PCR and the sequence was
confirmed by sequencing (Figure 4A and Data Sheet S1). Then,
the amplified fragment was inserted between XhoI and BamHI
sites in pET-32a to produce a C-terminal His-tagged rMSTNb
protein (Figure 4B). SDS-PAGE revealed that the rMSTNb band
with a molecular mass of 35 kDa was expressed successfully in
IPTG-induced pET-32a-rMSTNb-transformed bacteria but not
in the pET-32a-transformed control bacteria (Figure 4C and
Data Sheet S1). After that, the rMSTNb was purified by incising
the target strip in the albumen gel, and the results of SDS-PAGE
and western blot showed that a 35 kDa protein band can be
detected (Figures 4D,E andData Sheet S1), which suggested that
the rMSTNb protein was purified. The purified rMSTNb was
used to induce production of polyclonal antibodies in serum of
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FIGURE 3 | miR-181b-5p directly targeted Mstnb 3′UTR. (A) MiR-181b-5p clones were identified by PCR in tilapia brain. (B) Relative mRNA expression of

miR-181b-5p in the tissues of tilapia (n = 3, males). Te, telencephalon; Di, diencephalon; Ce, cerebellum; My, Myelencephalon; Sc, spinal cord; Hy, Hypothalamus; Pi,

pituitary; Gi, gill; He, Heart; Li, Liver; Sp, spleen; St, stomach; Fg, foregut; Mg, midgut; Hg, hindgut; Ad, adipose tissue; Rm, red muscle; Wm, white muscle; Te, testis;

Ki, Kidney. (C) Complete complementarity between Mstnb 3′ UTR and miRNA (Mstnb 3′ UTR wt) and incomplete complementarity (Mstnb 3′ UTR mut). (D) Dual

luciferase assay with psiCHECK2-Mstnb 3′ UTR wt or psiCHECK2-Mstnb 3′ UTR mut and miR-181b-5p. Bar: mean ± SEM. ***P < 0.01, One-way ANOVA analysis,

n = 3–5.

rabbit. To confirm the affinity, western blot was performed and
showed that rMSTNb could be detected at the dilution of 1:10,000
(Figure 4F andData Sheet S1).

The Isolation and Identification of Primary
Muscle Cells From Tilapia
To verify whether miR-181b-5p regulates the expression of
Mstnb in vitro, a piece of technology for separating the
tilapia primary muscle cells was established (Figure 5A). The
myosatellite cells were separated and were round on day 1; they
then differentiated into spindle-shaped cells called myoblasts

on day 4, and they ultimately turned into myotubes on day
7 (Figure 5A). Additionally, the myosatellite cells were verified
using immunofluorescence (Figure 5B). Myoblasts expressed
MyoD1 during the proliferation phase (day 4), and differentiated
myotubes expressed Myogenin at day 7 (Figure 5B).

miR-181b-5p Silencing Activates Mstnb

and Inhibits Downstream Genes
AsMstnbwas directly targeted by miR-181b-5p, we hypothesized
that the upregulation of MSTNb by antagomir-181b-5p would
inhibit the expression of MRFs. In tilapia primary muscle
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FIGURE 4 | Development of the MSTNb anti-rabbit antibody. (A) The mstnb ORF was cloned by PCR. (B) Schematic diagram of recombinant plasmid

pET32a-MSTNb. (C) The induced expression of recombinant protein. (D) Purification of recombinant protein. (E) The purified protein was verified by western blot.

(F) Mstnb anti-serum was detected, dilution ratio was 1:10,000.

cells, knockdown of miR-181b-5p resulted in a decrease
in miR-181b-5p expression at 24 h and 48 h (Figure 6A),
while Mstnb mRNA was upregulated at 24 h but not at
48 h after the administration (Figure 6B). Knockdown of
miR-181b-5p upregulated MSTNb protein levels with a
significant difference at 24 h, but no significant difference
was noted at 48 h (Figure 6C, Data Sheet S1, Figures S2–S4

and Presentation S1). Thus, 24 h was determined as the
administration time. Meanwhile, the mRNA expression of
MHC and Myf6 was downregulated by antagomir-181b-5p
compared to antagomir-nc after 24 h. However, myf5, myoG,
and myoD mRNA exhibited no change after the knockdown of
miR-181b-5p (Figure 6D).

miR-181b-5p Overexpression Inhibits
Mstnb and Activates Downstream Genes
To determine whether the miRNA mimics could be transfected
into tilapia primary muscle cells, CY3-labeled miR-181b-5p
was synthesized and the transfection efficiency was determined
by a fluorescence microscope (Figure S1). A total of 59% of
the dispersed muscle cells were transfected with the CY3-
labeled miR-181b-5p, while the transfection efficiency of the
control was 0%. The relative expression of miR-181b-5p was
increased thousands of times after transfection (Figure 7A).
Overexpression of miR-181b-5p did not affected the mRNA
expression level of mstnb (Figure 7B), but it decreased MSTNb

protein expression (Figure 7C, Data Sheet S1, Figures S5–S7

and Presentation S1). As expected, the mRNA expression of
myf5, myoD, andmyoGwas upregulated bymiR-181b-5pmimics,
while myf6 and MHC mRNA expression was not affected
(Figure 7D). This contrasted with the results of miR-181b-
5p inhibition.

DISCUSSION

Myostatin has been regarded as a muscle negative regulator
in mammals since its discovery (2); its function in muscle
development (2), adipogenesis (30), and insulin sensitivity (31)
was revealed by several studies. Due to its importance in growth
and metabolism, the precise regulation of Mstn protein levels is
necessary. The regulation of Mstn at the transcriptional, post-
transcriptional, and translational levels was documented widely.
MiRNAs could directly degrade or inhibit the translation of
targeted mRNAs at the post-transcriptional level, and they were
found to take part in the development of skeletal muscle. In this
study, we found that miR-181b-5p may regulate muscle growth
of tilapia by targetingMstnb.

In our study, the 3′ UTRs of mstna and mstnb were cloned,
but onlymstnb was chosen for further study asmstnamRNA was
only expressed in the brain of tilapia whereas mstnb mRNA was
expressed in the brain and skeletal muscle. The tissue distribution
pattern of tilapia mstnb was similar to that of previous studies;
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FIGURE 5 | Isolation and identification of primary muscle cells from tilapia. (A) The culture of myosatellite cells (day 1), myoblasts (day 4), and myotubes (day 7).

(B) Immunocytochemical staining of myoblasts (day 4) and myotubes (day 7).

RT-PCR results showed that mstn was expressed in the muscle,
eye, gill, gonad, gut, and brain of Nile tilapia (4). In rainbow
trout, both transcripts (mstn 1a and mstn 1b) were present in
the muscle, testes, eye, brain, and spleen (32). In Trachidermus
fasciatus, the mstn was highly expressed in the muscle and
intestine and weakly expressed in the brain and liver (33).
Althoughmstn is widely distributed in various tissues of teleosts,
it is highly expressed in muscle (4, 34). We hypothesized that
mstnb was important for the growth of skeletal muscle in tilapia.

The relative luciferase activity of mstnb was downregulated
by several miRNAs, including miR-30a-3p, miR-181a/b-5p, miR-
27a/b, miR-206-3p, miR-200a, and miR-455b. This is consistent
with the fact that one gene may be targeted by multiple miRNAs
and one miRNA may target several genes (35). In addition, the

other members of the miR-181 family were also shown to target
the mstnb 3′ UTR since their seed sequences are identical. These
results suggested that miRNAs targeted mRNA by interacting
with the seed sequences (36, 37). Although only miR-181b-5p
was investigated in this study, other miRNAs might also play
a role in regulating mstn at the post-transcriptional level. For
example, miR-27a was reported to target mstn and induce the
differentiation of C2C12 (20), and miR-27a/b regulates MSTN
expression through negative feedback auto-regulation in mice
(21). MiR-206, a miRNA that is abundantly expressed in skeletal
muscle that modulates the development and disease of skeletal
muscle in mammals (38), was also shown to decrease the
luciferase activity of mstnb in tilapia. In addition, miR-206 was
shown to target the 3′ UTR ofmstn in Texel sheep, a sheep known
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FIGURE 6 | miR-181b-5p silencing influences the expression of Mstnb and its downstream genes. (A) The relative expression of miR-181b-5p. (B) The mRNA

expression of Mstnb. (C) The protein level of Mstnb. (D) The mRNA expression of Mstnb downstream genes. Bar: mean ± SEM. *P < 0.05 and **P < 0.01, One-way

ANOVA analysis, n = 3–4.

for its double muscling (17). The above results suggested that
mstnb could be regulated by several miRNAs in both mammals
and teletosts.

Among those miRNAs, miR-181 was reported to associate
with the TGF-β superfamily and regulate Hox-A11 expression
in mammals (29). Meanwhile, only miR-181b-5p, a member
of the miR-181 family from tilapia, was cloned. We focused
on miR-181b-5p in the subsequent research. The results of
tissue distribution showed that miR-181b-5p was expressed
predominantly in the diencephalon, and smaller amounts
in the telencephalon, liver, adipose, white muscle, and
kidney, which was in line with the studies that showed that
miR-181 was widely expressed across tissues and played
a vital role in the immune system (39), skeletal muscle
growth (29), hemopoiesis (40), brain ischemia (41), and so
on. In addition, the expression profiles of miR-181 were
correlated with the development stage (42) and nutrition
status (43). Therefore, the development stage may be the
cause of low abundance of miR-181b-5p expression in
white muscle.

Furthermore, the results of our study showed that miR-181b-
5p could target mstnb using a mutated reporter in the predicted
target sites and a dual-luciferase assays. To further study
the possible roles of miR-181b-5p in the post-transcriptional
regulation of mstnb in tilapia, the primary muscle cells of tilapia
were used as cell models to perform the experiments of miR-
181b-5p knockdown and overexpression. In our study, double
enzyme hydrolysis (collagenase IV and trypsin) was used to
digest the muscle of tilapia. The research in fish cell culture
developed quickly followingWolf establishing the RTG-2 cell line
in rainbow trout (44). However, the culture of primary muscle
cells was developed slowly because the myogenic precursor cells
only proliferate under certain conditions, such as wound healing,
exercise, and disease (45). A method to isolate and culture
primary myogenic precursor cells was established in several fish
species, including rainbow trout, salmon, and sea bream (46–
48). We also cultured primary muscle cells in tilapia using the
protocol described by Froehlich et al. (27). This study was the
first paper to describe the technology of culturing primarymuscle
cells from tilapia.

Frontiers in Endocrinology | www.frontiersin.org 9 December 2019 | Volume 10 | Article 812

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Zhao et al. miR-181b-5p on Muscle Growth via Myostatin b

FIGURE 7 | miR-181b-5p overexpression influences the expression of Mstnb and its downstream genes. (A) The relative expression of miR-181b-5p. (B) The mRNA

expression of Mstnb. (C) The protein level of Mstnb. (D) The mRNA expression of Mstnb downstream genes. Bar: mean ± SEM. *P < 0.05 and ***P < 0.01, One-way

ANOVA analysis, n = 3–4.

In this study, knockdown of miR-181b-5p in primary
muscle cells led to an upregulation of MSTNb protein, and
overexpression caused a downregulation effect, indicating that
miR-181b-5p might participate in the regulation of MSTNb
expression levels in vitro. Similar results were obtained using
deep sequencing and a dual-luciferase experiment in S. chuatsi
(23). Meanwhile, the opposite expression pattern between miR-
181a-5p and mstn in white and red muscle was observed (23). In
our study, miR-181b-5p targetingmstnbwas further confirmed in
tilapia primary muscle cells. In addition, miR-181 was reported
to regulate the differentiation of myoblasts in mice by targeting
Hox-A11, an inhibitor of MyoD (29). Although miR-181 may
target different genes in mammals and fish, the function of miR-
181 in regulating muscle growth may be conserved in evolution.

Although MSTN was reported to inhibit the growth of
skeletal muscle in mammals and some fishes, the regulatory
role of MSTN on the growth of skeletal muscles in tilapia
was not reported. In the present study, the mRNA expression
of MRFs was detected after stimulating or inhibiting the

expression of MSTNb by antagomir-181b-5p and miR-181b-
5p. MRFs play an important role during the proliferation
and differentiation of skeletal muscle cells. Lacking both
MyoD and Myf5 in skeletal muscle stem cells caused the
accumulation of satellite cell progeny in damaged muscle and
blocked differentiation (49). MyoD and MyoG can induce
the transcription of Myomaker and promote the fusion of
myoblasts, which is an important step during skeletal muscle
differentiation (50). It was also reported that miR-374b directly
targeted Myf6 and inhibited the differentiation in C2C12
(51). It suggested that the expression of MRFs may reflect
the differentiation of muscle cells. Except for MRFs, MSTN
knockdown by small hairpin RNA (shRNAs) led to sustained
cell proliferation of myoblasts and upregulated expression of
Myf6 in goats (52). Our study showed that the mRNA expression
of MRFs was decreased when MSTNb was promoted by
antagomir-181b-5p and increased when MSTNb was inhibited
by miR-181b-5p. These results suggested that MSTNb may
regulate muscle growth by modulating the expression of
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MRFs in tilapia, which was consistent with those reported in
mammals (53–56).

Since MSTN is a negative regulator, inhibition or mutation
of this gene may be useful for muscle development (55). For
instance, knocking down mstn using siRNA increased muscle
mass in mice (57), and knocking out mstnb using TALEN
(transcription activator-like effector nucleases) also induced
muscle hyperplasia and body weight increase in zebrafish
(58). In their study, the circumferences and body weights
of mstnb-deficient zebrafish increased after 80 days post-
fertilization (58). Similarly, primary muscle cells treated with
human recombinant MSTN (huMSTN) resulted in a myotube
diameter decreased of up to 20% (59). The mRNA expression
of Myf5, MyoD, and MyoG was significantly increased after
rainbow trout primary myosatellite cells were treated with
MSTN-1 (7), which was inconsistent with our study. It is
noteworthy that the treatments were different. In their study,
primary myosatellite cells were incubated with MSTN-1 after
culturing 72 h for 3 days or 7 days (7), while in our study,
MSTNb was indirectly increased by antagomir after culturing
over 1 day (for 24 h). Obviously, the mechanism of MSTN-
1 and antagomir treatment of myosatellite cells is different.
In addition, the expression of MRFs is dynamic during the
differentiation of skeletal muscle. The expression of Myf5
and MyoD was increased in proliferating myoblasts, while
MyoG and Myf6 increased in the terminally differentiated
myotubes (28). It is hard to compare the two studies
because the experimental conditions were different. Despite
this, we hypothesized that mstnb participates in the regulation
of muscle growth in tilapia in a similar way in fishes
as in mammals.

In this study, miR-181b-5p overexpression inhibited MSTNb
and activated downstream gene expression. Our results suggest
that miR-181b-5p may regulate the muscle growth of tilapia by
targetingmyostatin b in tilapia.
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Figure S1 | Transfection efficiency of tilapia muscle pituitary cells by CY3-labeled

miR-181b-5p. DAPI, cells were dyed by DAPI and image taken with 358 nm

exciting laser; CY3, image taken with 550 nm exciting laser; MERGE, image

merged by the two images DAPI and CY3.

Figure S2 | Western bolt original image of β-actin corresponding to Figure 6C.

Figure S3 | Western bolt original image of Mstnb corresponding to Figure 6C.

Figure S4 | Coomassie-blue staining of SDS-PAGE corresponding to Figure 6C.

Figure S5 | Western bolt original image of Mstnb corresponding to Figure 7C.

Figure S6 | Western bolt original image of β-actin corresponding to Figure 7C.

Figure S7 | Coomassie-blue staining of SDS-PAGE corresponding to Figure 7C.

Table S1 | Primers used in this research.

Data Sheet S1 | Agarose gel original images corresponding to Figures 1A,B, 3A,

4A. Coomassie-blue original images corresponding to Figures 4C,D. Western

bolt original images corresponding to Figures 4E,F, 6C, 7C.

Presentation S1 | Coomassie-blue staining and Western bolt original images

corresponding to Figures 6C, 7C.
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