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Response of aboveground biomass 
and diversity to nitrogen addition 
along a degradation gradient in 
the Inner Mongolian steppe, China
Xiaotian Xu1, Hongyan Liu1, Zhaoliang Song2, Wei Wang1, Guozheng Hu1 & Zhaohuan Qi1

Although nitrogen addition and recovery from degradation can both promote production of 
grassland biomass, these two factors have rarely been investigated in combination. In this study, 
we established a field experiment with six N-treatment (CK, 10, 20, 30, 40, 50 g N m−2 yr−1) on five 
fields with different degradation levels in the Inner Mongolian steppe of China from 2011–2013. Our 
observations showed that while the external nitrogen increased the aboveground biomass in all 
five grasslands, the magnitude of the effects differed with the severity of degradation. Fields with a 
higher level of degradation tended to have a higher saturation value (20 g N m−2 yr−1) than those with 
a lower degradation level ( <  10 g N m−2 yr−1). After three years of experimentation, species richness 
showed little change across degradation levels. Among the four functional groups of grasses, sedges, 
forbs and legumes, grasses shared the most similar response patterns with those of the whole 
community, demonstrating the predominant role that they play in the restoration of grassland under 
a stimulus of nitrogen addition.

In recent decades, atmospheric nitrogen deposition has become a global concern1; therefore, the effects 
of nitrogen addition on ecosystem productivity, biodiversity, and function (e.g., carbon source or sink) 
have been extensively studied by the scientific community2,3. Additionally, grassland degradation, as indi-
cated by reverse succession of the plant community and coarsening of soil due to overgrazing, burrowing 
of small mammals, and climate change, has become a global problem4. About 40% of the land surface 
of the earth is covered by grasslands, half of which have become degraded5. Degraded grasslands often 
suffer from further reductions in species richness, ecosystem productivity and vegetation cover, causing 
wind erosion and nutrient loss6. Grassland fertilization had been used as a rapid and effective method 
of restoring the productivity and quality of pastures in some industrialized countries since the 1970s7. 
As a result, various fertilization experiments have been designed in different areas and across different 
vegetation types to identify possible effects of nitrogen addition on ecosystem biomass and species rich-
ness worldwide8–17.

Although there seems to be a universal response pattern across different grasslands to the amount 
of nitrogen added, such as the increase in grass growth with nitrogen addition2, other specific patterns 
may also exist. Past studies have shown that degradation status influenced the effects of nitrogen addi-
tion on biomass. A large increase of biomass was observed on a degraded grassland when only a small 
N-treatment was applied18, and a high level of added nitrogen (51 g N m−2 yr−1) has been shown to still 
cause significant increases in biomass, because the species of degraded grassland are often under a con-
dition of nutrient deficiency, making demand high and imperative19. Conversely, on mature grassland, 
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which could be considered as a climax ecosystem, increases in biomass in response to nitrogen are often 
very limited20. This is because community biomass cannot exceed beyond its climax state, making the 
system quite stable and inert to outer stimulation. The opposite result has also been observed, in that 
nitrogen addition led to greater increases in biomass on mature grassland than on degraded grassland 
due to the higher water availability of the former11. Thus, it is necessary to separate the influence of bio-
mass change in response to the addition of nitrogen from that of the restoration process. However, the 
recovery of a disturbed ecosystem is a complex process that may contain a series of stages. Accordingly, it 
might be helpful to discuss variations among stages rather than simply comparing degraded and mature 
sites. Furthermore, it would be useful to reveal the possible benefits of nitrogen addition to the restora-
tion process with respect to promoting growth of the community and increasing the species richness and 
proportion of climax species that dominate local natural grasslands.

Previous studies also revealed that the enhancing effect of nitrogen on biomass decreased with 
increasing nitrogen addition2. This phenomenon indicates that the increase in biomass caused by nitro-
gen addition may have a saturation value, similar to nitrogen induced eutrophication21. When the added 
amount exceeds this value, the effects on vegetation will lessen, and may even become negative22. Excess 
nitrogen cannot be absorbed by the soil and vegetation, and is therefore leached or volatilized. It might 
also change the physical and chemical properties of the soil, leading to a decrease in biomass23,24 and 
species diversity, especially richness21,25,26, further influencing the stability of grassland systems27,28. These 
effects are often explained by the favorability of high nitrogen concentration in soil to a few opportun-
istic species29–31, exclusion of light competitors in response to nitrogen-enhanced plant growth32–34, or 
exclusion of species due to soil acidification with excess nitrogen addition35.

As such, we investigated whether the response patterns of grassland biomass and plant species diver-
sity to nitrogen addition change with the degradation gradient. We conducted a controlled experiment 
on the Ulan Buton steppe at the southeastern edge of the Inner Mongolian Plateau, China, by selecting 
five experimental fields for nitrogen addition, all in different stages of degradation, to examine the pat-
terns and impacts of subsequent biomass and species change. Specifically, we attempted to answer the fol-
lowing questions regarding nitrogen addition: What roles do the different functional groups play in the 
response of plant community biomass to nitrogen addition? Would nitrogen addition benefit recovery 
of the degraded grasslands? Do the effects of nitrogen addition on the restoration of grassland biomass 
differ with degradation status?

Results
Effects of nitrogen addition on the total aboveground biomass.  Biomass generally increased 
with increased N-treatment in all fields, as indicated by the positive slope values. Moreover, the slopes 
increased with the level of degradation (P =  0.007), especially in 2012. Biomass in AF (abandoned farm-
land, with the most severe degradation) increased most notably, with the greatest slopes being observed 
in the first two years. Although the general slope of AF decreased in 2013, the slope of the lower 
N-treatment (from CK to N-20) was still very large, reaching 30.53. In SD (severe degradation) and ED 
(extremely severe degradation), biomass increased with N-treatment throughout the three-year experi-
mental period. The MD (moderate degradation) responded least significantly, with slopes remaining very 
close to 0 until 2013. For MG (mature grassland), the slopes were positive in 2011, but became negative 
in 2012 and 2013. Although the biomass of MG increased with the addition of nitrogen between N-0 and 
N-30 (with large slopes of 10.20 and 5.23) in 2012 and 2013, biomass decreased when nitrogen addition 
reached N-40 (Fig. 1).

In 2013, a saturation pattern of biomass was observed, in which treatment N-20 led to a notable 
increase in biomass, while saturation was reached for treatments exceeding N-20 in the five fields on 
average. However, no consistent pattern was observed among treatments. The saturation values for AF 
were N-20 in 2012 and 2013, while those for ED were N-20 in 2013 and those for SD were N-30 in 2011 
and 2012. MD and MG did not show valid saturation values in any of the three years, so the possible 
values might be less than N-10 (Fig. 1).

Effects of nitrogen addition on the aboveground biomass of different functional groups.  The 
biomass of the grass group showed a significantly greater increase with nitrogen addition than that of 
other functional groups. Although the aboveground biomass of sedges and legumes changed during 
the three years (Table S1), this change had little influence on the total biomass because of their low 
proportion (Fig. 2). The grass group showed positive slopes, while the other groups showed negative or 
non-significant slopes (Table S2). The trend in the grass group was similar to that of the total biomass, 
which was more obvious in the degraded grassland than in the mature grassland. In AF, ED and SD, 
after a year of nitrogen addition the dominance of the grass group was enhanced. In the third year, this 
phenomenon also occurred in MD. However, MG showed the opposite trend. Nevertheless, the biomass 
of grass in all fields during all years increased with increasing N-treatment. In contrast, the biomass of 
legumes decreased significantly and the biomass of sedges and forbs showed no clear trend (Fig. 3, Table 
S2).

Increases in aboveground biomass of grass were significantly positively correlated with increases 
in total aboveground biomass, yielding a slope of 1.012 (P <  0.001). The increases in the grass group 
were almost the same as those of the total biomass. All five fields presented similar patterns, with MG 
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Figure 1.  Response of total aboveground biomass to the nitrogen addition. AF =  abandoned farmland, 
ED =  extremely degraded grassland, SD =  severely degraded grassland, MD =  moderately degraded 
grassland, MG =  mature grassland. Bars with the same letter (e.g., a, b) were not significantly different in 
tests of S-N-K. Regression parameters were estimated with N treatment in each graph. Significant differences 
are reported as NS, P >  0.05; *, P <  0.05; **, P <  0.01; ***, P <  0.001. The error bars indicate the standard 
deviation.

Figure 2.  Response of the percentage of aboveground biomass of different functional groups to the nitrogen 
addition. AF =  abandoned farmland, ED =  extremely degraded grassland, SD =  severely degraded grassland, 
MD =  moderately degraded grassland, MG =  mature grassland. The different colors showed in the figure 
represent the percentage of each functional group in the total aboveground biomass.
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comprising the lowest proportion of the grass group, having the greatest slopes. These results indicated 
that the biomass of the other functional groups (forbs, sedges and legumes) contributed little to changes 
in the total biomass. Moreover, increases in the total aboveground biomass in response to nitrogen addi-
tion were primarily attributed to the response of the grass group.

Factors influencing the aboveground biomass under nitrogen addition.  ANOVA in the uni-
variate GLM showed that the degradation status and N-treatment had the greatest influence on the 
changes of biomass. Although some interannual variations such as temperature and precipitation may 
exist, the study years had little influences on biomass, implying that the natural restoration process might 
not influence the response of biomass to nitrogen addition within three years. We also found no differ-
ence between the two nitrogen application methods (solution or dry dust), indicating that the method of 
adding nitrogen did not influence the experimental results (Table S1). Since the amount of water in our 
solution was quite small, it was not expected to influence the soil conditions significantly.

MANOVA in the multivariate GLM showed that the N-treatment had the greatest effect on the grass 
group, but did not influence other groups significantly (Table S1). During the three years of the exper-
iment, the biomass of grasses and forbs changed slightly with time, but that of sedges and especially 
legumes changed significantly. The sedge group decreased in biomass while legumes increased in biomass 
during the experimental period (Fig. 3; Table S2). All four functional groups were influenced significantly 
by the degradation status of the experimental fields, indicating that the condition of the fields was the 
most significant influencing factor.

Effects of nitrogen addition on species richness.  The plant species richness among the five exper-
imental fields was quite different, but did not differ significantly among N-treatment. After three years, 
different trends began to appear in the slopes, although these differences were quite small. Species rich-
ness increased in the ED and MD but decreased in the MG and SD with increasing N-treatment, though 
changes in species richness were not significant in any sites except MG (Fig. 4).

Discussion
The addition of nitrogen to our experimental fields generally had a positive effect on the aboveground 
biomass of the grasslands. Further, nitrogen saturation was observed after the three-year experiment. 
These results agreed well with previous studies conducted in the Inner Mongolian steppe, which had 
saturation values of 10.5 g N m−2 yr−1 and 12 g N m−2 yr−1 11,12. However, this pattern differed among the 
five fields in our study. Although no clear trend was observed, our study nonetheless demonstrated that 
grasslands having undergone higher levels of degradation might have higher saturation values.

Figure 3.  Response of aboveground biomass of different functional groups to the nitrogen addition. 
AF =  abandoned farmland, ED =  extremely degraded grassland, SD =  severely degraded grassland, 
MD =  moderately degraded grassland, MG =  mature grassland. The error bars indicate the standard 
deviation.
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The generally positive effects of N-treatment might be explained by the relatively low soil nitrogen 
in the Inner Mongolian steppe, as well as the limiting effect of nitrogen on plant growth12. The data 
indicated that the response of biomass was more heavily influenced by the nitrogen addition and the 
degradation status of the fields than the duration of the experiment and the nitrogen addition methods. 
Although previous studies revealed natural restoration of biomass in degraded grasslands36, this effect 
might take a long time to appear, as indicated by our MG requiring 10 years to show the effects of natural 
restoration. Thus, a three-year study period is too short to explain this effect clearly, while nitrogen addi-
tion can impact the grassland much faster. Therefore, in this experiment, the addition of artificial nitro-
gen could be a primary factor controlling the biomass increase, with natural restoration being secondary.

The varied responses of fields with different degradation status might be associated with the local 
degraded conditions of the fields, such as plant species compositions and soil features. Climax species 
in MG could provide strong buffering capacity to biomass change, and make the community inert to 
nitrogen stimulus, while annuals and degraded indicators adapted to degradation would be able to use of 
exotic nitrogen actively and quickly, causing degraded grasslands such as AF, ED and SD to be more sen-
sitive37,38. For the influence of soil features, the most important factor in the soil is the nitrogen content. 
In experimental fields with relatively high topsoil nitrogen (AF and MG), there tended to be decreasing 
biomass when the N-treatment reached a high level (more than N-30) (Fig. 1). These findings indicated 
that, in fields with high soil nitrogen content, high nitrogen enrichment could do more harm than good. 
Accordingly, since it had been recently abandoned from farmland, AF had poor species richness and 
composition, but was not lacking nutrients owing to the nitrogen accumulation during cultivation39,40. 
Therefore, the results of this study suggest that this field was influenced by the above two main factors 
as follows: a plant species composition with a high proportion of annuals and degradation indicators 
suggesting a high degradation status was associated with a rapid response and large slopes, while the 
nitrogen addition history led to a relatively high nitrogen concentration in the soil along with high bio-
mass, resulting in a biomass decline under high N-treatment.

We also found that the biomass of the grass group played a predominant role in responding to the 
addition of nitrogen, which was consistent with the results of previous studies conducted in this region15. 
The lack of response of MG to N-treatment might be related to the low proportion of the grass group in 
this field (Fig. 2). A similar phenomenon in which nitrogen addition led to an increase of grasses and a 
decrease of forbs in some grasslands was also found21,41. This could be explained by the favorable effects 
of nitrogen on the grass group owing to their higher nitrogen use efficiency and water use efficiency 
than those of the forb group, as well as the subsequent growth suppression15,42. Since water resources 
are very limited in this semiarid area, plant species with higher water use efficiency can make better use 

Figure 4.  Response of species richness to the nitrogen addition. AF =  abandoned farmland, ED =  extremely 
degraded grassland, SD =  severely degraded grassland, MD =  moderately degraded grassland, MG =  mature 
grassland. Bars with the same letter (e.g., a, b) were not significantly different in tests of S-N-K.
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of nutrients. Therefore, the increase of available nitrogen was of greater benefit to the grass group than 
other species43.

An obvious decrease of species richness only occurred in the MG in the third year, and none of the 
other fields changed significantly. This phenomenon may have been due to the relatively short exper-
imental time. Nitrogen addition might change the biomass, height, abundance and cover faster than 
species richness. Our results generally agreed with those of previous studies in this region11,12 and other 
parts of the world26. Although no statistically significant differences were observed, the variations among 
sites with different degradation levels might be explained by light competition32–34. In ED and MD, 
the plant communities were always relatively open; therefore, the addition of nitrogen did not increase 
competition for light, but instead created a new niche with an increased nutrient supply, causing rich-
ness to increase slightly with the N-treatment. In SD, the initial community was not very dense, but its 
density increased from the second year. As a result, the light competition also increased with increasing 
nitrogen supply. MG was initially very dense and was therefore most influenced by light competition 
among the five fields. The species richness of SD and MG tended to decrease because of the loss of some 
low-growing species under increased density pressure. The results observed for MG demonstrated that 
the buffer effect could prevent the mature grassland from growth under exotic nutrient supply, but not 
the loss of species. As a result, nitrogen addition would do harm rather than aid a mature grassland.

In summary, artificial nitrogen addition was able to promote the restoration of degraded grasslands, 
especially their aboveground biomass, mainly by benefitting the grass group. However, nitrogen addition 
was not necessary for biomass accumulation on the mature steppe. Currently, most degraded grasslands 
are subject to grazing pressure44–46. At the beginning of this century, about 85.4% of the grassland in 
China was degraded, a trend that has persisted until recently47,48. In our study area of Inner Mongolia, 
which contains the majority of grassland in China, the area of degraded grassland has reached 22.47 
million hm2 and is still expanding49. Thus, the addition of nitrogen to these degraded grasslands might 
favor their restoration of biomass, but facilitate transformation of the steppe into a grass-dominated com-
munity in terms of biomass, reducing the plant species evenness that characterizes the mature grassland.

Methods
Study area.  Our experiment was conducted on the Ulan Buton steppe, Inner Mongolian Plateau, 
China. The study area is characterized by a mean annual precipitation of around 400 mm and a mean 
annual temperature of –1.4°C. The soil is classified as Chernozems, with sand and silt dominating its sur-
face layer50. Particle size data are shown in Table 1. Five 100 m ×  100 m experimental fields were fenced 
at the flat land surface in the spring of 2011 after communicating with local people about the history of 
human disturbances at each site. Among all vegetation and soil features, plant species composition and 
community structure can indicate the status of grassland degradation well. In previous studies, the herb 
species of grassland in this region could be categorized into three groups: annuals (mainly appearing in 
the seriously degraded steppe), moderate grazing degradation indicators, and climax species in mature 
steppe50. To quantify the grassland degradation level, we classified each site as being in one of five stages 
according to the proportion of the three groups of species. For example, AF had the highest proportion 
of annuals among the five fields and MG had the highest proportion of climax species, while the pro-
portion of moderately grazing degradation indicators was high in the other three. The following relative 
covers (ranging from 0 to 1) of climax species of degraded and climax grassland, which could indicate 
the gradient well, were observed: abandoned farmland (AF, with 0.26), extremely degraded grassland 
(ED, with 0.34), severely degraded grassland (SD, with 0.40), moderately degraded grassland (MD, with 
0.54), and mature grassland (MG, with 0.74) (Table 1, Fig. 5)50. This degradation sequence was mainly 

Term AF ED SD MD MG

Species richness 20 32 52 43 69

Vegetation cover 54% 38% 52% 29% 82%

Relative cover of 
climax species 0.26 0.34 0.40 0.54 0.74

Soil TN (0-20 cm, 
%) 0.208 ±  0.147 0.082 ±  0.015 0.190 ±  0.100 0.163 ±  0.061 0.242 ±  0.239

Soil TN (20-50 cm, 
%) 0.116 ±  0.029 0.123 ±  0.030 0.230 ±  0.225 0.149 ±  0.123 0.181 ±  0.031

Sand of topsoil (%) 45.7 ±  4.8 66.1 ±  3.0 57.3 ±  4.5 58.4 ±  5.6 48.8 ±  1.6

Silt of topsoil (%) 47.7 ±  5.2 28.1 ±  2.5 37.5 ±  4.2 35.8 ±  5.0 44.5 ±  1.4

Clay of topsoil (%) 6.6 ±  1.1 5.8 ±  0.5 5.1 ±  1.3 5.9 ±  0.6 6.7 ±  0.2

Table 1.   General soil and plant community properties (means ±  SD) of experimental fields. Note: 
TN =  total nitrogen, AF =  abandoned farmland, ED =  extremely degraded grassland, SD =  severely degraded 
grassland, MD =  moderately degraded grassland, MG =  mature grassland.
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based on the meaning of the species composition degradation, but could also be adopted as a surrogate 
of the extent of human disturbance. At one end of the sequence is the abandoned farmland, which is 
heavily managed grassland at the pioneer stage of secondary succession. At the other end of the sequence 
is mature grassland with slight or no human disturbance.

The abandoned farmland had been sown by local inhabitants and was returned from farmland to grass-
land in 2010. The species composition was simple and dominated by weed annuals such as Chenopodium 
acuminatum and Sonchus arvensis, as well as pioneer species such as Elymus nutans, Leymus secalinus, 
and Agropyron mongolicum var. villosum.

The extremely degraded grassland, which consisted of soil covered by sand, had the lowest species 
richness after AF and was open to local grazing. Although climax species such as Leymus chinensis and 
Carex korshinskyi were present, annuals such as Digitaria sanguinalis, Setaria viridis and Agriophyllum 
squarrosum were dominant.

The severely degraded grassland was a high-quality pasture about two decades ago, but had degraded 
due to overgrazing until 2011. The flora in this area was dominated by climax species such as Stipa 
baicalensis, Bromus ircutensis, Poa sphondylodes, Carex korshinskyi, and Potentilla longifolia, but degra-
dation indicator species such as Potentilla acaulis, Artemisia frigida, and Artemisia capillaries were also 
abundant.

The moderately degraded grassland was a pasture under management, with relatively low biomass 
under managed grazing. The flora was dominated by the climax species Stipa baicalensis, Leymus chin-
ensis, Poa sphondylodes, Potentilla longifolia, and Carex korshinskyi, with much less abundant degradation 
indicators than observed in the severely degraded grassland.

The mature grassland was fenced from 2000 to prevent grazing and the species richness was high. 
The dominant species were Leymus chinensis, Bromus inermis, Bromus ircutensis, Poa sphondylodes, Carex 
korshinskyi, Sanguisorba officinalis, and Bupleurum chinense, with very few degradation indicators.

Other features of vegetation including total vegetation cover and soil features including total nitrogen 
content at different layers and particle size distribution all showed no clear trend along the degradation 
gradient (Table  1). Nevertheless, variation existed between fields. For example, MD has relatively low 
vegetation cover because of grazing, while AF has relatively high nitrogen content in the soil because 
of the history of farming and fertilization, and ED has the highest content of sand in the topsoil and 
therefore the lowest nitrogen content.

In our study fields, the species richness, vegetation cover and soil nitrogen content were generally 
lower in the degraded grasslands than in the mature grasslands (Table  1). This phenomenon was also 
found throughout the Inner Mongolian steppe. The reduction in vegetation cover in degraded grassland 
enhanced wind erosion, with fine particles blown off, resulting in the soil becoming coarser and the 
nitrogen poorer50.

Controlled experiment design.  We divided each of the fields into three blocks separated by a 2 m 
buffer zone. In each block, we selected 12 plots of 6 m ×  6 m separated by a 1 m buffer zone for different 
treatments.

Figure 5.  The proportion of each experimental field of three groups categorized to indicate the level of 
degradation in this region: pioneer species (annual, in black), intermediate species (degradation indicators, 
in dark grey), and climax species (in light grey). The X axis represents the degradation levels of the five 
fields from high to low.
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Nitrogen addition began in May, 2011, and the fertilizer was urine. There were six nitrogen addition 
amounts: 0(CK), 10, 20, 30, 40, and 50 g N m−2 yr−1.The N-treatment design was based on the response 
of grassland in this area and documented fertilization amounts. Nitrogen was applied four times in the 
first 10 days of May, June, July and August using a quarter of the annual amount at each time. Two 
methods of urine addition, application as a solution and dusting, were employed to examine the possible 
influence of the additional water on fertilizer volatility and soil moisture to assess whether the differ-
ent methods used in previous studies could influence the effects of nitrogen addition. For the solution 
method, CK was added in the same amount of water as the other treatments, 3 L per plot per month, 
equal to 0.08 mm per month. This value is far less than the average precipitation, which is 50 mm in May 
and up to 130 mm in July.

Sampling and measurements.  The aboveground biomass was harvested in the middle of August 
from a 50 cm ×  50 cm sampling frame. After harvest, we divided the species into four functional groups: 
grasses (G), sedges (S), forbs (F) and legumes (L). The biomass of each functional group was then dried 
in an oven at 65 °C for 48 hours. The species richness in each plot was surveyed and recorded from the 
end of July to the beginning of August every year.

Data analysis.  Linear regression analysis was used to calculate the trends of aboveground biomass 
induced by nitrogen addition in each field in each of the three years. In this study, we defined the N 
saturation value as when the biomass under a certain N-treatment was increased significantly relative to 
the CK and when the effects of the increase reached a plateau. The distinction between each N-treatment 
was also tested by the general linear model (GLM) post-hoc test of S-N-K.

Analysis of variance (ANOVA) based on the univariate GLM was employed to analyze the effects 
of factors on changes in total biomass. We used the total biomass as the dependent variable, and the 
experimental durations (three years), amount of added nitrogen (six treatments), degradation levels (rep-
resented by five separated fields) and nitrogen addition methods (two methods) as fixed factors. Since 
the nitrogen addition methods had minimal impact and the smallest significance (P =  0.796), we only 
considered the interactions of the other three factors. Multivariate analysis of variance (MANOVA) in 
the GLM was used to analyze the effects of factors on changes in biomass of different functional groups. 
We used the biomass of four functional groups as dependent variables, and the experimental durations 
(three years), nitrogen addition amounts (six treatments), and degradation levels (represented by five 
separated fields) as fixed factors. Their interactions were also considered.

Finally, we established a linear fit between the increases in total biomass and the increases in grass to 
analyze the influence of the grass group on the response to nitrogen.

The statistical software SPSS 16.0 was used to analyze all experimental data.
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