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Host genetic factors related to innate
immunity, environmental sensing and
cellular functions are associated with human
skin microbiota

A list of authors and their affiliations appears at the end of the paper

Despite the increasing knowledge about factors shaping the human micro-
biome, the host genetic factors that modulate the skin-microbiome interac-
tions are still largely understudied. This contrasts with recent efforts to
characterize host genes that influence the gut microbiota. Here, we investi-
gated the effect of genetics on skin microbiota across three different skin
microenvironments through meta-analyses of genome-wide association stu-
dies (GWAS) of two population-based German cohorts. We identified 23
genome-wide significant loci harboring 30 candidate genes involved in innate
immune signaling, environmental sensing, cell differentiation, proliferation
and fibroblast activity. However, no locus passed the strict threshold for study-
wide significance (P < 6.3 × 10−10 for 80 features included in the analysis).
Mendelian randomization (MR) analysis indicated the influence of staphylo-
cocci on eczema/dermatitis and suggested modulating effects of the micro-
biota on other skin diseases. Finally, transcriptional profiles of keratinocytes
significantly changed after in vitro co-culturing with Staphylococcus epi-
dermidis, chosen as a representative of skin commensals. Seven candidate
genes from the GWAS were found overlapping with differential expression in
the co-culturing experiments, warranting further research of the skin com-
mensal and host genetic makeup interaction.

Human-associated microbial communities show individual-specific var-
iation shaped by a multitude of factors1,2. For skin in particular, the
bacterial community composition is strongly influenced by host char-
acteristics, such as skin microenvironment, sex, age and body mass
index (BMI), and to a lesser extent by lifestyle and environmental
expositions3. The genetic influence of the host on skin microbiome
composition and diversity was suggested by findings indicating herit-
ability of up to 56.4% for single taxonomic branches of skin commensals
in twins4. Furthermore, host genetics and skin microbiota interactions
haven been suggested by studies including targeted genes4 and in the
context of inflammatory diseases, such as atopic dermatitis5.

Nevertheless, the influence of host genetics on the skin microbiome is
largely understudied and no dedicated genome-wide association study
(GWAS)ofhost genetics and thebacterial community inhabiting the skin
has been performed so far. This strongly contrasts with what is known
about the human gutmicrobiota, where a variety of associated genomic
loci and pathways has been identified by large GWAS6,7. Together, these
gut microbiome-based GWAS have not only suggested how human
molecularmechanismsmodulate themicrobiome but also indicated the
consequences of such modulation to the host health and disease.

Therefore, we aimed to study the effects of genetics on skin
microbiota across skin microenvironments through meta-analyses of
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GWAS of two German cohorts. To investigate the putative influence of
the skin microbiota in skin diseases we applied Mendelian randomi-
zation (MR) analysis. Finally, putative effects of the skin microbiome
members on the expression of candidate genes identified by GWAS
were tested using normal human epidermal keratinocytes cultured
with the common skin bacterium Staphylococcus epidermidis.

Results and discussion
A total of 1656 skin samples from participants of two cross-sectional,
population-based German cohorts, KORA FF4 (nIndividuals = 324) and
PopGen (nIndividuals = 273)8,9 were analyzed. Skin samples were taken
fromdry [dorsal and volar forearm (PopGen)],moist [antecubital fossa
(KORA FF4 and PopGen)] and sebaceous [retroauricular fold (KORA
FF4) and forehead (PopGen)] skin microenvironments (Fig. 1a–c,
Supplementary Table 1). Microbial community profiles were obtained
from sequencing of the V1-V2 regions from the 16 S ribosomal RNA
(rRNA) gene (see Methods). Genome-wide association analyses were
conducted on univariate relative abundances of individual bacteria
(amplicon sequence variants; ASVs) and non-redundant taxonomic
groups ranging fromgenus to phylum levels (79 in total; seeMethods).
Additionally, multivariate community composition (i.e., beta diversity
as captured by Bray-Curtis dissimilarity) was analyzed for association
with host genetic variation. The umbrella term “microbial feature” will
henceforth be used in this article for all 80 analyzed input data.

We tested the association of microbial features with variation in
4,685,714 human autosomal single nucleotide polymorphisms (SNP),
accounting for main confounders of the skin microbiota (age, sex and
BMI) and genetic background of study participants (see Methods)3,7.
Cohort-wise association results were combined in a meta-analysis
framework according to skin microenvironment, justified by the
observed similarity of the microbiota profiles of samples from the
same microenvironment (Fig. 1d). To assure robustness of association
results, only loci with genome-wide significance (PMeta < 5 × 10−8) and
with nominal significance in both cohorts (P <0.05) were further
considered (see Methods for details).

A total of 23 loci showed a genome-wide significant association
with skin microbial features, of which 22 were linked to univariate
features (Table 1 and Fig. 2a). However, none of these passed the strict
threshold for study-wide significance (P < 6.3 × 10−10 for 80 features

included in the analysis, see Methods). Most of the associations were
found in moist skin microenvironment (n = 11), followed by dry (n = 7)
and sebaceous (n = 5) (Fig. 2b). There was a tendency for a higher
number of associations found in deeper taxonomic levels: the highest
number of significant associations were found at the ASV level (n = 8),
followed by genus level (n = 6; Fig. 2c). Of allmicrobial features deeper
than family level, features within the genus Staphylococcus were
associated with most loci (n = 5; Fig. 2d). Bayesian fine-mapping or
linkage disequilibrium (LD) structure prioritized 462 genetic variants
as potentially causal (Supplementary Data 1). A total of 30 genes were
found of interest for containing potentially causal variants and/or
because these variants were significantly associated with the gene
expression in skin tissue from the GTEx portal10 (Table 1). Of these, 27
were protein coding genes, one an rRNA pseudogene and two long-
non coding RNA (lncRNA) genes (Supplementary Data 2). Most of the
protein coding genes were expressed in skin tissue and found
expressed in different cell types in skin in datasets from previous
studies (seeMethods for details11,12) (Fig. 3). In the next section, wewill
explore the genes of interest with functional roles related to the host-
microbiome interface.

Host functions associated with the human skin microbiota
Genetic variants associated with the skin bacteria were localized in
genes related to pathogen sensing and regulation of response to
pathogens. C1QBP (locus id: 22, lead variant rs2472614, PMeta = 4.7 ×
10−8, associated with ASV086 [Acinetobacter johnsonii]), for instance,
encodes the complement component 1, q subcomponent binding
protein (C1qBP, a.k.a. gC1q-R/p33) and is abundantly expressed in
keratinocytes (Fig. 312). C1qBP is an ubiquitous, multi-ligand, multi-
functional and multicompartmental protein, which also acts as endo-
thelial receptor to plasma proteins from the complement and kinin/
kallikrein systems and is a marker for epithelial cell proliferation13,14.
C1qBP binds to microbial proteins15, including Staphylococcus aureus
protein A16, and therefore, is suggested to play a role in both the
response to and pathogenesis of microbes17. Additionally, DHX33,
(locus id: 22, same locus containing gene C1QBP), and CARD8 (locus id:
23, rs6509364, PMeta= 8.5 × 10−09, associated with the Rhodobacter-
aceae family) encode proteins which regulate inflammasome activity,
which in turn regulate innate immunity caspase 1 activation18. DHX33

Fig. 1 | Characteristics of KORA FF4 and PopGen cohorts. a Female (orange) and
male (blue) composition of cohorts. b age and, c body mass index (BMI) distribu-
tion in cohorts. d ordination of skin microbiome profiles based on Bray-Curtis
dissimilarity and principal coordinates analysis. Samples (n = 1,656) were colored
by the skin site and represent dry [dorsal (D.) forearm (n = 260) and volar (V.)
forearm (n = 251)], moist [antecubital (A.) fossa (n = 318 in KORA FF4, n = 258 in

PopGen)] and sebaceous [seb.; forehead (n = 252) and retroauricular (R.) fold
(n = 317)] microenvironments. Cohort names were abbreviated, PopGen (P) and
KORA FF4 (K). Marginal boxplots are shown to visualize sample distributions along
axes. The boxplot area represents the interquartile range (IQR) divided by the
median. Lines extend to a maximum of 1.5 × IQR beyond the area. Points are out-
liers. Percentage of variation explained by each axis is shown in parentheses.
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Fig. 2 | Results from the GWAS. a Manhattan plot of per skin microenvironment
meta-analysis. Lowest P value of each position is shown and identified by locus ID
and rsID. Meta-analysis P values were obtained using the software METAL and
METASOFT or by combining P values from data sets that originated from dry skin
sites, see Methods. Significant positions are colored according to skin micro-
environment and listed, where leading genetic variant, protein coding genes

selected by fine-mapping as containing possible causal variants and microbial
features are reported. Table 1 contains the list of loci characteristics and genes.
b Count of significantly associated loci permicroenvironment. c Level of microbial
features with highest number of significant associations. d Sub-family features with
the highest number of significant associations.

Fig. 3 | Expression of human genes associated with the skin microbiome in
public databases. Candidate protein coding genes were selected by GWAS in skin.
Upper panel shows the normalized transcriptional expression of genes in skin tis-
sue. Data are from Human Protein Atlas version 20.111, which additionally includes
data sets from theGTEx10 and the Functional annotation of themammalian genome
(FANTOM5)68 projects. Bottom panel shows candidate gene expression in different

skin cell types. Single-cell expressionwas normalizedby cell type. Genes differently
expressed in each cell type in comparison with the others are highlighted. Dis-
played log-normalized gene expression data and differential expression analyses
are retrieved from Solé-Boldo et al.12. Candidate genes were mapped by gene
symbol.
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activates the NLRP3 inflammasome after sensing cytosolic RNA
derived from viruses, bacteria or achaea19,20. CARD8 is structurally
related to NLRP1, a sensor component of the NLRP1 inflammasome,
and has been shown to activate caspase 1 activity in resting T cells and
is a negative regulator of NLRP3 inflamasome21,22. Together, these
results suggest that innate immune components carrying out sensing
and regulatory activities may be involved in shaping the human skin
microbiota.

Associated genetic variants were also localized at genes HTT
(locus id: 5, rs2159173, PMeta = 1.8 × 10−09, associated with ASV093
[Staphylococcus (uncl.)]) and CFAP54 (locus id: 16, rs12423627, PMeta =
6.9 × 10−09, associated with ASV002 [Staphylococcus (uncl.)]), which
encode proteins required for cilia formation in mammalian cells23,24

and expressed in different cell types in skin (Fig. 3). Further, we found
SNPs that were associated with the expression of the transcript
ENSG00000269886 (locus id: 3, rs2664121, PMeta = 4.3 × 10−09, asso-
ciatedwith the genusMicrococcus). Interestingly, the effector alleles of
all of these (rs2664121, rs2075337, rs2543492, rs1300250) were asso-
ciated with the decrease in both tissue expression of
ENSG00000269886 and relative abundance of the genusMicrococcus
(the GTEx portal10 and Supplementary Data 1). ENSG00000269886 is
an lncRNA antisense to the gene TTLL3, which regulates cilia assembly
across eukaryotes25,26. Skin cells do not have motile cilia. Thus, it is
likely that these genes are related to primary cillium, an organelle at
the cell surface that senses extracellular signals, such as chemo-
mechanical signals, osmolarity, pH, oxygen and light27. Primary cillium
is found in various skin cells such as keratinocytes, fibroblasts, mela-
nocytes and Langerhans cells28. Its formation is influenced by the
dynamics of the actin cytoskeleton29, which is regulated by SRGAP3
encoded protein (locus id: 3)30. Together, these results suggest that
extracellular sensing through primary cilium may be involved in the
regulation of the skin microbiota.

Additional associations were observed with SNPs located in genes
involved in cellular differentiation and proliferation. These were RAF1
(locus id: 4, rs709165, PMeta = 4.0 × 10−08, associated with ASV006
[Staphylococcus hominis])31–33 andRGS12 (locus id: 5, rs2159173)34–36, the
latter found abundantly expressed in keratinocytes12 (Fig. 3). Further-
more, SNPS in PDGFRA (locus id: 6, rs55702239, PMeta = 3.5 × 10−08) were
associated with order Bacteroidales and genus Bacteroides. PDGFRA is
abundantly expressed in fibroblasts12 (Fig. 3) and participates in cel-
lular maintenance37 and extracellular matrix production38. Keratino-
cyte proliferation, differentiation and function as well as innate
immune signaling are major forces contributing to the complex
function of the skin barrier. Therefore, it is conceivable that the dis-
covered GWAS associations may represent links between the skin
barrier and members of the skin microbiota.

Expression of candidate genes by keratinocytes co-cultured
with Staphylococcus epidermidis
To gain insights in the putative participation of the identified candi-
date genes in the molecular interaction with the skin bacteria, we
analyzed the in vitro transcriptional profile of normal human epi-
dermal keratinocytes co-cultured with S. epidermidis, an abundant
commensal in human skin39. Transcriptional profiles (six replicates) of
keratinocytes from the foreskin of a 0-year-oldmale donor co-cultured
with the S. epidermidis ATCC 14990 strain clearly differed from the
profiles of controls, keratinocytes that were not co-cultured with
bacteria (Fig. 4a). The S. epidermidis ATCC 14990 strain is a well
characterized laboratory strain which is close to the strains found in
the skin of the participants of the two cohorts studied. This proximity
is suggested by the observation of 100% overlap and identity with the
full length of ASV002 [Staphylococcus (uncl.)] amplicon sequence (307
base pairs), the second most abundant ASV in the whole database
(~10% of rarefied sequences) and the most abundant ASV assigned to
Staphylococcus genus.

A total of 4134 genes were differentially regulated (Supplemen-
tary Data 3), suggesting a strong transcriptional response of human
keratinocytes to S. epidermidis ATCC 14990 strain in vitro. According
to pathway enrichment analysis (Supplementary Data 4), the most
significant biological processes upregulated were related to immune
response, including cytokine-mediated and innate immune responses,
as well as response to virus and symbionts (Fig. 4b). On the other hand,
ribosomal biogenesis, processing of ribosomal RNA and non-coding
RNA were among the most significantly down regulated biological
processes. In this scenario, a quarter of the candidate genes (n = 7)
were differentially expressed (q <0.05 and absolute log2 fold change
>1) when comparing cultures with and without S. epidermidis ATCC
14990 (Fig. 4c).

Based on knockout mouse macrophage cells, the deficiency of
C1QBP protein increases the DNA sensor cyclic GMP-AMP (cGAMP)
synthase-induced innate immune response40. Here, we observed the
downregulation of C1QBP transcription associated with the upregula-
tion of genes belonging to innate immune response (Fig. 4b, c), which
sides with our GWAS suggestion that this gene may play a role in the
regulation of skin bacteria via innate immunity. On the other hand,
DHX33 was downregulated, contrasting to its role in innate immunity
via activation of NLRP3, which transcript was upregulated (Fig. 4c and
see Supplementary Data 3). It is thus likely that the reduced expression
of DHX33 in our assays may be associated with the role of DHX33 in
rRNA synthesis via positive regulation of transcription by RNA poly-
merase I41, being both pathways downregulated (Fig. 4b, c, Supple-
mentary Data 4).

Genes coding for SRGAP3 and TTLL3, of which the lncRNA anti-
sense gene was implied by GWAS, were upregulated (Fig. 4c and
Supplementary Data 3). These observations support our discovered
association of primary cilium and skin bacteria. However, it is impor-
tant to bear in mind that the encoded proteins are not exclusively
related to primary cilium, and their expression in our assays may also
be related to other structures, e.g., cytoskeleton in the case of
SRGAP330, and processes, e.g., proliferation in the case of TTLL326.
Finally, the know role of PDGFRA in fibroblast activity are not directly
translated to keratinocytes37,38. Therefore, the consequences of S. epi-
dermidis-induced in vitro upregulation of PDGFRA in keratinocytes
remain to be investigated.

Our in vitroexperiment is explorative in nature and is limited to its
reductionist approach: it consists of two-dimensional co-cultures of
isolated keratinocytes and a single S. epidermidis laboratory strain. It is
well known that the immunomodulatory effects of S. epidermidis
depend on the specific strain, and that there is a large S. epidermidis
strain level variation. Thus, it is not possible to directly extrapolate our
preliminary functional results to an eventual keratinocyte response to
skin commensals in vivo. A panel of commensal strains as well as
in vitro models closer to the skin physiology, such as three-
dimensional human skin models42, are necessary to uncover the
functional dynamics of the host-commensal cellular interactions.
Nevertheless, our assays allowed for the observation of the transcrip-
tional regulation of several GWAS selected genes, being a starting
point for functional investigations of the roles of these genes in the
interaction with the skin microbiota.

Influence of skin microbiota on non-infectious skin diseases
Summary statistics of univariate microbial features were used as
exposures in 2-samplemendelian randomization (MR; seeMethods) to
assess their influence on non-infectious skin diseases. A total of eight
comparisons passed the per-trait suggestive threshold (q(trait) value
<0.05, Fig. 5), although no comparison passed the global threshold
(q(global) value <0.05; Supplementary Data 5). MR results indicated the
influence of staphylococci in dermatitis/eczema (Staphylococcus
genus, β = 1.5 × 10−03), and further, modulating roles of Flavobacter-
iaceae in two allergy-related traits with microenvironment-specific
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effect direction (βMoist = 8.8 × 10−04; βDry = 1.1 ×10−03). Additional results
suggested involvement of Staphylococcus ASVs in psoriasis (ASV012
[Staphylococcus hominis], β = 4.0 × 10−04), seborrhoeic keratosis
(ASV010 [Staphylococcus (uncl.)], β = 7.2 × 10−04) and vitiligo (ASV012
[Staphylococcus hominis],β = 1.2 × 10−04). Potential protective effects of
staphylococci in allergic rhinitis were also suggested (ASV012 [Sta-
phylococcus hominis], β = −1.1 × 10−03). It is noteworthy that these are
likely coagulase-negative staphylococci, which are typical members of
the skinmicrobiota43. However, theASV-level signals from theMRwere
only weakly or inconclusively supported by the sensitivity analysis
(see Methods, Supplementary Data 5). Together, our findings suggest
that members of the microbiota may modulate the health-disease
balance in skin.

In summary, we conducted the first genome-wide association
analysis dedicated to the human skin microbiota and identified 23
genome-wide significant loci. The combination of samples from dif-
ferent skin microenvironments of participants from two independent
German cohorts allowed for robust results, despite the rather small
number of included participants. The candidate genes have functions
related to innate immune signaling, environmental sensing, cell dif-
ferentiation, proliferation and fibroblast activity. Keratinocyte cultures
challenged with a laboratory strain of S. epidermidis indicated regula-
tion of seven candidate genes identified by GWAS, providing pre-
liminary evidence that GWAS selected genes may be transcriptionally
regulated by skin commensals. MR analysis further supported that
specific skin microbiota features might have causal roles in the
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development of atopic dermatitis, but also suggested modulation of
other non-infections skin diseases.

It needs to be considered that, despite our efforts to integrate
information from different molecular levels and databases to under-
stand the exact mechanisms bywhich the variants influence candidate
gene function(s) and or expression and how this influences the skin
microbiome, further and advanced experiments are needed. Likewise,
it would be important to systematically establish differences in cuta-
neous gene expression with skin type, skin physiology and across age
groups. Nevertheless, our results suggest a close interaction of the
host genetic makeup and associated skin microbiomes. Furthermore,
our findings point to the skin microbiota as a target for disease pre-
vention and management, with potential for the development of per-
sonalized treatments for non-infectious, inflammatory skin conditions.

Methods
Cohorts’ description, genotyping, imputation and
harmonization
PopGen cohort participants were randomly recruited via the local
population registry in Kiel, Germany, and as blood donors of the
University Hospital Schleswig-Holstein, Campus Kiel9. Genotypes
derived from the Affymetrix Genome-Wide Human single nucleotide
polymorphism (SNP) Array 6.0 were quality controlled following a
previously established protocol44 and using the IKMB GWAS Quality
Control Pipeline (https://github.com/ikmb/gwas-qc). Briefly, variants
with excess missing data (>2%) and/or that deviated from Hardy-
Weinberg Equilibrium [HWE, False Discovery Rate (FDR45) P value
<10−5] were excluded. Samples with high missing data (>2%), high
overall increased/decreased heterozygosity rates (i.e., ±5 standard
deviation from the sample mean) and related individuals with a
PLINK46 PI_HAT score >0.1875 were removed. To assess population
structure, we performed a principal components analysis (PCA)
including individuals of the 1000 Genomes Phase3 ref. 47 and
removed outlier individuals not matching a European ancestry.
Imputation was performed with the Michigan Imputation Server48

(Reference Panel: HRCr1.1 2016 (GRCh37/hg19); Array Build: GRCh37/
hg19; rsq filter: off; Phasing Eagle 2.4 (phased output); Population:
EUR; Mode: Quality Control & Imputation) and was followed by
removal of monomorphic variants. These steps were performed
following the miQTL cookbook instructions (https://github.com/
alexa-kur/miQTL_cookbook#chapter-2-genotype-imputation).

KORA FF4 cohort participants from the youngest age group (39-
48 years) that were previously genotyped as part of KORA S4 Survey
were recruited from the southern German city of Augsburg and its two
surrounding counties8. Genotyping and genotyping imputation were

performed by the KORA Study Center. Briefly, genotypes were derived
from the Affymetrix Genome-Wide Human SNP Array 6.0 (KORA F4).
Samples with missing data (>3%), mismatch with phenotypic and
genetic gender and high heterozygosity rates (i.e., ±5 standard devia-
tion from the samplemean)were removed. Sampleswerealso checked
for European ancestry, population outliers and compared with other
existing genotype data of the same individual within the KORA cohort.
Variants with excess missing data (>2%), deviating from HWE (P value
<5 × 10−10) and Minor allele frequency (MAF) (<2%) were removed.
Prephasing was done with SHAPEIT v249 and imputation with IMPUTE
v2.350 (reference panel: 1000 Genomes Phase 3 integrated variant set
release in NCBI build 37).

To harmonize both genotype datasets, resulting VCF (PopGen)
and IMPUTE output (KORA FF4) files were converted to PLINK format
using PLINK v1.946. Participants that had their skin microbiota pro-
filed (see section below) were selected and variants with MAF < 5%
were removed. Genotype Harmonizer v 1.4.23 was used to update the
KORA FF4 allele reference based on the PopGen data. SNPs with
missingness >10% and non-biallelic SNPs were removed from PopGen
data using PLINK v2.0-alpha-avx2-20200217. PopGen SNPs were
references to set alleles in KORA F4 data, which also underwent
removal of variants with missingness <10% and non-biallelic SNPs.
Data sets were merged into PLINK files using PLINK v1.9 which con-
tained SNPs available in both cohorts. Lastly, a principal component
analysis (PCA) was produced with PLINK v1.9 to summarize the
genetic population structure.

Written informed consent was obtained from all study partici-
pants. All protocols were approved by the ethics committees of the
Medical Faculty of Kiel University (PopGen) and of the Bavarian Med-
ical Association (KORA). We have complied with all relevant ethical
regulations.

Sampling collection and microbial profiling
Skin microbiota was sampled as described previously3. Briefly, skin
swabs were taken with Catch-All Sample Collection Swab (Epicentre
Biotechnologies, Madison, WIS) soaked in specimen collection fluid
(SCF-1) from 4 cm2 area of the skin site. Skin sites were selected to
represent moist skin (antecubital fossa in both PopGen and KORA
FF4), sebaceous skin (retroauricular fold in KORA FF4 and forehead in
PopGen), and dry skin (volar and dorsal forearm in PopGen). Skin
swabs were stored at -80 °C until DNA extraction using the QIAamp
UCP Pathogen Mini Kit on an automated QIAcube system (QIAGEN
GmbH, Hilden, Germany) for PopGen and the PowerSoil DNA Isolation
Kit (MoBio Laboratories, Carlsbad, CA) for KORA FF4.

Bacterial profiles were based on the V1 and V2 variable regions of
the gene coding for 16 S ribosomal RNA (rRNA). Briefly, V1-V2 regions
were amplified with PCR performed with the primer pair 27F-338R.
Pooled amplicon libraries were sequenced with MiSeq Reagent Kit v3
on the IlluminaMiSeq (Illumina Inc., SanDiego, CA). Sequencing reads
were processed with DADA2 v1.1051, resulting in an amplicon sequence
variant (ASV) table, which records the number of times each exact ASV
was observed in each sample52. ASV is a finer scale analogue of the
operational taxonomic unit (OTU), which resolves the sequenced
region variant down to a single-nucleotide difference level. ASVs were
taxonomically classified down to genus level using RDP classifier
algorithm based on Ribosomal Database Project (RDP) version 16
release with 50% confidence53,54. Species-level annotations were added
to ASV sequences based on exact matches to the RDP database, using
the function addSpecies() from DADA2 R package. Species-level
abundances were not considered in the GWAS, as these are likely
incomplete and possibly inaccurate55, however annotations can still
serve as proxies for sub-genus level placement of ASVs. Therefore,
their species-level annotations were carried as part of the ASV anno-
tation throughout the manuscript using square brackets, i.e. ASV001
[Propionibacterium acnes] or ASV001 [P. acnes]. Finally, sequences
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were filtered to remove chloroplasts, mitochondria and low abundant
ASVs (less than 0.1% of total sequence counts of a given skin site).
Samples were removed if taken from a site with apparent skin
abnormality or in which corticosteroids or antibiotics were applied in
the last seven days before collection.Microbiota datawasmanipulated
in R 3.6.2 using the Phyloseq package v1.34.056,57. Details on sequen-
cing, read processing and ASV filtering are provided in our previous
study with the same dataset3. Finally, only samples from participants
with genotype data were kept for downstream analysis.

Association of microbial features with host SNPs
The association of SNPs was tested for multivariate (for inferences on
the bacterial community; beta diversity), and univariate microbial
features (for inferences on individual bacterial clades). Beta diversity
was inferred from Bray-Curtis dissimilarities of rarefied amplicon var-
iant (ASV) table (5,000 sequences per sample), calculated in R version
3.6.2 using the Vegan package v2.5-558. Bacterial clades included ASVs
and taxonomic groups ranging from genus to phylum. Taxonomic
groups were obtained by merging the ASV sequence counts that had
the same taxonomy at a certain rank, using the Phyloseq function
tax_glom(). For each skin site, univariate features with a median
sequence count higher than 50and thatwerepresent inmore than 100
participants were kept. In addition, univariate features were kept only
if present in both sites of the same skin microenvironment, i.e., moist,
sebaceous or dry. This effort resulted in 103 bacterial clades. To avoid
redundancy, these clades were clustered together based on a 0.985
Spearman correlation cut-off. Clustering of clades were performed in
each skin microenvironment separately because skin microenviron-
ments have distinct bacterial profiles3. This effort resulted in a total of
79 bacterial features to be tested: 3 phyla, 4 classes, 7 order, 7 families,
15 genera and 43 ASVs.

Statistical tests were conducted for eachmicrobial feature in each
skin site from a single cohort following the framework established
previously7. Because this process generates subsets of the whole data,
additional variant inclusion criteria were implementedwhen necessary
prior association tests. Accordingly, genetic variants were filtered
(MAF > 5%) and coded into numeric features (0 = homozygous for
reference allele; 1 = heterozygous; and 2 = homozygous for alternative
allele). Only non-monomorphic variants were considered for testing.
All tests were performed on the alternative allele as effect allele.

For tests with multivariate microbial features, distance-based
redundancy analysis was performed with the vegan function caps-
cale() with age, sex, BMI and the first ten genetic principal compo-
nents (PCs) as covariates. The variables were selected because they
were found as main confounders of the skin microbiota3 and to
account for the influence of the genetic background. The variance
left unexplained by these covariates was extracted using the R resi-
duals() function. The effect of genetic variants was estimated from
the residual matrix with a distance-based F-test using moment
matching59. For tests with univariate microbial features, zero-
truncated non-rarefied count abundances were used. Outliers were
filtered based on rarefied counts to account for uneven sequencing
depths between samples. Samples were considered outliers when
they deviated more than 5× the interquartile range (IQR) from the
median abundance. Finally, count abundances (non-rarified) were fit
with the Mvabund v4.1.660 function manyglm() in generalized linear
models with negative binomial distributions and the covariates
above mentioned as predictors. The logarithm of the total sequence
counts of each sample was used as offset. Unexplained variance was
extracted using residuals() function, which extracts from manyglm()
models residuals that are normal61. The effect of genetic variants was
estimated from the residuals using linear model. P value was calcu-
lated using the R summary function, which performs a two-sided
t-test.

Microenvironment-wise meta-analysis
Genomic inflation (λGC) was calculated for all tests using the regression
method as implemented in GenABEL v1.8-0 R package62. All values
were below 1.02, indicating no genomic inflation. Because skin
microbiota profiles are distinctive between microenvironments3,
meta-analyses were performed combining data sets that originated
from skin sites of the samemicroenvironment. Therefore, results from
moist skin sites were merged into one meta-analysis and results from
sebaceous skin sites into another, because skin sites from these
microenvironments are from different cohorts. Because the distance-
based F-test applied to multivariate features do not produce beta
values, a fixed effectmeta-analysis was performed withMETAL release
2011-03-2563, with meta-analysis P values (PMeta) and sample size based
weighting. For univariate features, an inverse-variance weighted fixed
effect meta-analysis was performed with METASOFT v264 on beta
values and their standard errors. Meta-analysis results were reported
significant if genome-wide significance (PMeta < 5 × 10−8) was achieved
and the association was found nominally significant in the two skin
sites (P < 0.05). Because samples from the twodry skin sites came from
a single cohort (PopGen), results were combined and considered sig-
nificant if the P value of at least one skin site was genome-wide sig-
nificant (P < 5 × 10−8) with at least nominal significance at the other skin
site (P < 0.05). In this case, the lowest P value was reported as the PMeta

value. The study-wide significance threshold was calculated consider-
ing the number of microbiota features tested (PMeta < 5 × 10−8/
80 = 6.3 × 10−10).

Fine-mapping and gene prioritization
Genes were considered of interest when containing potentially causal
variants and/or these variants were significantly associated with the
gene expression in skin tissue. Fine-mappingwasperformed to explore
the most likely causal set of variants using shotgun stochastic search
algorithm implemented in FINEMAP v1.465. For moist and sebaceous
microenvironments, fine-mapping was performed with summary sta-
tistics (beta values and their standard errors) from meta-analysis. For
dry microenvironment, beta values and their standard errors from
volar forearm were used for fine-mapping. Genes were reported when
intersecting with the range of the 95% posterior credible SNP set
assuming one causal variant as input parameter for the algorithm. If
fine-mapping did not find a credible set (<50 variants), or for beta-
diversity results, geneswith variants with LD >0.6 to the lead SNPwere
reported. SNPs and genes were annotated using the R package bio-
maRt v2.48.066.

To investigate whether genetic variants could affect gene
expression in skin tissues, prioritized variants selected by fine-
mapping or in LD >0.6 were mapped to Genotype-Tissue Expression
(GTEx) Project10 database v8 (lower leg and suprapubic skin tissues).
Briefly, chromosomal positions in genome assembly hg19 (GRCh37)
were converted to hg38 (GRCh38) using LiftOver from the human
genome browser at the University of California Santa Cruz (UCSC)67.
These positions were then mapped to single-tissue cis-quantitative
trait locus (QTL) data downloaded (11/06/2021) from theGTExportal10,
specifically the file GTEx_Analysis_v8_eQTL.tar, which contains genes
of which expression are significantly associated with genetic variants
based on permutations. Only data from skin tissues (suprapubic non-
sun-exposed and lower leg sun-exposed) were used in this analysis.

Expression of genes in skin tissues and cell types
Consensus transcriptional expression of genes in skin tissue were
retrieved from the Human Protein Atlas version 20.111, which addi-
tionally includes data sets from the GTEx10 and the Functional anno-
tation of the mammalian genome (FANTOM5)68 projects. Single-cell
RNA-Seq data of skin from healthy individuals (n = 5) were retrieved
from a recent study by Solé-Boldo et al.12.

Article https://doi.org/10.1038/s41467-022-33906-5

Nature Communications |         (2022) 13:6204 8



Mendelian randomization
Mendelian randomization (MR) was performed using summary sta-
tistics of univariate association analyses as ‘exposures’ and six selected
skin-related traits as ‘outcomes’ (allergy/hypersensitivity/anaphylaxis,
seborrheic keratosis, eczema/dermatitis, hay fever/allergic rhinitis,
psoriasis, vitiligo). Outcome summary statistics were retrieved from
UK Biobank using the R package TwoSampleMR v0.5.569. UK Biobank
originated from the IEU Open GWAS Project database70. All variants in
the microbial ‘exposures’ with an association P value <10-5 were inclu-
ded in the analyses. After harmonization with the exposure data, only
independent variants were retained using the clump_data() function
with default parameters. Additionally, variants with an F statistic <10
were excluded from the analysis to avoid weak instrument bias71. In
case of more than two independent retained variants, inverse variance
weighted (IVW) MR analysis was performed as primary analysis,
otherwise Wald-ratio was calculated. For exposures with more than
two instrument variables, weighted mean, and MR Egger regression
were performed for sensitivity analysis. MR Egger regression with non-
significant beta values (P >0.05) and weightedmedianMR results with
significant (P < 0.1) and concordant effect direction to the IVW MR
analysis were regarded as supporting. P values of the primary MR
analysis (IVW or Wald-ratio) were corrected for multiple testing using
per-trait and global FDR correction36. All MR analyses were conducted
in R v3.6.1.

Keratinocytes co-culture with Staphylococcus epidermidis
Normal human epidermal keratinocytes (NHEKs) (foreskin of a 0-year-
old male Caucasian donor; Promocell, Heidelberg, Germany, Lot
number 407Z001) were cultured in Keratinocyte Growth Medium
(KGM; Lonza Biosciences, Walkersville, USA) + supplements + CaCl2 +
penicillin/streptomycin at 37 °C and 5% CO2. Cells were used at pas-
sages 4-6. Keratinocyteswere seeded into 6-well plates and grownuntil
confluency. Staphylococcus epidermidis (Winslow and Winslow) Evans
(ATCC 14990)was cultured inTryptic Soy Broth (TSB; Thermo Fischer,
Waltham, USA)medium at 37 °C. For co-cultivationwith keratinocytes,
bacteria were centrifuged, resuspended in KGM+CaCl2, and added to
the keratinocytes at anoptic density (OD) of 0.1 in KGM+CaCl2. A total
of six replicates of each condition, with and without the addition of S.
epidermidis, were performed, two replicates per weekly batch. Plates
were centrifuged at 350 x g for 5min to allow bacteria to settle on the
bottom. After 3 h incubation, plates were washed, and KGM+CaCl2
with gentamycin was added for a further incubation of 23 h at 37 °C
and 5% CO2. Plates were washed twice before RNA isolation using
Trizol (Thermo Fischer, Waltham, USA) as per manufacturer’s
instruction.

Sequencing libraries were prepared using TrueSeq Stranded
mRNA kit (Illumina Inc., San Diego, USA). Sequencing was performed
on the Illumina NovaSeq 6000 platform (Illumina Inc., San Diego,
USA) with 2 × 50 base pairs length. Raw sequences were processed
using the nf-core/rnaseq pipeline v3.072,73, which includes adapter
quality trimming with Trim Galore (https://github.com/FelixKrueger/
TrimGalore), removal of ribosomal RNA with SortMeRNA74, align-
ment with STAR75 and transcript quantification with Salmon76. The
human genome assembly hg19 was used as reference. Differentially
expressed genes were detected with the R package DESeq2 v.1.30.077.
Wald test was performed with negative binomial generalized linear
models, which included the weekly batch and whether S. epidermidis
was added to the culture or not (~batch + condition). P were cor-
rected for multiple testing using the FDR method45. Approximate
posterior estimation for generalized linear model (apeglm78)
shrinkage was applied to logarithmic (log2) fold change (LFC).
Results were considered significant based on q values (<0.05) and
LFC (absolute LFC > 1). Enrichment of expressed genes up and down
regulated were performed using the R package enrichR v3.0 and the
GO_Biological_Process_2021 database79. Enriched pathways were

considered significant based on q values (<0.05; Fisher exact test). To
get an overview of the effect of the S. epidermidis addition to kera-
tinocyte cultures, transcriptional profiles were visualized through
principal component analysis (PCA). First, variance stabilizing
transformation (VST) from the R package DESeq2 v.1.30.077 was
applied to the transcriptional data. PCA was performed as imple-
mented in the R package PCAtools v. 2.4.080.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw 16 S rRNA gene amplicon sequences of PopGen participants were
deposited at the European nucleotide archive (ENA) under accession
code PRJEB41215. GWAS summary statistics generated in this study are
available at GWAS catalogue under accession codes GCST90133164-
GCST90133313. Phenotype data from PopGen individuals can be acces-
sed through the Material Data Access Form from the PopGen Biobank
(Schleswig-Holstein, Germany). Information about the Material Data
Access Form andhow to apply can be found at http://www.uksh.de/p2n/
Information+for+Researchers.html. KORA data are available at https://
www.helmholtz-munich.de/en/kora/for-scientists/cooperation-with-
kora/index.html upon request by means of a project agreement. In
addition, the following public database and resources were used: 1000
Genomes Phase3 ref. 47, Ribosomal Database Project (RDP) version 1654,
Genotype-Tissue Expression (GTEx) Project database v810, Functional
annotation of the mammalian genome (FANTOM5)68, Skin single-cell
data from by Solé-Boldo et al.12, UK Biobank and the IEU Open GWAS
Project database70.

Code availability
Code used in the analysis are available at https://github.com/LucasMS/
skin.mgwas.pub81.
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