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A B S T R A C T   

We developed a bio-cheminformatics method, exploring disease inhibition mechanisms using machine learning- 
enhanced quantitative structure-activity relationship (ML-QSAR) models and knowledge-driven neural networks. 
ML-QSAR models were developed using molecular fingerprint descriptors and the Random Forest algorithm to 
explore the chemical spaces of Chalcones inhibitors against diverse disease properties, including antifungal, anti- 
inflammatory, anticancer, antimicrobial, and antiviral effects. We generated and validated robust machine 
learning-based bioactivity prediction models (https://github.com/RatulChemoinformatics/QSAR) for the top 
genes. These models underwent ROC and applicability domain analysis, followed by molecular docking studies to 
elucidate the molecular mechanisms of the molecules. Through comprehensive neural network analysis, crucial 
genes such as AKT1, HSP90AA1, SRC, and STAT3 were identified. The PubChem fingerprint-based model 
revealed key descriptors: PubchemFP521 for AKT1, PubchemFP180 for SRC, PubchemFP633 for HSP90AA1, and 
PubchemFP145 and PubchemFP338 for STAT3, consistently contributing to bioactivity across targets. Notably, 
chalcone derivatives demonstrated significant bioactivity against target genes, with compound RA1 displaying a 
predictive pIC50 value of 5.76 against HSP90AA1 and strong binding affinities across other targets. Compounds 
RA5 to RA7 also exhibited high binding affinity scores comparable to or exceeding existing drugs. These findings 
emphasize the importance of knowledge-based neural network-based research for developing effective drugs 
against diverse disease properties. These interactions warrant further in vitro and in vivo investigations to 
elucidate their potential in rational drug design. The presented models provide valuable insights for inhibitor 
design and hold promise for drug development. Future research will prioritize investigating these molecules for 
mycobacterium tuberculosis, enhancing the comprehension of effectiveness in addressing infectious diseases.   

1. Introduction 

Chalcones, an important subclass within the flavonoid family of 
organic compounds, exhibit a unique structural arrangement, charac
terized by three aromatic rings (A, B, and C) linked through an α, 
β-unsaturated carbonyl system[1,2]. This distinctive arrangement not 
only defines their chemical identity but also plays a pivotal role in their 
diverse biological activities. Naturally occurring in various plants, 
chalcones have attracted considerable attention due to their 

wide-ranging biological effects[3]. These compounds exhibit a broad 
spectrum of biological activities, including cytoprotective and regula
tory functions, which are essential for their diverse therapeutic appli
cations. Their roles in reducing inflammation and combating cancer, 
malaria, tuberculosis, and microbial infections highlight their thera
peutic potential, particularly in developing new treatments for infec
tious diseases [4–7]. 

Chalcones with specific substitutions on their aromatic rings have 
shown significant biological effects. Chalcones with a trifluoromethyl 
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group in ring B and a 3,4,5-trimethoxy substitution in ring A have shown 
strong antiproliferative effects against cancer cells. Similarly, de
rivatives with certain substitutions have exhibited notable antifungal 
and antibacterial activities [8,9]. The presence of electron-withdrawing 
groups can enhance anti-inflammatory activity, while specific sub
stitutions on the phenyl ring can improve anti-hyperglycemic effects. 
Recently, chalcones have also shown promise against mycobacterium 
tuberculosis, indicating their potential in developing new tuberculosis 
treatments. The growing interest in their anti-mycobacterial capabilities 
further indicates their potential to develop new treatments for infectious 
diseases [10,11]. 

Previous studies have highlighted the diverse biological activities of 
chalcones, yet the mechanisms underlying their interactions with bio
logical systems remain to be fully elucidated. The limitations of prior 
approaches include a lack of comprehensive analysis integrating both 
biological and chemical perspectives. To address these gaps, we used the 
knowledge-based system biology network and molecular modeling 
methods to identify chemical and biological co-interactions and to 
create mechanistic modeling of the study. In this study, a three-step 
approach was used to investigate chalcone-based small molecules and 
their interactions with biological systems. Primarily, we employed the 
systems biology network approach for identifying crucial cellular com
ponents, biological processes, and pathways interacted by genes in a 
polypharmacology analysis. Then, we used a random forest machine 
learning algorithm to build “Quantitative Structure-Activity Relation
ship” (QSAR) models that helped unravel chemical mechanisms asso
ciated with genes identified in the previous step. Besides, the bioactivity 
of chalcone derivatives was predicted and compared with FDA-approved 
drugs based on previously observed inhibitory activity. Finally, molec
ular docking studies were carried out to uncover structure-function re
lationships and biological mechanisms of chalcones derivatives. In 
addition, to gain insight into their behavior we subjected the most 
promising molecules to molecular dynamics simulations examining 
their interactions with target proteins over time. Thus, the objectives of 
this work provided valuable insights into how these molecules interact 
with specific genes and biological processes, revealing potential mech
anisms of action. 

2. Methods and materials 

In this manuscript, we utilized a bio-cheminformatics method to 
analyze the spectrum of genes, expressed pathways, and cellular com
ponents. Our methodology involved identifying common genes involved 
in fungal, inflammatory, cancer, microbial, and viral diseases. Key bio
logical pathways, processes, cellular components, and KEGG pathways 
showed significant biological interactions with these common genes. We 
performed molecular modeling studies on our target genes (AKT1, SRC, 
HSP90AA1, and STAT3) to establish mechanistic interpretations of 
compounds using an integrated QSAR approach. Furthermore, molecu
lar dynamics simulations were conducted to understand the molecular 
behavior of these target proteins, providing mechanistic insights.  
Table 1 shows a representation of the computational tools and algo
rithms used for mechanistic bio-chemoinformatic insights. 

2.1. Data set collection 

We collected a comprehensive dataset of chalcone-based compounds 
synthesized in our laboratory. These compounds were selected based on 
their structural diversity and potential biological activities (Fig. 1) [12, 
13]. 

2.2. ADME prediction and drug likeliness 

To understand the pharmacokinetics study of the synthesized com
pounds, it is essential to evaluate their physicochemical properties 
profile, which includes Absorption, Distribution, Metabolism, and 

Excretion (ADME). We utilized the SMILES data of the compounds and 
curated ADME physicochemical properties using the SwissADME server 
(https://www.swissadme.ch). These properties demonstrated various 
parameters such as lipophilicity, water solubility, drug-likeness rules, 
gastrointestinal (GI) absorption, blood-brain barrier (BBB) permeation, 
P-gp substrate status, cytochrome-P enzymes inhibition, and PAINS 
(Pan-Assay Interference Compounds) of the selected compounds[14] 
[15]. 

2.3. Identification of gene targets 

Firstly, the molecular targets of the synthesized compounds were 
determined using the Swiss Target Prediction server (https://www.swiss 
targetprediction.ch). [15]. After that, we filter out genes based on a 
probability score that is greater than or equal to 0.40. Secondly, we 
curated disease-associated genes from the “Human Gene Database” 
(GeneCards, http://www.genecards.org)[16] and the “Online Mende
lian Inheritance in Man” (OMIM, https://www.omim.org/)database 
[17]. Finally, we plotted the Venn diagram to identify common genes 
between the compounds and disease-specific genes. These combined 
approaches provided valuable insights into potential molecular targets 
of the compounds and their relevance to different target genes. 

2.4. Constructing and visualizing protein-protein interaction networks 
using STRING and cytoscape 

To explore how proteins interact with each other, We began by 
integrating the common genes identified from both compound targets 

Table 1 
Computational tools and algorithms for mechanistic bio-cheminformatics 
insights.  

Tools / Methods used Background of 
Methodology 

Key Function and Motive 

Swiss ADME 
http://www.swiss 
adme.ch/ 

Online tool for predicting 
ADME properties of small 
molecules 

To assess the absorption, 
distribution, metabolism, 
and excretion properties of 
compounds 

Swiss Target 
Prediction 
http://www.swisst 
argetprediction.ch/ 

Online tool for predicting 
the targets of bioactive 
small molecules 

To identify potential 
molecular targets for 
chalcone derivatives 

Venn Plot 
https://bioinfo 
rmatics.psb.ugent. 
be/webtools/Venn/ 

Online tool for creating 
Venn diagrams 

To visualize overlapping 
genes involved in multiple 
diseases 

ShinyGO/ DAVID / 
FunRich 3.1.3 

Functional annotation 
tools for bioinformatics 
and microarray analysis 

To identify and analyze 
biological pathways, 
processes, and cellular 
components 

Machine Learning 
Assisted QSAR 
Study (Random 
Forest) 

Weka software for 
machine learning 

To develop QSAR models 
predicting the bioactivity of 
chalcone derivatives 

PaDEL package 
(PaDELpy-0.1.13) 

PaDELpy-0.1.13 for 
descriptor calculation and 
QSAR modeling 

To calculate molecular 
descriptors and perform 
QSAR modeling 

StreamLit web App Web application for 
bioactivity prediction 

To provide a user-friendly 
interface for predicting the 
bioactivity of compounds 

Cytoscape 3.10.2 Software for network 
analysis and visualization 

To visualize and analyze 
biological networks and 
interactions 

Auto Dock Automated docking tools 
suite using a genetic 
algorithm for simulations 

To predict binding affinities 
of compounds to protein 
targets and screen large 
libraries 

Desmond 
(Schrödinger 
Software) 

Software for molecular 
dynamics simulations 

To simulate the molecular 
behavior and interactions of 
compounds with target 
proteins  
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and disease-specific targets into the STRING database to map out 
protein-protein interactions (PPI) (https://string-db.org/)[18]. After 
mapping, we took this data for further analysis using the Cytoscape 
plug-in, along with an extension called CytoHubba. These tools were 
instrumental in helping us visualize the complex network of interactions 
among the compounds and their target proteins. In this network, nodes 
represent the compounds and targets, while the edges depict the in
teractions between them [19]. 

2.5. Gene ontology (GO) analysis 

To examine cellular components, biological pathways, and pro
cesses, we utilized FunRich 3.1.3 for gene ontology analysis[20]. 
Additionally, the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[21] was employed to identify common pathways associated with the 
selected targets. We considered a p-value lower than 0.05 to be statis
tically significant, indicating the relevance of our findings. We also used 
ShinyGO 0.80 for KEGG pathway network analysis[22]. 

2.6. Machine learning assisted QSAR study 

All modeling processes are done using the Python programming 
language in Google Colab, facilitated by the Scikitlearn package (version 
1.0.2). 

2.6.1. Data collection and pre-processing 
We used the panda’s library for effective manipulation of structured 

data including data frames. The chembl_webresource_client library, 
which is specifically made to query bioactive molecules and biological 
activities, helped us access the ChEMBL database. This technique 
generated a complete dataset of inhibitors against AKT1, SRC, 
HSP90AA1, and STAT3. For each gene, there were 4170 AKT1 inhibitors 
in the dataset, 5172 SRC inhibitors, 1369 HSP90AA1 inhibitors, and 
1437 STAT3 inhibitors along with their corresponding IC50 values. 
These molecules were divided into three categories based on their IC50 
values: active (IC50 <1000 nM), intermediate (1000 nM< IC50 <10 μM), 
and inactive (IC50 >10 μM). The next step involved further exploratory 

data analysis regarding the inhibitory characteristics of these com
pounds that included the molecular weight, and ALogP among others as 
considered by Lipinski’s rule of five descriptors. We could understand 
more about the distribution as well as properties of molecules in our 
research through this analysis. 

2.6.2. Molecular fingerprints calculation 
For generating the molecular features of compounds, we employed 

the PaDELPy script. This script utilizes the PubChem fingerprints pro
vided by the PaDEL package (version PaDELpy-0.1.13) to model the 
compounds[23]. The fingerprint set comprises 881 binary representa
tions that capture various chemical structural fragments recognized by 
PubChem. To optimize the accuracy and efficiency of feature genera
tion, we configured several parameters within the PaDEL package. These 
settings included enabling the detection of aromaticity, standardization 
of nitrogen and tautomers, and removal of salts. Additionally, we set the 
number of processing threads to 2 to balance computational load and 
speed[24–26]. 

2.6.3. Feature selection 
During the feature selection phase, we aimed to refine our dataset by 

eliminating less informative features. Specifically, we removed features 
with a variance lower than 0.1 and those demonstrating high correlation 
(greater than 0.95) to reduce redundancy and enhance model perfor
mance. We also processed descriptors with high inter-correlation, using 
a specified cut-off value for the inter-correlation coefficient to ensure 
that our models used the most informative and independent features. 
This careful selection of descriptors is critical for the reliable prediction 
of inhibitor efficacy. The impact of this process varied across different 
target genes: for AKT1, out of the original 881 features, only 213 
remained after removing those with low variance and high correlation. 
Similarly, for SRC, 241 features were retained; for HSP90AA1, the pro
cess left 253 features; and for STAT3, 262 features remained. This se
lective approach ensured that only the most relevant and distinct 
features were carried forward for further analysis, significantly 
enhancing the robustness and interpretability of our results. 

Fig. 1. Structural diagrams of chalcone-based derivatives (RA1-RA10).  
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2.6.4. QSAR model construction 
We constructed QSAR models for four different targets: AKT1, SRC, 

HSP90AA1, and STAT3, using the ChEMBL dataset. Each dataset was 
divided into training and test sets using the Kennington Stone algorithm, 
with an 80:20 split ratio (DTClab.Https://Dtclab.Webs.Com/Softw 
are-Tools; Github.Https://Github.Com/Dataprofessor/Code/Tree/ 
Master/Python;Padel.Http://Www.Yapcwsoft.Com/Dd/Padel 
descriptor/) [27]. 

2.6.5. Development and validation of random forest-based QSAR models 
We developed Random Forest (RF)-based QSAR models for datasets 

from ChEMBL, specifically targeting AKT1, SRC, HSP90AA1, and STAT3. 
These models were constructed using the Weka software suite ((Weka. 
Https://Www.Cs.Waikato.Ac.Nz/Ml/Weka/) [28]. RF, a supervised 
machine learning technique, utilizes an ensemble of decision trees to 
enhance prediction accuracy and robustness, addressing the common 
issue of overfitting in standalone decision trees. The training of the RF 
models was performed using the Bagging or Bootstrap aggregation 
technique. This method not only helps in reducing variance but also 
improves the generalization of the model over unseen data. To validate 
the performance of these QSAR models, we compared the correlation 
coefficient (R2) between the training and test datasets. The most valu
able features were identified through the application of the RF Regressor 
algorithms for the RF models, which were then depicted in Variance 
Importance Plots (VIP). A graphical comparison of experimental versus 
predicted values for each QSAR model was conducted using the mat
plotlib Python package(Github. Https://Github.Com/Vappiah/Machine- 
Learning-Tutorials). 

In addition to these methods, the performance of the QSAR models 
was also evaluated using receiver operating characteristic (ROC) graphs, 
generated by a pre-existing Python script designed for multi-class model 
classification. The ROC plots are crucial for visualizing the trade-off 
between true positive (TP) and false positive (FP) rates, with the area 
under the curve (AUC) serving as a quantitative measure of model 
discriminative ability. An AUC closer to 1 indicates a highly effective 
model, while an AUC near 0 suggests total misclassification [29]. Lastly, 
the applicability domain (AD) of the QSAR models was assessed using 
the bounding box technique via principal component analysis (PCA). 
This technique involved a PCA examination of the scores plot to 
compare the chemical space of molecules from the training and test sets. 
The AD was determined using the PCA function from the sklearn 
decomposition module of the scikit-learn machine learning toolkit [30] 
(Scikit-Learn. Https://Github.Com/Scikit-Learn/Scikit-Learn.Git.) 
[31-33]. 

2.7. Molecular docking 

A molecular docking approach was employed to evaluate the 
inhibitory potential of chalcone derivatives across various activities, 
including antibacterial, anticancer, antidiabetes, anti-inflammation, and 
antifungal effects. The protein structures pertinent to the investigation, 
namely AKT1 (PDB ID: 4EJN)[34], SRC (PDB ID: 2OIQ)[35], HSP90AA1 
(PDB ID: 3O0I)[36], and STAT3 (PDB ID: 6NJS)[37], were sourced from 
the Protein Data Bank in PDB format. Active sites within each protein 
structure were pre-delineated to facilitate docking by constructing grid 
boxes around the co-crystallized ligand. The AutoDock Tools software 
[38] was then employed to prepare the protein molecules. This process 
involved rectifying missing residues, eliminating water molecules, 
adding polar hydrogens, and applying Kollman charges. The resulting 
protein structures were saved in pqbqt format. Ligand molecules’ 2D 
structures underwent conversion to 3D structures using the MMFF94 
force field within the AutoDock Vina software. These transformed ligand 
structures were saved and converted to pdbqt format utilizing the Open 
Babel GUI. In the final step, a Perl script, in conjunction with Perl 
software, facilitated the docking of all ligand molecules against the 
protein structures. The resulting binding affinities or docking scores for 

each ligand molecule and respective target receptor were quantified in 
kcal/mol units. To glean insights into the molecular interactions, Pymol 
and Discovery Studio Visualizer were employed, enabling an in-depth 
exploration of ligand binding interactions with the most favorably 
binding proteins. 

2.8. Molecular dynamic 

To explore the stability of the most promising molecule in biological 
conditions, we carried out molecular dynamics (MD) simulations. These 
simulations are essential for understanding how the molecule behaves in 
a solvent environment. We set up the simulation in an orthorhombic box 
with dimensions of 12 Å on each side, using the buffer size method to 
optimize the volume of the box. The simulations were conducted using 
the TIP3P water model and the OPLS3e force field by Schrodinger Inc., 
which are standards for simulating proteins and ions. Sodium chloride 
was added to the system at a concentration of 0.15 M to mimic physi
ological conditions, with sodium (Na+) and chloride (Cl-) ions. The 
simulations ran for 200 nanoseconds using the Desmond Molecular 
Dynamics module, producing around 1000 snapshots of the system’s 
behavior[39]. These were performed under the NPT ensemble, main
taining a constant temperature of 300 K and a pressure of 1 bar, 
ensuring the system was equilibrated before the simulations began. 

3. Results 

3.1. ADME prediction and drug likeliness 

ADME parameters are crucial for predicting the pharmacokinetic 
behavior of compounds in drug discovery. Using the SwissADME data
base, we evaluated the structural and physicochemical properties of our 
selected compounds to determine their drug-like potential and phar
macokinetic profiles. The physicochemical properties and pharmacoki
netic profile of the selected compounds are depicted in Table s1. (See 
Supplementary file s1 for more information on Table s1). All combi
nations shared an identical bioavailability score of 0.55, indicating 
moderate bioavailability. None of the compounds exhibited any PAINS 
alerts, suggesting a lack of common structural motifs associated with 
assay interference. Most of the compounds exhibited inhibitory activity 
against different Cytochrome P450 (CYPs) enzymes, which could have 
an impact on drug metabolism and potential drug-drug interactions. 
Nonetheless, these compounds were predicted not to be substrates for P- 
glycoprotein (Pgp), thus reducing the risk of interference by efflux 
transporter that is mediated through this protein. All the compounds 
presented high gastrointestinal (GI) absorption implying good absorp
tion in the gastrointestinal tract while none of them was expected to 
cross the blood-brain barrier (BBB). All tested compounds were Lip
inski’s Rule of Five compliant which suggests that they possess favorable 
drug-like characteristics concerning their oral absorption and distribu
tion. The Silicos-IT classification categorized most compounds as poorly 
soluble solvents except Compound RA8 which was moderately soluble. 
RA4 compound had the highest Molar refractivity of 130.94 indicating a 
likelihood for considerable intermolecular interaction as well as polar
izability whereas compound RA8 had the least with 86.05 molar 
refractivity. Furthermore, there was a variation in the topological polar 
surface area where Compound RA4 showed the highest value (95.12 Å2) 
increasing its solubility and permeability while Compound RA5 had the 
lowest value (58.2 Å2) affecting its pharmacokinetic properties. 

3.2. Compound and disease targets 

We curated molecular targets of compounds from the Swiss target 
prediction server and disease-associated genes of four diseases from the 
Human gene and OMIM databases (See Supplementary file, s1). The 
Venn diagram demonstrates the intersection of 346 targets related to 
bacterial diseases, 346 targets associated with inflammation, 364 targets 
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linked to cancer, 349 targets relevant to diabetes, and 220 targets about 
fungal diseases. These intersections represent the common gene targets 
shared between compounds and the specified diseases’ s genes (Fig. 2). 

3.3. PPI network analysis 

The PPI network was constructed using the STRING database, 
explicitly focusing on target organisms from Homo sapiens. This analysis 
compares five biological networks: bacterial, cancer, diabetes, fungal, 
and inflammation. The networks were constructed using data from the 
STRING database and visualized in Cytoscape after importing the data in 
a.tsv format[40]. For each network, the number of nodes and edges was 
recorded: bacterial network (345 nodes, 4342 edges), cancer network 
(363 nodes, 4555 edges), diabetes network (348 nodes, 4412 edges), 
fungal network (220 nodes, 2814 edges), and inflammation network 
(345 nodes, 4457 edges) (See Supplementary file, s2 for Hub gene_
string data). 

The analysis revealed a substantial number of network properties. 
The average local clustering coefficient, which is an indication of the 
level to which nodes tend to show mutual clustering, was found to be 
0.458 for the bacterial network, 0.459 for the cancer network, 0.462 for 
the diabetes network, 0.52 for the fungal network, and 0.457 for the 
inflammation network. These high clustering coefficients suggest strong 
local connectivity within each network, indicating robust interactions 
among the proteins involved. Additionally, the PPI enrichment p-value 
for all networks was less than 1.0 * 10− 16, highlighting the statistically 
significant enrichment of protein-protein interactions compared to a 
random network. The average node degree, which represents the 
average number of connections per node, was 25.2 for the bacterial 

network, 25.1 for the cancer network, 25.4 for the diabetes network, 
25.6 for the fungal network, and 25.8 for the inflammation network. 
These values suggest a high level of interaction and potential functional 
importance of the proteins within these networks. The average shortest 
path length, indicating the average number of steps required to connect 
any two nodes, was 2.46 for the bacterial network, 2.48 for the cancer 
network, 2.46 for the diabetes network, 2.26 for the fungal network, and 
2.44 for the inflammation network. This indicates efficient communi
cation and the potential for rapid signal transduction within these net
works. Furthermore, we analyzed the network diameter and radius 
which indicate the maximum and minimum path in a network respec
tively. The bacterial, cancer, and inflammation networks had a diameter 
of 6 units and a radius of 3 units while diabetes and fungal networks had 
a diameter of 6 units and a radius of 4 units. These structural charac
teristics provide insights into the overall connectivity and resilience of 
the networks. Detailed analysis of these network properties provides 
valuable insights into complex interactions and the functional signifi
cance of the proteins involved. The high clustering coefficients as well as 
node degrees suggest that these networks are highly interactive; this is 
important when it comes to understanding underlying biological pro
cesses as well as possible therapeutic targets. Besides, the average 
shortest path lengths that indicated efficient communication pathways 
further emphasize the relevance of these networks in maintaining 
cellular functions and responses. 

Fig. s1A and s1B display the common genes of compound and target 
interactions that were constructed using String. The top 10 targets were 
analyzed for network analysis, and the degree of freedom for each target 
was reported in Table s2 and Fig. 3 and visualized from Cytoscope. 
The top ten genes shared across the five diseases, AKT1, SRC1, 

Fig. 2. Overlapping targets between the potential compound’s targets and disease-related genes using Ven Plot Diagram.  
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Fig. 3. Top 10 Gene Target Interactions in Four Diseases Visualized through Cytoscape and Analyzed Using Network Analysis.  
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HSP90AA1, and STAT3 exhibited strong associations in all five diseases. 
These four genes were selected based on their degree scores, ranging 
between 91 and 148. Genes such as AKT1, SRC, HSP90AA1, and STAT3 
consistently displayed the highest degrees in each disease network, 
exceeding 110, except in the fungal network where their degrees were 
above 90. Notably, AKT1 demonstrated significant prominence, ranking 
first in bacterial, inflammation, and cancer networks with scores of 148, 
149, and 149, respectively. In the fungal and diabetes networks, AKT1 
also maintained high significance, ranking first with scores of 119 and 
148, respectively. AKT1, a serine/threonine kinase, plays a crucial role 
in various cellular processes including cell survival, proliferation, and 
metabolism [41]. In bacterial infections, for example, the host immune 
response and pathogen invasion mechanisms are modulated by AKT1 
signaling pathway activation. In cancer, AKT1 dysregulation frequently 
leads to tumor growth and reduced responsiveness to conventional 
treatments. Additionally, its involvement in glucose metabolism and 
insulin signaling makes it an important target for the treatment of dia
betes. Furthermore, antifungal immune responses are modulated by 
AKT1 signaling but also could be used as a potential host enhancer 
through its inhibition within this system [42]. 

SRC, a non-receptor tyrosine kinase, plays a pivotal role in signal 
transduction pathways that govern cell growth, motility, and invasion. 
In bacterial infections, SRC has been linked to host cell invasion and the 
intracellular survival of pathogens [43]. In the realm of cancer, SRC is 
frequently overexpressed, promoting tumor progression and metastasis. 
Furthermore, SRC participates in insulin signaling and glucose meta
bolism, making it relevant to diabetes research. Additionally, SRC acti
vation is involved in inflammation-related processes, contributing to the 
pathogenesis of various diseases[44]. SRC, a key cellular motility and 
adhesion regulator, contributes to fungal invasion and dissemination. 
Targeting SRC using specific inhibitors may impede fungal spread and 
improve treatment outcomes. HSP90AA1, a heat shock protein, is a 
molecular chaperone that plays a pivotal role in protein folding and 
stability. In bacterial infections, HSP90AA1 facilitates bacterial viru
lence by promoting the stability of bacterial effectors. 

Within the cancer domain, HSP90AA1 acts as a critical chaperone for 
oncoproteins and proteins associated with drug resistance[45]. Its 
implication in insulin resistance and β-cell dysfunction highlights its 
relevance in diabetes disease. Moreover, HSP90AA1 is involved in in
flammatory responses across various diseases. HSP90AA1 functions as a 
chaperone for fungal proteins, essential for fungal survival and viru
lence. Disrupting HSP90AA1’s function has been explored as a strategy 
to weaken fungal pathogens. STAT3, a transcription factor, is essential in 
cell survival, proliferation, and immune responses[46]. The inflamma
tion and immune responses of the host to bacterial invasion are modu
lated by the STAT3 signaling. Tumor growth and immune evasion in 
cancer are also promoted by STAT3 activation. In diabetes, pancreatic 
β-cell function and insulin signaling are impacted by STAT3. It also 
mediates inflammatory processes which contribute to disease patho
genesis. During fungal infections, STAT3 plays a vital role in orches
trating immune responses, and inhibiting its activity could enhance the 
host’s antifungal defense mechanisms [47,48]. The analysis of protein 
ranking across diverse biological networks offers valuable insights into 
the relative significance of AKT1, SRC, HSP90AA1, and STAT3 in various 
cellular processes and disease contexts. The consistently high rankings 
of these proteins suggest their crucial roles in cellular regulation, signal 
transduction, and disease development. Based on the Cytohubba anal
ysis, all synthesized compounds exhibited the highest score, indicating 
their interactions with the maximum number of identified targets in all 
five diseases, achieving a score of 100. Previous research has highlighted 
the potential of chalcone-based novel phenyl ureas as effective anti
hyperglycemic agents with a likely PPAR gamma agonistic action. 

3.4. Gene ontology 

We performed a functional enrichment analysis using the FunRich 

software on the top 10 targets selected based on their degree. However, 
the degree of gene targets has different ranks; all targets, diabetes, 
inflammation, fungal, bacterial, and cancer, have almost the same 10 ten 
degrees of genes identified. Based on the data analysis of target genes, all 
diseases have the same cellular component, biological pathway, and 
process. Fig. 4 illustrates the top 10 Biological Pathway Annotations, 
Cellular Component Annotations, and Biological Process Annotations. 
Among the top 10 biological pathways identified, the following path
ways were found: NGF signaling via TRKA from the plasma membrane 
80 %, Signaling by EGFR 70 %, Signaling by FGFR 70 %, ErbB2/ErbB3 
signaling events 60 %, Signaling by PDGF 70 %, Downstream signal 
transduction 70 %, Signalling by NGF 80 %, Signaling by SCF-KIT 70 %, 
VEGFR1 specific signals 60 %, IL2-mediated signaling events 80 %. 

From previous studies, we can conclude that these pathways are 
involved in the development of diabetes, inflammation, fungal in
fections, bacterial infections, and cancer. Nerve Growth Factor (NGF) is 
a neurotrophic factor involved in neurons’ development, survival, and 
function. Enriching genes in this pathway suggests their potential roles 
in mediating NGF signaling through its receptor TRKA (NTRK1). SRC, 
STAT3, and MAPK1, in particular, are known to be involved in neuronal 
signaling and synaptic plasticity, and they may play important roles in 
the downstream events of NGF-TRKA signaling[49]. Interleukin-2 (IL-2) 
is a cytokine central to regulating immune responses. Enriching genes in 
this pathway suggests their potential roles in mediating IL-2 signaling 
events. SRC and STAT3 are known to be involved in immune cell 
signaling and activation. In cancer, IL-2 has been used as an immuno
therapy to stimulate the immune system’s anti-tumor response, and SRC 
and STAT3 may be involved in the downstream effects of IL-2-mediated 
immune activation[50]. EGFR signaling is closely linked to various types 
of cancers, including lung cancer, breast cancer, colorectal cancer, and 
head and neck cancer. Dysregulation of EGFR, such as overexpression or 
activating mutations, can lead to uncontrolled cell proliferation, inva
sion, and metastasis in these malignancies[51]. EGFR signaling, while 
not a central factor in the development of diabetes, may impact certain 
cellular responses associated with complications of the disease, such as 
diabetic retinopathy. Similarly, while EGFR signaling doesn’t directly 
correlate with bacterial or fungal infections, it might indirectly affect the 
immune responses to these infections. This is possible due to the 
expression of EGFR in diverse immune cells and tissues, suggesting its 
involvement in modulating host responses to various health challenges. 
FGFR (Fibroblast Growth Factor Receptor) is another family of receptor 
tyrosine kinases involved in cell proliferation, migration, and differen
tiation. Fibroblast growth factors (FGFs) binding to FGFR leads to re
ceptor dimerization and activation of downstream signaling pathways. 

FGFR signaling is critical in development, tissue repair, and angio
genesis. Aberrant FGFR signaling has been implicated in various cancers 
and developmental disorders [52]. FGFR signaling, while not directly 
involved in bacterial or fungal infections nor a primary contributor to 
diabetes development, may have a role in inflammation. However, its 
explicit involvement in inflammation-associated diseases warrants 
further study. VEGFR1 signaling plays a crucial role in angiogenesis, 
forming new blood vessels. It is expressed in tumor cells and various 
immune cells, making it relevant to several diseases, including cancer, 
inflammation, diabetes, and vascular diseases. In cancer, particularly 
colorectal and breast cancer, VEGFR1 signaling contributes to tumor 
angiogenesis and growth. High levels of VEGFR1 expression are associ
ated with poor prognosis in these cancers. As a result, targeting 
VEGFR1-specific signals is being investigated as a potential strategy for 
cancer treatment. In inflammatory diseases like rheumatoid arthritis and 
inflammatory bowel disease, VEGFR1 gene-mediated signals play a role 
in recruiting immune cells and promoting angiogenesis to facilitate 
tissue repair. Consequently, interventions focused on regulating VEGFR1 
are under investigation to manage the progression of diabetic retinop
athy. VEGFR1 signaling also affects the progression of various vascular 
diseases, such as atherosclerosis and vascular malformations. It can 
modulate angiogenesis within atherosclerotic plaques and contribute to 
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abnormal vessel development in vascular malformations[53,54]. 
PDGF (Platelet-Derived Growth Factor) is a growth factor in cell 

proliferation and wound healing. It signals through two receptor tyro
sine kinases, PDGFRα and PDGFRβ. Upon ligand binding, PDGF re
ceptors undergo autophosphorylation and activate downstream 
signaling pathways, including the PI3K-AKT and MAPK pathways. PDGF 
signaling is important in tissue repair, angiogenesis, and development. 
Aberrant PDGF signaling has been implicated in cancer and fibrotic 
diseases[55]. While not directly associated with fungal infections, PDGF 
signaling may be involved in regulating inflammation and tissue repair. 
Additionally, it may hold relevance for diabetic complications, including 
nephropathy and retinopathy. The downstream Signal Transduction 
pathway involves the transmission of signals from activated cell surface 
receptors (such as EGFR, FGFR, and PDGFR) to intracellular effectors. 
Downstream signal transduction pathways include MAPK/ERK, 
PI3K-AKT, and JAK-STAT. These pathways regulate gene expression and 
modulate cellular responses, such as proliferation, survival, and differ
entiation. Dysregulation of downstream signal transduction can lead to 
various diseases, including cancer and inflammatory disorders[56]. 
ErbB2 (HER2) and ErbB3 (HER3) are members of the EGFR family of 
receptor tyrosine kinases. They form heterodimers and activate down
stream signaling pathways upon ligand binding or through other 
mechanisms. ErbB2 does not bind a specific ligand but can enhance 
signaling by forming heterodimers with other ErbB family members. 
ErbB2/ErbB3 signaling plays crucial roles in the cell proliferation, sur
vival, and metastasis of various cancers. Abnormal ErbB2 (HER2) 
expression is closely linked with aggressive forms of breast cancer, and 
targeted treatments focusing on ErbB2 have demonstrated clinical 
effectiveness [57]. SCF (Stem Cell Factor) and KIT (KIT proto-oncogene) 
are involved in hematopoiesis, melanogenesis, and cell survival. The 
binding of SCF to its receptor KIT activates downstream signaling events. 
KIT signaling is crucial for stem cell development and hematopoiesis 

aberrant KIT signaling[58]. 
These proteins SRC, HSP90AA1, STAT3, MAPK3, MTOR, HIF1A, 

MAPK1, PIK3CA, and MDM2 are involved in several important biolog
ical pathways that have relevance to various diseases, including cancer, 
diabetes, inflammation, and other disorders. These proteins are crucial 
in signal transduction, growth regulation, immune responses, and 
cellular metabolism. When these pathways and proteins become dys
regulated, they can contribute to the development and progression of 
diseases. In cancer, these proteins often promote cell growth, survival, 
and metastasis. Dysregulation of these pathways can lead to uncon
trolled cell proliferation and tumor formation. For example, the MAPK 
pathway (involving proteins like MAPK1 and MAPK3) is frequently 
altered in cancer, leading to excessive cell division and tumor growth. In 
diabetes, proteins like MTOR and PIK3CA are involved in insulin 
signaling and glucose metabolism. Dysfunctional signaling in these 
pathways can affect insulin sensitivity and glucose regulation, contrib
uting to diabetes and its complications. In inflammation, proteins like 
STAT3 and HIF1A are key players in immune responses and inflamma
tion regulation. Aberrant activation of these proteins can lead to chronic 
inflammation associated with various inflammatory diseases. 

The gene ontology analysis uncovers critical biological processes 
associated with the top five targets for diseases, including diabetes, 
inflammation, fungal, bacterial, and cancer. Notable processes include 
signal transduction (60 %), protein metabolism (20 %), cell communi
cation (40 %), energy pathways (10 %), and regulation of nucleobase, 
nucleoside, nucleotide, and nucleic acid metabolism (20 %) (Fig. 4). 
These insights are invaluable, shedding light on the molecular mecha
nisms driving disease development and progression. Additionally, 
identified cellular components associated with the top ten disease tar
gets reveal where these elements predominantly exist within cells. These 
locations include the phosphoinositide 3-kinase complex (10 %), TORC1 
and TORC2 (10 %), the nucleus (90 %), nucleoplasm (40 %), 

Fig. 4. Gene ontology analysis: cellular components, biological processes, and biological pathway.  
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endomembrane system (10 %), the nucleolus (50 %), the TORC2 com
plex (10 %), the cytoplasm (90 %), microtubules, and the cytosol (80 %) 
(Fig. 4). Understanding the cellular location of these targets provides 
crucial insights into their functional roles in specific diseases, allowing 
for more targeted and precise intervention strategies. 

3.5. KEGG pathway 

In this study, the examined compounds demonstrated distinctive 
impacts on target disease. These molecules showed promising effects on 
neoplastic cells through their interaction with the MAPK signaling 
pathways, particularly focusing on the ERK element and MAPK receptors 
[59]. This observation aligns with the well-established role of MAPK 
receptors in fostering tumor proliferation and survival. Additionally, the 
compounds impacted the mTOR signaling pathway, targeting elements 
such as PI3K, AKT1, and mTOR receptors, which are crucial for cell 
proliferation and survival[60]. Similarly, these compounds affected the 
JAK-STAT signaling pathway, explicitly targeting components like 
STAT3 receptors[61]. The compounds influenced the MAPK signaling 
pathway by activating components via the EGFR receptors. RTKs acti
vate HIF1 alpha, so by targeting them, the compounds could potentially 
deregulate their activity. 

The PI3K-AKT signaling pathway is a crucial intracellular signaling 
pathway implicated in multiple cellular functions, such as cell growth, 
proliferation, angiogenesis, and survival. It is activated by various types 

of cellular stimuli or toxic insults[62,63]. The PI3K-AKT pathway is 
central to insulin signaling. When insulin binds to its receptor, it triggers 
the activation of PI3K, leading to the activation of AKT. AKT subse
quently stimulates glucose uptake by promoting the translocation of the 
glucose transporter GLUT4 to the cell membrane. This pathway’s 
alteration can lead to insulin resistance, a key factor in developing type 2 
diabetes. Dysregulation in PI3K/AKT signaling has been associated with 
diabetic complications, including nephropathy and retinopathy[64,65] 
(Fig. 5A). In inflammation disease, the activation of the NF-κB pathway, 
including the resultant upregulation of BCL-XL and c-Myb, can 
contribute to inflammation[4,66]. This pathway plays a critical role in 
cell cycle regulation and is heavily involved in cancer pathogenesis due 
to its influence on cell proliferation and apoptosis. In the MAPK 
signaling pathway context, the PI3K-AKT pathway can influence cell 
proliferation and angiogenesis, mainly through the ERK component. The 
PI3K-AKT pathway’s interaction with the mTOR, JAK/STAT3, chemo
kine, and Toll-like receptor signaling pathways allows for a complex 
network of regulation, further expanding its role in various cellular 
processes. Pathogen-associated molecular patterns (PAMPs) can directly 
influence TLR2/4 and activate the small GTPase Rac1. This activation 
triggers the PI3K, producing PIP3, a crucial second messenger in the 
PI3K-AKT pathway. PIP3 then stimulates the kinase AKT1, which is 
critical for cell survival, primarily through its influence on the MDM2 
gene. Furthermore, the chaperone protein HSP90AA1 also activates 
AKT1, adding another level of regulation to this pathway. This 

Fig. 5A. KEGG pathway analysis of the top 10 targets, with special emphasis on PI3K-AKT signaling pathway.  
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complexity contributes to the range of cellular processes the PI3K-AKT 
pathway influences, reinforcing its importance in understanding dis
ease pathogenesis, particularly in cancer and inflammatory conditions 
[63–65]. 

The pathway "Proteoglycans in cancer" (KEGG:05205) has a higher 
negative p-value of 11.70, making it the most significant path in the 
dataset. Proteoglycans are a group of glycosylated proteins mainly 
present in the extracellular matrix. They play crucial roles in many 
biological processes, including cell proliferation, migration, and angio
genesis, all of which are integral to cancer development and progression 
(Fig. 5B and Fig. 6)[67]. Several genes from data, such as AKT1, SRC, 
STAT3, MAPK3, and PIK3CA, are implicated in this pathway, indicating 
a potential role in cancer-related processes. The "Thyroid hormone 
signaling pathway" (KEGG:04919) is the second most significant 
pathway, with a negative p-value of 11.31. The thyroid hormone 
signaling pathway regulates metabolism, growth, and development. It 
involves several critical genes from the data set, including SRC, AKT1, 
and PIK3CA. Dysregulation in this pathway may lead to various disor
ders, ranging from developmental issues to metabolic diseases and 

certain cancers[48]. The pathway "EGFR tyrosine kinase inhibitor 
resistance" (KEGG:01521) also shows high significance with a negative 
p-value of 10.36. EGFR, a key receptor tyrosine kinase, regulates cellular 
activities, including proliferation and survival (See Fig. 6). EGFR mu
tations often result in over-activated EGFR pathways, causing uncon
trolled cell growth, which is common in various cancers like NSCLC. 
EGFR tyrosine kinase inhibitors (TKIs) can hinder tumor growth by 
inhibiting EGFR’s tyrosine kinase activity. However, resistance to these 
drugs often develops through mechanisms like secondary EGFR muta
tions or changes in other growth factor receptors. Key genes in data, 
such as EGFR, AKT1, PIK3CA, ERBB2, MET, and FGFR1, can contribute 
to EGFR TKI resistance, either by direct alterations in EGFR or by 
influencing related signaling pathways[68]. Specific genes, like AKT1, 
MAPK3, MAPK1, PIK3CA, etc., appear frequently across many routes. 
These genes could be essential nodes in biological networks and serve as 
potential targets for broad-spectrum treatments. 

Fig. 5B. KEGG pathway analysis of the top 10 targets, with special emphasis on proteoglycans in cancer.  
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Fig. 6. The analysis of KEGG pathways, along with their corresponding Predictive p-values and the genes they interact with.  
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3.6. Machine learning QSAR analysis 

3.6.1. Exploratory data analysis 
Further analysis for the QSAR model focused on four target genes: 

AKT1, SRC, HSP90AA1, and STAT3. For the AKT1 gene data, after data 
pre-processing and the elimination of missing values, 2876 compounds 
were selected for study. Exploratory data analysis revealed a greater 
proportion of active compounds compared to inactive ones. The pIC50 
values of active compounds ranged from 6 to 10, whereas those of 
inactive compounds ranged from 3.30 to 5. The Mann-Whitney U test 
showed statistical significance between active and inactive groups. 
Active molecules generally had larger pIC50, MW, and NumHAcceptors 
values, while inactive molecules had slightly smaller MW and fewer 
NumHDonors. LogP values remained identical between active and 
inactive molecules (Fig. 7). For the SRC gene data, after data pre- 
processing and the elimination of missing values, 3177 compounds 
were selected for study. Exploratory data analysis also revealed a greater 
proportion of active compounds compared to inactive ones. The pIC50 
values of active compounds ranged from 6 to 10.45, whereas those of 
inactive compounds ranged from 1 to 5. The Mann-Whitney U test 
confirmed statistical significance between active and inactive groups. 
Active molecules exhibited higher pIC50 values, while inactive mole
cules had slightly elevated LogP values. MW, NumHDonors, and 

NumHAcceptors values were nearly indistinguishable between active 
and inactive molecules (Fig. 7). 

For the HSP90AA1 gene data, after data pre-processing, curation, 
and the elimination of missing values, 1009 compounds were selected 
for study. Exploratory data analysis revealed a greater proportion of 
active compounds compared to inactive ones. The pIC50 values of active 
compounds ranged from 6 to 9.15, whereas those of inactive compounds 
ranged from 2.90 to 5. The Mann-Whitney U test showed statistical 
significance between active and inactive groups. Active molecules 
typically had slightly elevated LogP and NumHAcceptors values 
compared to inactive molecules, and higher values for MW, pIC50, and 
NumHDonors (Fig. 7). For the STAT3 gene data, after data pre- 
processing and the elimination of missing values, 640 compounds 
were selected for study. Exploratory data analysis also revealed a greater 
proportion of active compounds compared to inactive ones. The pIC50 
values of active compounds ranged from 6 to 8.07, whereas those of 
inactive compounds ranged from 3 to 5. The Mann-Whitney U test 
confirmed statistical significance between active and inactive groups. 
Active molecules exhibited significantly higher pIC50 values and a 
greater number of NumHAcceptors compared to inactive molecules. The 
values for MW, LogP, and NumHDonors remained nearly unchanged 
between active and inactive compounds (Fig. 7). 

Fig. 7. Exploratory data analysis for four genes, AKT1, SRC, HSP90AA1, and STAT3 inhibitors’ dataset from the ChEMBL database.  
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3.6.2. Machine learning QSAR model predication 
To predict the activity of the compounds, we first calculated their 

descriptors using PaDELPy in the PaDEL software. We generated Pub
Chem fingerprint descriptors, which resulted in 881 attributes. Using 
Data Pre-treatment GUI 1.2, we filtered out constant descriptors based 
on their correlation coefficient and variance scores. This resulted in 213, 
241, 253, and 262 attributes for AKT1, SRC, HSP90AA1, and STAT3, 
respectively. Next, we used the Kennard Stone algorithm to split the 
dataset into training and evaluation sets in an 80:20 ratio. For the 
training phase, we developed QSAR models with the following attri
butes: 2255 for AKT1, 2481 for SRC, 791 for HSP90AA1, and 504 for 
STAT3. The testing phase included 531 attributes for AKT1, 576 for SRC, 
186 for HSP90AA1, and 120 for STAT3. We then loaded the training and 
test datasets into WEKA to build the QSAR models (Supplementary File 
S3). 

The WeKa model analysis for the AKT1 gene demonstrated strong 
predictive performance during both the training and testing phases. 
During the training set, the model achieved a high correlation coefficient 
of 0.9802, indicating a close fit to the actual data. The mean absolute 
error (MAE) was 0.2225, and the root mean squared error (RMSE) was 
0.2937, showing that the model’s predictions were relatively accurate. 
The relative absolute error (RAE) of 20.1691 % suggests that the 
model’s predictions were, on average, about 20 % off from the actual 
values, while the root relative squared error (RRSE) of 21.3556 % re
flects the consistency of these errors. In test set data, the model main
tained a decent performance with an MAE of 0.5868 and an RMSE of 
0.7371. The RAE and RRSE for the test set were around 58–59 %, 
indicating a moderate increase in prediction error compared to the 
training phase. Cross-validation, which helps evaluate how well the 
model generalizes, resulted in correlation coefficients of 0.8634, an MAE 
of 0.5299, and an RMSE of 0.702. The cross-validation RAE and RRSE 
were approximately 48 % and 51 %, respectively indicating that it does 
moderately well with data. For the SRC gene, the QSAR model showed 
similarly strong performance with a high training correlation coefficient 
of 0.9867, indicating its reliability in predicting this gene’s activity. 

The HSP90AA1 model also showed comparable results, further 
validating the model’s robustness. The mean absolute error and root 
mean squared error are 0.2227 and 0.3, respectively. The relative ab
solute error and root relative squared errors are 14.8335 % and 
17.3816 %, respectively. The model maintains strong performance 
during testing, with a correlation coefficient of 0.9147. The mean ab
solute error and root mean squared error are 0.5065 and 0.6198, 
respectively. The relative absolute and root relative squared errors are 
around 36 %, suggesting good generalization. Cross-validation results 
also show high predictive ability, with a correlation coefficient of 
0.8983. The mean absolute error and root mean squared error are 
0.5677 and 0.7648, respectively. The relative absolute error and root 
relative squared error are approximately 37 %, indicating consistent and 
reliable performance. The model analysis for the HSP90AA1 gene 
demonstrates high predictive accuracy during training, with a correla
tion coefficient of 0.9867. The mean absolute error and root mean 
squared error are 0.1403 and 0.1993, respectively. The relative absolute 
and root relative squared errors are 16.1236 % and 17.1802 %, 
respectively. The model maintains strong performance during testing, 
with a correlation coefficient of 0.9295. The mean absolute error and 
root mean squared error are 0.3371 and 0.4213, respectively. The 
relative absolute and root relative squared errors are around 37 %, 
indicating good generalization. Cross-validation results also show high 
predictive ability, with a correlation coefficient of 0.9011. The mean 
absolute error and root mean squared error are 0.3553 and 0.5073, 
respectively. The relative absolute error and root relative squared error 
are approximately 40 %, suggesting consistent performance across 
different folds. 

For the STAT3, the QSAR model achieves a high correlation coeffi
cient of 0.9713 during training, indicating predictive solid ability. The 
mean absolute and root mean squared errors are 0.1719 and 0.2541, 

respectively, implying accurate predictions. The relative absolute and 
root relative squared errors are 23.079 % and 27.1873 %, respectively. 
However, on the test set, the model’s performance slightly decreases, 
with a correlation coefficient of 0.783. The mean absolute error and root 
mean squared error increase to 0.3219 and 0.4605, respectively. The 
relative absolute and root relative squared errors are around 59 % and 
70 %, respectively. Cross-validation results show a correlation coeffi
cient of 0.7102, suggesting good performance compared with training. 
The mean absolute error and root mean squared error are 0.4488 and 
0.6589, respectively. The relative absolute and root relative squared 
errors are approximately 60 % and 70 %, respectively. The robustness of 
the QSAR models was inferred from the high correlation coefficients 
observed in both the training and test sets, suggesting a high degree of 
reliability. Additionally, the outcomes of tenfold cross-validation for 
each model demonstrated a notable level of satisfaction, further 
affirming the models’ performance (Fig. 8A). 

To discern the pivotal molecular fingerprints and their respective 
contributions to bioactivity within QSAR models, a comprehensive 
feature importance analysis was conducted. This investigation involved 
the utilization of the Random Forest regressor algorithm to pinpoint the 
top ten molecular fingerprints for each QSAR model. The Variance 
Importance Plots (VIP) were generated using the matplotlib package in 
Python, providing a visual representation of the significance of these 
fingerprints (Fig. 8B). The most significant descriptors in the Pubchem 
fingerprint-based model were identified as follows: PubchemFP521 (C: 
N-C-[#1]) in AKT1, PubchemFP180 (containing at least one saturated or 
aromatic nitrogen-containing ring of size 6) in SRC, PubchemFP633 (N- 
C-C:C-C) in HSP90AA1, and PubchemFP145 (including at least one 
saturated or aromatic nitrogen-containing ring of size 5) and Pub
chemFP338 (C(~C)(~C)(~H)(~N)) in STAT3. For the PubChem 
fingerprints-based model targeting the AKT1 gene, the VIP analysis 
highlighted PubchemFPs 143, 184, 186, 335, 338, 404, 521, 614, 696, 
and 707 as the most influential molecular fingerprints. Similarly, in the 
context of the SRC gene, the VIP plot identified PubchemFPs 180, 181, 
338, 391, 439, 590, 609, 682, 696, and 704 as the key contributors to 
bioactivity. Moving to the HSP90AA1 gene, the VIP analysis under
scored the significance of PubchemFPs 146, 181, 357, 380, 633, 672, 
712, 737, 749, and 800. Lastly, within the context of the STAT3 gene, 
PubchemFPs 1, 2, 21, 145, 146, 180, 181, 338, 685, and 712 were 
identified as critical molecular fingerprints. Based on feature selection, 
structural insights for the best descriptor-containing compounds were 
investigated for both models individually (Fig. 8B). 

In the context of AKT1, specific analysis has revealed that clinical 
drugs 443654 (CHEMBL379300), CHEMBL3899716, and 
CHEMBL3966806 exhibit consistent fingerprints associated with 
distinct molecular features. These fingerprints include PUbchemFP143 
(greater than or equal to 1, any ring size 5) and PUbchemFP521 (C:N-C- 
[#1]). Experimentally determined pIC50 values for these compounds 
were 9.796, 10, and 9.824, respectively. For SRC, quantitative structure- 
activity relationship (QSAR) data analysis was conducted on the VIP 
plot. The FDA-approved drug DASATINIB (CHEMBL1421) and Chembl 
IDs CHEMBL1241676 and CHEMBL196797 were observed to possess 
common PubChem fingerprints. These fingerprints, specifically Pub
chemFPs 180 (greater than or equal to 1 saturated or aromatic nitrogen- 
containing ring size 6), 181 (greater than or equal to 1 saturated or ar
omatic heteroatom-containing ring size 6), and PubChem Fp696 (C-C-C- 
C-C-C-C-C), were reflected in experimental pIC50 values of 9.301, 9.921, 
and 9.824. These findings suggest particular structural attributes 
contributing to the compound’s bioactivity. In the case of HSP90AA1, 
QSAR data analysis of the VIP plot revealed shared Pubchem fingerprint 
attributes in FDA approved drugs REBLASTATIN (CHEMBL267792), 
BIIB021 (CHEMBL467399), LUMINESPIB (CHEMBL252164), and 
Chembl IDs CHEMBL2205798, CHEMBL4873718, and 
CHEMBL2205245 (Fig. 9). The common characteristics include Pub
Chem146 (greater than or equal to 1 saturated or aromatic heteroatom- 
containing ring size 5), PubChem181 (greater than or equal to 1 
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saturated or aromatic heteroatom-containing ring size 6), PubChem357 
(C(~C)(:C)(:N)), and PubChem633 (N-C-C:C-C). The corresponding 
experimental pIC50 values are 8.30, 8.29, 8.10, 9.15, 9.14, and 9, rein
forcing the structural attributes responsible for their bioactivity (Fig. 9). 

Lastly, in STAT3, a QSAR analysis of the VIP plot was performed for 
FDA-approved drug AZD-1480 (CHEMBL1231124) and Chembl IDs 
CHEMBL1368342, CHEMBL1407470 and CHEMBL4846365. Shared 
PubChem fingerprints were identified, such as PubChem146 (greater 
than or equal to 1 saturated or aromatic nitrogen-containing ring size 5), 
PubChem146 (greater than or equal to 1 saturated or aromatic 
heteroatom-containing ring size 5), PubChem181 (greater than or equal 
to 1 saturated or aromatic heteroatom-containing ring size 6), Pub
Chem357 (C(~C)(:C)(:N)), and PubChem633 (N-C-C:C-C). The experi
mental pIC50 values were measured at 7.097, 8.071, 7.593, and 7.17, 
further elucidating the structural attributes that contribute to the 
bioactivity of these compounds (Fig. 9 and Table 2). Information 
regarding the training set and testing of PubChem fingerprint and 
CHEMBL molecules for each target gene can be found in Supplemen
tary file s3. 

In the context of validation parameters, a comparative analysis was 
conducted to assess the chemical space encompassed by the training and 

test sets. This evaluation involved the application of the PCA bounding 
box method, aiming to determine the applicability domain of the mo
lecular fingerprint datasets developed within this study. The method’s 
efficacy in detecting outliers within both the fingerprint models was 
examined. The PCA analysis was executed during the training phase, 
encompassing the descriptors/attributes for AKT1 (2255), SRC (2481), 
HSP90AA1 (791), and STAT3 (504). Subsequently, in the testing phase, 
distinct attributes were employed for model evaluation, namely 531 for 
AKT1, 576 for SRC, 186 for HSP90AA1, and 120 for STAT3, utilizing the 
PubChem fingerprint dataset. The outcomes of this analysis revealed 
that the chemical space spanned by the test set remained within the 
boundaries of the chemical space occupied by the training set. Conse
quently, it was determined that the developed fingerprint datasets 
exhibited applicability domains encompassing the test set. Furthermore, 
an examination of the PCA scores plot indicated a significant similarity 
in the relative chemical space occupied by compounds within both the 
training and test sets, as depicted in Fig. 10. 

The QSAR models were validated by applying Receiver Operating 
Characteristic (ROC) analysis, yielding pertinent insights into the pre
dictive performance of the four target genes. Specifically, for the AKT1 
gene, the computed Area Under the Curve (AUC) values were 0.99, 0.99, 

Fig. 8. Scatter plots of QSAR models utilizing pubchem fingerprint descriptors for training and test sets, and VIP plot illustrating the key features of the QSAR model 
incorporating pubchem fingerprint descriptors against four genes. 
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Fig. 9. Identification of structural insights for PubChem Fingerprint Descriptors through analysis of top-performing molecules.  
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and 0.96 for active, inactive, and intermediate molecules, respectively. 
Similarly, for the SRC gene, the ROC analysis yielded AUC values of 
0.99, 1.00, and 0.93 for the respective molecular classes. The HSP90AA1 
gene demonstrated AUC values of 0.99, 0.99, and 0.89 for active, 
inactive, and intermediate molecules. In contrast, the validation of the 
QSAR model for the STAT3 gene revealed AUC values of 0.98, 0.98, and 
0.99 for the corresponding molecular categories. These AUC values 
collectively underscore the commendable and dependable performance 
of the QSAR models in accurately predicting molecular interactions 
(Fig. 10). 

3.7. Prediction of bioactivity of phytochemicals using generated machine 
learning models 

We developed a Python-based web application called ASHS-Pred 
using the Streamlit library. This application leverages established mo
lecular fingerprint-based models for the AKT1, HSP90AA1, STAT3, and 
SRC genes. To build the web application, we utilized various Python 
libraries including sci-kit-learn, pandas, subprocess, os, base64, and 
pickle. ASHS-Pred operates by processing the SMILES representations of 
multiple molecules and their corresponding names or IDs provided by 
the user in a text file. Upon uploading this text file, the application 
predicts the inhibition activity (pIC50) of the loaded molecules against 
the specified genes. The application calculates the pertinent molecular 
fingerprints for the molecules using established fingerprint-based 
random forest models and presents the predicted activity as pIC50 
values alongside their respective molecule names. Users can download 
the activity values and molecule names in CSV format directly from the 
application. The complete source code for ASHS-Pred is openly acces
sible on GitHub at the following URL: https://github.com/RatulCh 
emoinformatics/QSAR. To use the application, users need to have the 
Anaconda Navigator interface installed on their systems, along with 
Streamlit and other necessary package dependencies. The installation 

process is detailed in the readme file available on the GitHub repository. 
Following these instructions, users can accurately predict molecular 
activity against the four target genes using the ASHS-Pred application. 

For further analysis, chalcone derivatives identified through inten
sive network pharmacology screening were assessed for bioactivity 
prediction using the fingerprint-based machine learning models devel
oped in ASHS-Pred. Notably, RA1 displayed strong interactions with 
HSP90AA1, indicating potential as a potent inhibitor for this gene. 
Multi-target potential was evident in several derivatives, including RA1, 
RA2, and RA10, highlighting their adaptability across various path
ways. Compound RA1, with its notable pIC50 value of 5.76 against 
HSP90AA1, displays promising inhibitory effects, indicating its potential 
for diverse applications. Additionally, RA1 exhibited substantial activity 
against AKT1, SRC, and STAT3 (pIC50: 4.89, 4.36, and 5.09), showcasing 
multi-target capability. Compound RA2 exhibited significant in
teractions with HSP90AA1 (pIC50 = 5.62) and STAT3 (pIC50 = 5.09), 
indicating modulation potential (See Table 5). While interactions with 
AKT1 and SRC (pIC50 = 4.85 and 4.43) were slightly lower, RA2’s multi- 
target potential was evident. Compound RA3 showed meaningful in
teractions with HSP90AA1 (pIC50 = 5.48) and STAT3 (pIC50 = 4.82), 
suggesting inhibitory effects. Interactions with AKT1 and SRC (pIC50 =

4.81 and 4.5) contribute to its diverse bioactivity (Table 3). Compound 
RA1 and RA2 consistently exhibited higher pIC50 values, indicating 
relatively stronger inhibition against most target genes. In contrast, 
Compound RA10 displayed lower activity across all genes. Subse
quently, the chalcone derivatives analyzed molecular docking and dy
namic studies. 

3.8. Molecular docking 

A molecular docking approach was employed to investigate the 
mechanisms underlying chalcone-based derivatives’ anti-inflammatory, 
antibacterial, anticancer, antidiabetic, and antifungal activities. The 
docking was performed against four target proteins, namely AKT1, SRC, 
HSP90AA1, and STAT3. Additionally, a set of ten chalcone derivatives 
and compounds with Chembl IDs were included in the study. The results 
of the docking analysis revealed that compounds RA1 to RA7 exhibited 
superior binding affinities compared to other compounds across the four 
target genes (Table 4). Notably, chalcone derivatives RA1 to RA7 
demonstrated comparable binding affinities to the clinical drug A- 
443654 (dock score = − 10.9 Kcal/mol) against the AKT1 gene. Among 
these derivatives, Compound RA6 displayed exceptionally high binding 
affinity (dock score = − 10.7 Kcal/mol) towards the AKT1 target gene. 
“Dasatinib”, a known FDA drug, exhibited significant binding affinity 
against the SRC target gene with a docking score of − 10.5 Kcal/mol 
(See Table 6). Interestingly, Compound R5 showed an even better dock 
score of − 10.7 Kcal/mol, surpassing the previously mentioned drug. 
Furthermore, among the studied compounds, Compound RA5 demon
strated the strongest affinity against HSP90AA1 with a docking score of 
− 10.9 Kcal/mol, outperforming the FDA-approved drug “Luminespib”, 
which achieved a docking score of − 9.6 Kcal/mol. Compound R5 
showed the highest docking scores for SRC and HSP90AA1, suggesting 
its potential to interact with these target genes. Compound R6 demon
strated the highest docking score for AKT1, making it a potential 
candidate for targeting this gene. The docking scores indicated that 
“Luminespib” has a notable affinity for HSP90AA1. The docking scores 
for “Dasatinib” indicated a strong interaction with the SRC target gene. 
The docking scores point to a potential interaction between 
CHEMBL4846365 and STAT3. The docking scores for A-443654 indi
cated a strong interaction with the AKT1 target gene. 

In the context of AKT1, the clinical drug A-443654 did not engage in 
hydrogen bonding interactions. However, it establishes notable molec
ular interactions through pi-sigma interactions at Gln79 and Val270, 
alongside pi-pi stacked formations at Gln79. Additionally, alkyl and pi- 
alkyl interaction are formatted with Lys268, Val270, and Trp80. In 
contrast, Compound R6 formed two hydrogen bonding interactions: one 

Table 2 
Interpretation for the most significant PubChem and substructure fingerprints.  

Best Features Interpretation 

PubchemFP1 > = 8 H 
PubchemFP2 > = 16 H 
PubchemFP21 > = 8 O 
PubchemFP143 > = 1 any ring size 5 
PubchemFP145 > = 1 saturated or aromatic nitrogen-containing ring size 5 
PubchemFP146 > = 1 saturated or aromatic heteroatom-containing ring size 5 
PubchemFP180 > = 1 saturated or aromatic nitrogen-containing ring size 6 
PubchemFP181 > = 1 saturated or aromatic heteroatom-containing ring size 6 
PubchemFP184 > = 1 unsaturated non-aromatic heteroatom-containing ring size 

6 
PubchemFP186 > = 2 saturated or aromatic carbon-only ring size 6 
PubchemFP335 C(~C)(~C)(~C)(~H) 
PubchemFP338 C(~C)(~C)(~H)(~N) 
PubchemFP357 C(~C)(:C)(:N) 
PubchemFP380 C(~O)(~O) 
PubchemFP391 N(~C)(~C)(~C) 
PubchemFP404 N(:C)(:C)(:C) 
PubchemFP439 C(-C)(-N)(=O) 
PubchemFP521 C:N-C-[#1] 
PubchemFP590 C-C:C-O-[#1] 
PubchemFP609 Cl-C-C-N-C 
PubchemFP614 C-C-O-C-C 
PubchemFP633 N-C-C:C-C 
PubchemFP672 O––C-C––C-[#1] 
PubchemFP682 O-C-C-C-C-N 
PubchemFP685 O––C-C-C-C-N 
PubchemFP696 C-C-C-C-C-C-C-C 
PubchemFP704 O––C-C-C-C-C-C-C 
PubchemFP707 O––C-C-C-C-C(N)-C 
PubchemFP712 C-C(C)-C(C)-C 
PubchemFP737 Cc1cc(N)ccc1 
PubchemFP749 Nc1cc(N)ccc1 
PubchemFP800 CC1CC(N)CCC1  
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with Asp292 involving the urea moiety’s NH group, and another 
involving an oxygen atom and the methoxy group with Arg86. A further 
interaction is observed with Tyr326 through van der Waals interactions. 

Notably, Compound R6 exhibited alkyl and pi-alkyl interaction forma
tions at Leu264, Leu210, and Phe55. In contrast, a pi-stacked interaction 
occurs at Trp80 (Fig. 11). For SRC, the drug “Dasatinib” did not interact 
as hydrogen bonding interactions. Nevertheless, it demonstrated mo
lecular interactions, such as pi-sigma interactions at Met314, along with 
alkyl and pi-alkyl interaction formations at Val377, Val323, Ala403, 
Leu393, Phe405, Ala293, Val281, Ile336, and Lys295. Conversely, 
Compound R5 did not display hydrogen bonding interactions but pre
sented alkyl and pi-alkyl interactions at Val323, Ala403, Val313, 
His384, Val281, and pi-pi stacked formation at Phe405 (Fig. 11). 

In the case of HSP90AA1, the drug “Luminespib” formed four 
hydrogen bonding interactions: the isoxazole ring’s nitrogen atom 
interacted with Phe138, while the carboxamide oxygen atom interacted 
with Asn51 and Phe138. Another interaction was shown between the 
oxygen atom of the 4-isopropylbenzene-1,3-diol moiety and Tyr139, as 
well as Leu103. Further interactions included pi-sigma interactions at 
Trp162 and Phe138, pi-pi stacked formations at Phe138, and alkyl and 
pi-alkyl interaction formations at Leu107. In contrast, Compound R5 did 
not engage in hydrogen bonding interactions. Still, it presented alkyl 
and pi-alkyl interactions at Ile26, Ala55, and Lys58, along with pi- 

Fig. 10. Applicability domain assessed through PCA application and ROC plot generated for PubChem fingerprint descriptor-implemented QSAR models, 
respectively. 

Table 3 
Predicted bioactivity of chalcone derivatives using generated machine learning 
models.  

Genes 
/ Chalcone derivatives 

AKT1 SRC HSP90AA1 STAT3 

pIC50 

RA1  4.89  4.36  5.76  5.09 
RA2  4.85  4.43  5.62  5.09 
RA3  4.81  4.5  5.48  4.82 
RA4  4.77  4.57  5.34  4.73 
RA5  4.73  4.64  5.2  4.59 
RA6  4.69  4.71  5.06  4.46 
RA7  4.65  4.78  4.92  4.32 
RA8  4.61  4.85  4.78  4.19 
RA9  4.57  4.92  4.64  4.05 
RA10  4.53  4.99  4.5  3.92  
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stacked interactions at Phe22 and Phe138, and a pi-sigma interaction at 
Leu107 (Fig. 11). Regarding STAT3 gene, Compound RA3 exhibited 
remarkable binding affinity with a docking score of − 7.5 Kcal/mol 
compared to CHEMBL4846365 (− 7.0 Kcal/mol) and the clinical drug 
AZD-1480 (− 6.5 Kcal/mol). Compound RA3 displayed the highest 
docking score for STAT3, indicating its strong potential as a candidate 
for targeting this gene. Compound CHEMBL4846365 formed two 
hydrogen bonding interactions: one with the methoxy-substituted ben
zene ring’s oxygen atom and Gln644 and another between the urea 
group’s oxygen atom and Lys658. Furthermore, pi-sigma interactions 
occur at Val637, while pi-pi stacked formations manifest at Tyr640 and 
Tyr657. Alkyl and pi-alkyl interaction formations are evident at Ile653 
and Pro639. In contrast, Compound R3 showed three hydrogen bonding 
interactions: the oxygen atom of the methoxy-substituted benzene ring 
interacts with Arg609, while the second di-methoxy benzene-substituted 
ring interacts with Gln644, and the urea’s NH group interacts with 
Ser636. Moreover, alkyl and pi-alkyl interactions occur with Tyr640 and 
Pro639 (Fig. 11). 

3.9. Molecular dynamics analysis 

A comprehensive molecular dynamics simulation running 200 
nanoseconds was conducted using Desmond software to meticulously 
evaluate the formation of an optimal complex involving compounds 
RA3, RA5, RA6, CHEMBL4846365, Dasatinib, Luminespib, A-443654, 
and the target protein. The analysis focused on critical parameters such 
as root-mean-square deviation (RMSD), root-mean-square fluctuation 
(RMSF), and essential interactions between the protein and ligands. 

The simulation results indicated that compound RA5 achieved a state 
of stability in terms of the RMSD values of the C-alpha atoms within the 
protein complex after the 10-nanosecond threshold, maintaining steady 
values around 2.0 Angstroms in the SRC protein and 1.5 Angstroms in 
HSP90AA1 protein throughout the simulation. For the SRC target pro
tein, ligand RA5 exhibited an initial equilibration phase lasting 
approximately 20 nanoseconds, subsequently maintaining stability 

within the binding pocket up to the 200-nanosecond mark (Fig. 12). The 
RMSD of the protein also fluctuated with the ligand and, after 175 ns, 
slightly decreased, mirroring the initial running time from 25 ns to 
172 ns. For the HSP90AA1 target, ligand RA5 displayed the same stable 
profile, with an upward trend towards stability between 12 and 172 
nanoseconds, showing steady RMSD values around 1.5 Angstroms post 
the initial equilibration phase of 10 nanoseconds. After 175 ns, the 
ligand showed smaller fluctuations until 200 ns with RMSD values 
around 1.7 Angstroms. Meanwhile, the protein also showed less fluc
tuation throughout, remaining within 3.5 Angstroms from 25 to 172 ns, 
but after that, it showed a conformational shift and slightly increased 
until 200 ns (Fig. 12). Moreover, the RMSD of the known drug Lumi
nespib initially fluctuated until 120 ns after which it stabilized and 
remained stable from 130 to 200 ns against the HSP90AA1 gene. 
Dasatinib showed that the RMSD of the protein backbone of all the 
complexes stabilized at approximately 1.5 Angstrom before 100 ns of 
simulation and then from 125 to 150 ns it increased and became more 
fluctuated; however, after 150 ns, Dasatinib became stable throughout 
the period against the SRC gene. 

RMSF values for compound RA5 for both targets, SRC and 
HSP90AA1, highlighted significant fluctuations primarily in the pro
tein’s loop and terminal regions, while lower RMSF values at the binding 
site indicated stable interactions between the protein and ligands. 
Additionally, the secondary structural composition of the protein was 
analyzed. For compound RA5 against the HSP90AA1 target, the struc
tural elements, including alpha-helices and beta-strands, constituted 
46.35 % of the protein’s structure, thereby contributing to its structural 
stability and functional efficacy. Specifically, helices and strands 
accounted for 25.51 % and 20.84 % of the total structure, respectively. 
In the case of SRC, these elements comprised 39.76 % of the protein’s 
structure, with helices and strands representing 26.34 % and 13.42 %, 
respectively (Fig. 13). 

The detailed analysis further explored the interactions between the 
ligands and the protein’s amino acid residues, illustrated through a 
histogram plot in Fig. 14. This plot clearly showed the different types of 
interactions hydrogen bonding (marked in green), water bridges (in 
blue), and hydrophobic interactions (in purple), highlighting their 
importance in the binding process. Compound RA5 exhibited four 
hydrogen bonds against HSP90AA1, particularly with amino acids 
Tyr139 (oxygen atom of the urea group with 91 %), Leu103 (two 
hydrogen bonds, NH atom of the urea group with 96 % and 99 %), and 
Phe138 (with a water molecule, and those water molecules interact with 
the oxygen atom). A di-substituted chlorobenzene ring interacted with 
Phe170 residue as a hydrophobic interaction with 37 %. On the other 
hand, Compound RA5 exhibited three hydrogen bonds against SRC, 
particularly with amino acids Asp404 (oxygen atom of the urea group 
with 92 %), Glu310 (two hydrogen bonds with two water molecules, 
and those water molecules interact with the NH atom of the urea group 
with 37 % and 41 %). A di-substituted methoxy-containing benzene ring 
interacted with Phe405 residue as a hydrophobic interaction with 53 % 
(Fig. s2). 

The clinical drug A-443654 demonstrated greater stability in the 
AKT1 gene, with RMSD values reaching 2.8 Angstroms, higher than 
those of compound R6. Compound R6 maintained stability over time 
within 1.6 Angstroms, while A-443654 showed more consistent stability 
after 70 ns up to 200 ns, exhibiting steady RMSD values (Fig. 12). RMSF 
values for both compounds highlighted significant fluctuations primar
ily in the protein’s loop and terminal regions, while lower RMSF values 
at the binding site indicated stable interactions between the protein and 
ligands. Overall, both compound R6 and drug A-443654 displayed 
similar secondary structural composition in the protein, with structural 
elements, including alpha-helices and beta-strands, constituting 
40.52 % of the protein’s structure. This composition contributes to its 
structural stability and functional efficacy, with helices and strands ac
counting for 18.50 % and 22.01 % of the total structure, respectively. 
The detailed analysis further explored the interactions between the 

Table 4 
Binding affinity scores of all the chalcone derivatives against four distinct 
targets.  

Compound Name Target Genes 

AKT1 SRC HSP90AA1 STAT3 

Dock score (Kcal/mol) 

RA1 -10.4 -9.8 -10.2 -7.4 
RA2 -10.4 -10.2 -10.2 -7.0 
RA3 -10.5 -10.2 -9.7 -7.5 
RA4 -10.1 -10.1 -9.8 -7.3 
RA5 -10.6 -10.7 -10.9 -7.1 
RA6 -10.7 -10.6 -10.5 -7.4 
RA7 -10.5 -10.6 -10.5 -7.2 
RA8 -8.7 -8.3 -8.6 -6.1 
RA9 -8.9 -8.2 -8.6 -6.2 
RA10 -8.7 -8.5 -8.6 -6.2 
A-443654 -10.9 - - - 
CHEMBL3899716 -10.9 - - - 
CHEMBL3966806 -10.8 - - - 
CHEMBL1241676 - -8.7 - - 
CHEMBL196797 - -10.2 - - 
CHEMBL82085 - -9.5 - - 
DASATINIB - -10.5 - - 
BIIB021 - - -8.8 - 
CHEMBL2205245 - - -9.3 - 
CHEMBL2205798 - - -9.1 - 
CHEMBL4873718 - - -9.7 - 
LUMINESPIB - - -9.6 - 
REBLASTATIN - - -7.6 - 
AZD-1480 - - - -6.5 
CHEMBL1368342 - - - -6.1 
CHEMBL1407470 - - - -6.1 
CHEMBL4846365 - - - -7.0  
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Fig. 11. 3D visualization of compound-protein interactions and 2D analysis for selected compounds (RA3, RA5, RA6, CHEMBL4846365, Dasatinib, Luminespib, A- 
443654) with the protein. 
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ligands and the protein’s amino acid residues, as illustrated through a 
histogram plot in Fig. 14. Compound R6 exhibited all hydrogen bonding 
with water molecules, with 54 % of interactions with Gln79 facilitated 
by the oxygen atom attached to the benzene ring, and 36 % and 30 % of 
interactions with Asp274 and Tyr272, respectively, facilitated by the NH 
atom of the urea group. Asn54 directly interacted with the oxygen atom 
of the urea group by 39 % and connected with water molecules by 37 %, 
which in turn are connected with the oxygen atom. Arg273 and Trp84 
were linked with di-substituted chloro and methoxy-containing benzene 
rings through pi-cation and hydrophobic interactions, at 64 % and 43 %, 
respectively. Conversely, drug A-443654 displayed only two hydrogen 
bonding interactions: one from the NH group of the pyridine ring with 
Ser205 at 36 % and the other with Asn53 from the NH group of the 
benzimidazole ring at 45 % (Fig. s2). 

Fig. 12 illustrates the RMSD plot for compound CHEMBL4846365, 
showing the RMSD of the STAT3 protein and the ligand over time. 
Initially, both protein and ligand RMSD values raised, typical as the 
system equilibrates. After this period, the ligand RMSD stabilized, 
indicating that the compound has found a relatively stable conformation 
within the binding site. However, the protein RMSD continues to exhibit 
some fluctuations, suggesting that while the ligand may be stable, the 
protein is still undergoing conformational changes, possibly adjusting to 
the ligand’s presence or due to its dynamic nature. In the case of com
pound R3, the RMSD plot showed a change over time, maintaining 
stability in the binding pocket from 100 ns to 150 ns, with some 
conformational shifts observed around the 10 to 100 nanosecond range, 
followed by stability from 125 to 150 ns (Fig. 12). The protein’s RMSD, 
while fluctuating, did not show a pronounced rise, implying a more rigid 
structure or less conformational change in response to ligand binding 
compared to the complex with compound CHEMBL4846365. RMSF 
values, demonstrated in Fig. 13, exhibit significant fluctuations mainly 

in the protein’s loop and terminal regions, with lower RMSF values at 
the binding site suggesting stable interactions. The structural elements 
of compound R3, including alpha-helices and beta-strands, constituted 
57.15 % of the protein’s structure, contributing to its structural stability 
and functional efficacy, with helices and strands accounting for 40.63 % 
and 16.51 %, respectively. In contrast, for compound CHEMBL4846365, 
these elements comprised 57.43 % of the protein’s structure, with he
lices and strands representing 40.42 % and 17.02 %, respectively. 
Compound R3 exhibited one hydrogen bonding interaction with the 
oxygen atom of the urea group by Gln543 at 33 %. Conversely, com
pound CHEMBL4846365 did not show any significant contribution to 
interaction with the STAT3 protein target. This comprehensive inter
action analysis underscores the specificity and diversity of ligand- 
protein interactions and emphasizes the role of molecular dynamics 
simulations in uncovering intricate details of binding mechanisms, 
invaluable in the rational design of therapeutics for optimizing ligand 
efficacy and specificity. 

3.9.1. Principal component analysis (PCA) 
Principal Component Analysis (PCA) provided a detailed view of the 

interaction dynamics between diverse compounds and their target pro
teins throughout Molecular Dynamics (MD) simulations (Fig. 15). This 
technique captures key aspects of the compounds’ stability and the 
range of their motion when bound to protein targets. In the case of the 
Luminespib drug in the HSP90AA1 protein, the PCA plot shows data 
points tightly grouped near the origin for both principal components. 
This clustering signifies a consistent interaction dynamic, with the 
compound maintaining a stable conformation throughout the simula
tion process. Conversely, Dasatinib displayed a distinct pattern when 
bound to the SRC protein, with data points scattered more widely along 
the principal component one (PC1) axis. This spread indicated a broader 

Fig. 12. Analysis of the Root Mean Square Deviation (RMSD) of the hit compounds obtained from molecular docking studies against the target gene through 
Molecular Dynamics (MD) simulation. 
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range of conformational states that Dasatinib may adopt during its 
interaction, implying a higher degree of flexibility and dynamic 
behavior in its binding conformations. RA5 presents an interesting case; 
when tested against both HSP90AA1 and SRC targets, there is a 
noticeable dispersal along the PC1 axis for each. This observation sug
gests that RA5 can induce diverse conformational states within these 
protein complexes. Notably, when bound to SRC, the spread along the 
principal component two (PC2) axis is relatively constrained, hinting 
that while RA5 may exhibit a variety of shapes, these conformations 
likely change within a limited range within the multidimensional 
conformational landscape. 

Examining the interactions of compound RA6 and A-443654 with 
AKT1 further expanded our understanding. Both compounds share a 
pattern of greater distribution along PC1 than PC2, which may suggest a 
significant conformational diversity that unfolds along a particular 
dimension of the interaction. Compound A-443654 showed a pro
nounced distribution along PC2 as well, suggesting that it can move 
through an even more varied range of conformations, possibly affecting 
different domains of the AKT1 protein. The interaction of RA3 with 
STAT3 is characterized by the widest distribution, especially along PC1, 
indicating that RA3 might access a considerable array of conformational 
states (Fig. 15). This wide range might represent various modes of 
binding or a high degree of structural flexibility within the ligand when 
it is associated with the protein. CHEMBL4846365 engagement with 
STAT3 is also depicted with a substantial spread along PC1, which is 

indicative of notable conformational dynamics. However, its moderate 
dispersal along PC2, particularly when contrasted with RA3, suggests 
that the diversity of its conformational changes might be less extreme 
across the entire structure of the complex. 

3.9.2. MMGBSA 
The Molecular Mechanics Generalized Born Surface Area (MM- 

GBSA) methods have been applied to calculate the free energy of binding 
for a series of compounds against various protein targets, providing 
insights into the potential efficacy of these compounds as inhibitors. The 
analysis presents the binding free energies along with contributions 
from Coulombic, covalent, hydrogen bonding, lipophilic, packing, self- 
contact, solvation, and van der Waals interaction. For compound 
A443654 targeting AKT1, the MM-GBSA binding energy is notably high 
at − 64.31 kcal/mol, with significant contributions from lipophilic in
teractions at − 22.74 kcal/mol and van der Waals forces at 
− 59.68 kcal/mol. This suggests a substantial nonpolar interaction 
component, complemented by Coulombic interactions at − 11.06 kcal/ 
mol. Similarly, CHEMBL4846365 against STAT3 shows a binding energy 
of − 31.80 kcal/mol, with a relatively lower van der Waals contribution 
of − 30.78 kcal/mol, indicating a slightly less hydrophobic interaction 
compared to A443654 with AKT1. The lipophilic interactions for 
CHEMBL4846365 are also lower at − 8.58 kcal/mol. Dasatinib’s bind
ing to SRC is characterized by a binding energy of − 83.46 kcal/mol, 
with a large negative contribution from lipophilic interactions at 

Fig. 13. Analysis of the root mean square fluctuation (RMSF) of the hit compounds obtained from molecular docking studies against the target gene through 
molecular dynamics (MD) simulations. 
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− 29.06 kcal/mol and a significant van der Waals term at − 73.20 kcal/ 
mol, reflecting strong hydrophobic and van der Waals interactions 
within the binding site. Luminespib shows a strong affinity for 
HSP90AA1 with a binding energy of − 85.86 kcal/mol. The notable 
lipophilic and van der Waals contributions of − 26.50 and − 62.68 kcal/ 
mol, respectively, highlight the compound’s strong hydrophobic bind
ing character. 

For RA3 against STAT3, the binding energy is − 45.08 kcal/mol. This 
is paired with a hydrogen bond contribution of − 0.57 kcal/mol and a 
notable van der Waals term of − 36.51 kcal/mol, indicating a good 
balance of polar and nonpolar interactions. Compound RA5 targeting 
HSP90AA1 exhibits a particularly strong binding energy of 
− 96.26 kcal/mol, with the highest lipophilic contribution among the 
compounds at − 34.71 kcal/mol and a substantial van der Waals 
component at − 66.31 kcal/mol, suggesting a potent interaction with 
the protein. RA6 interacting with AKT1 has a binding energy of 
− 66.30 kcal/mol. Its lipophilic and van der Waals contributions are 
significant at − 28.07 and − 66.11 kcal/mol, respectively, indicative of 
favorable hydrophobic interactions. Lastly, RA5 against SRC shows the 
most potent binding energy of − 100.01 kcal/mol within this dataset. 
The lipophilic term is extremely high at − 38.98 kcal/mol, coupled with 
a large van der Waals contribution of − 75.37 kcal/mol, which could be 
reflective of a tight and efficient binding to the active site. 

4. Discussion 

The focus of our recent study was to identify key chalcone com
pounds and Chembl libraries aimed at AKT1, SRC, HSP90AA1, and 
STAT3 genes. These targets, by potentially inhibiting their metabolic 

pathways, were chosen for their capacity to act against cancer, diabetes, 
inflammation, and fungal and bacterial infections. This versatility makes 
chalcones a valuable candidate for drug development because they can 
target multiple disease pathways. The approach to achieving this 
objective involved the integration of machine learning QSAR, molecular 
mechanisms, and systems biology techniques. This approach involved 
ligand and structure-based screening of small molecule databases tar
geting these four genes, followed by pharmacokinetic screening and 
docking. We also identified potential small molecule inhibitors that 
could inhibit the binding sites of these target gene pathways using ma
chine learning-assisted Quantitative Structure-Activity Relationship 
(QSAR) modeling and web-based bioactivity prediction. A multifaceted 
approach such as this demonstrates the potential of integrated compu
tational methodologies for advancing the discovery and development of 
drugs. Thorough exploratory data analysis (EDA) in the initial phase of 
this study played a pivotal role in shaping the subsequent phases. We 
meticulously curated and preprocessed the dataset, revealing significant 
distinctions between active and inactive compounds across various 
molecular properties. The Mann-Whitney U test highlighted the statis
tical significance of these differences, underscoring the potential of 
chalcone derivatives as bioactive compounds. 

Central to our study was the creation of Random Forest-based QSAR 
models for each target gene. These models exhibited commendable 
predictive performance, characterized by high correlation coefficients 
and acceptable error rates during both training and testing. Notably, the 
feature importance analysis identified specific molecular descriptors 
crucial for predicting bioactivity, providing vital insights into the 
structural determinants of chalcone derivatives’ effectiveness. Extensive 
analysis uncovered a promising group of compounds, particularly RA1 

Fig. 14. Analysis of the 2D histogram of protein-ligand contact for the hit compounds derived from molecular docking studies against the target gene via molecular 
dynamics (MD) simulations. 
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to RA7, which demonstrated exceptional bioactivity against the target 
genes. For instance, compound RA1 displayed a remarkable pIC50 value 
of 5.76 against HSP90AA1, making it a candidate for further explora
tion. This correlation between compound structure and bioactivity 
emphasizes the potential utility of chalcone derivatives in drug discov
ery. Molecular docking studies further elucidated the binding in
teractions between chalcone derivatives and the target genes. 
Compounds RA5, RA6, and RA7 exhibited significant binding affinities, 
equalling or exceeding those of existing drugs, indicating their promise 
as inhibitory compounds. The detailed analysis of these binding in
teractions reveals the specific structural features responsible for bioac
tivity, aiding in a rational approach to drug design. The fingerprint- 
based predictive models for the top genes AKT1, SRC, HSP90AA1, and 
STAT3 were further deployed as the ASHS-Pred web-based application. 
The source codes (https://github.com/RatulChemoinformatics/QSAR) 
and data sets were made available on GitHub to facilitate further 
extension or modification of the web server. It is important to observe 
that as new experimental data on individual gene inhibitors become 
available, the predictive model proposed here could be continuously 
updated to increase its coverage and accuracy. In molecular dynamic 
study, particularly highlighting compound RA5’s stability with SRC and 
HSP90AA1 targets. This stability, evidenced by consistent RMSD values, 
suggests potential therapeutic efficacy. Comparatively, the differences 
in RMSD and RMSF values between compounds, including A-443654 
and R6 against the AKT1 gene, underscore the unique interaction dy
namics each compound exhibits with its target. Furthermore, detailed 
analyses of secondary structures and ligand-protein interactions, such as 
hydrogen bonding and hydrophobic contacts, offer a view of binding 

affinities and specificities. 
Discussing the results of MMGBSA, the particularly high van der 

Waals and lipophilic interaction energies observed for most compounds 
suggest that these compounds may have substantial hydrophobic con
tacts within the binding sites of their respective targets, which is often a 
mark of drug-like molecules. For example, the compound RA5 against 
the SRC protein exhibited the most potent binding energy at 
− 100.01 kcal/mol, marked by the highest lipophilic contribution at 
− 38.98 kcal/mol among the dataset, underscoring its strong affinity 
and specificity towards the target. This suggests that RA5 could robustly 
occupy the hydrophobic pockets within SRC, maximizing van der Waals 
contacts and potentially leading to high inhibitory activity. Moreover, 
the compounds targeting HSP90AA1, specifically Luminespib and RA5, 
demonstrated high binding energies and substantial lipophilic contri
butions, indicating effective hydrophobic interactions that could stabi
lize the inhibitor within the binding domain. These interactions, coupled 
with the observed hydrogen bonds, are essential for a stable drug- 
protein complex, enhancing the efficacy of the drug. In contrast, the 
lower binding energies seen with compounds like CHEMBL4846365 
against STAT3 suggest weaker interactions, which could be due to less 
optimal alignment within the binding pocket or insufficient hydropho
bic contact, potentially leading to reduced inhibitory activity. 
Comparing the PCA plots collectively, it is evident that the conforma
tional stability and flexibility of these compounds when interacting with 
their respective targets vary. Compounds such as Luminespib exhibit a 
more constrained range of motion, indicative of a stable interaction, 
while others like RA3 and CHEMBL4846365 demonstrate significant 
conformational diversity, which might correlate with multiple binding 

Fig. 15. Principal component analysis (PCA) of hit compounds in protein-ligand complexes.  
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modes or interactions with the protein targets. These observations are 
critical for understanding the dynamic nature of protein-ligand in
teractions and can have implications for the optimization of these hit 
compounds for potential therapeutic applications. 

This study concisely demonstrates the significant potential of chal
cone derivatives in targeting key genes, with a focus on high-efficacy 
compounds RA1 to RA7. It underscores the relevance of structural fac
tors in drug design and advocates for further experimental validation. 
Integrating machine learning and knowledge-based neural network in
sights with molecular docking and dynamics simulations, this work of
fers a promising direction for developing treatments in anti- 
inflammatory, antibacterial, anticancer, antidiabetic, antifungal, and 
antituberculosis areas. This approach has the potential to address crit
ical medical needs and advance drug discovery. In future efforts, the aim 
will be to expand the research focus on studying the efficacy of these 
molecules specifically for tuberculosis treatment. This will involve 
further exploration of their interactions with Mycobacterium tuberculosis 
and understanding their potential mechanisms of action in combating 
tuberculosis infections. Additionally, we plan to conduct safety studies 
of chalcones using the zebrafish larval model and perform in vitro and in 
vivo studies using M. marinum and zebrafish to validate the safety and 
effectiveness of chalcone derivatives as potential anti-tuberculosis 
agents [69–72]. 

5. Conclusion 

We identified significant chalcone derivatives and ChEMBL libraries 
targeted at AKT1, SRC, HSP90AA1, and STAT3. The ability of chalcones 
to target multiple disease pathways underscores their potential for drug 
development. An integrated approach, combining machine learning 
QSAR, molecular mechanisms, and knowledge-based neural network 
techniques, has advanced drug discovery. Notably, chalcone derivatives 
RA1 to RA7 exhibited substantial bioactivity against key target genes, 
with RA1 showing the most promising pIC50 value, particularly against 
HSP90AA1. Docking scores corroborated these findings, with RA1 dis
playing robust binding affinities across all genes. Remarkably, com
pounds RA5, RA6, and RA7 exhibited docking scores comparable to 
RA1, indicating similar potential. However, a decline in activity was 
observed from RA8 to RA10, consistent with pIC50 trends. Further 
supporting these findings, comprehensive molecular dynamics simula
tions provided deeper insights into the dynamic interactions and sta
bility of these compounds, particularly RA5, with target proteins SRC 
and HSP90AA1. The simulations of 200 nanoseconds highlighted the 
compounds’ stability and interaction dynamics, crucial for under
standing their therapeutic potential highlighted the compounds’ sta
bility and interaction dynamics, crucial for understanding their 
therapeutic potential. The consistent RMSD values of compound RA5 
after the initial equilibration phase illustrated a stable interaction with 
the proteins, potentially contributing to its efficacy. This dynamic 
analysis enhanced the insights provided by static docking scores and 
bioactivity findings, giving a crucial understanding of how the com
pounds interact with their target proteins. Compared to established 
drugs and ChEMBL compounds, chalcone derivatives demonstrated 
promising results, with some outperforming known drugs in binding 
affinity. Specifically, compound RA5 exhibited exceptional binding af
finity against HSP90AA1, surpassing Luminespib, an FDA-approved 
drug. Compound RA3 exhibited significant binding to STAT3, high
lighting the potential of chalcone derivatives, as evidenced by their 
encouraging binding scores with crucial genes. Additional research into 
these derivatives, encompassing both in vitro and in vivo studies, is 
necessary to confirm their effectiveness in treating diseases related to 
AKT1, HSP90AA1, SRC, and STAT3. Insights from machine learning 
models provide a robust foundation for future research in chalcone- 
based small molecule binding and drug discovery. 
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