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Abstract: In this paper, a robust analysis of nitrogen dioxide (NO2) concentration measurements
taken at Belisario station (Quito, Ecuador) was performed. The data used for the analysis constitute
a set of measurements taken from 1 January 2008 to 31 December 2019. Furthermore, the analysis
was carried out in a robust way, defining variables that represent years, months, days and hours,
and classifying these variables based on estimates of the central tendency and dispersion of the data.
The estimators used here were classic, nonparametric, based on a bootstrap method, and robust.
Additionally, confidence intervals based on these estimators were built, and these intervals were used
to categorize the variables under study. The results of this research showed that the NO2 concentration
at Belisario station is not harmful to humans. Moreover, it was shown that this concentration tends to
be stable across the years, changes slightly during the days of the week, and varies greatly when
analyzed by months and hours of the day. Here, the precision provided by both nonparametric and
robust statistical methods served to comprehensively proof the aforementioned. Finally, it can be
concluded that the city of Quito is progressing on the right path in terms of improving air quality,
because it has been shown that there is a decreasing tendency in the NO2 concentration across the
years. In addition, according to the Quito Air Quality Index, most of the observations are in either the
desirable level or acceptable level of air pollution, and the number of observations that are in the
desirable level of air pollution increases across the years.

Keywords: statistical inference; classic analysis; nonparametric analysis; robust analysis; classic
confidence interval; nonparametric confidence interval; bootstrap confidence interval; robust
confidence interval; classification and categorization of NO2 concentration measurements

1. Introduction

Nitrogen dioxide (NO2) is a yellowish brown toxic and irritant gas, and together with nitric
oxide (NO) is known as nitrogen oxides (NOx) [1,2]. Several negative health effects are attributed to
continued exposure to this pollutant, such as: acute bronchitis, asthma, reduced lung capacity, allergies,
eye and mucous membrane irritation [3]. It is a secondary precursor to ozone (O3) and particulate
matter PM2.5 [4,5].

NO2 is mainly formed from the oxidation of NO as a result of combustion in vehicle engines and
combustion plants with oxygen (O2) from the air [1]:

2NO + O2 ↔ 2NO2 (1)
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To a lesser extent atmospheric NO2 comes from natural sources such as volcanic eruptions,
atmospheric electric shocks, and biomass combustion. It is a very strong oxidant; it reacts with water
(H2O) and OH radical producing nitric acid (HNO3) [6]:

3NO2 + H2O → 2HNO3 + NO (2)

OH + NO2 → HNO3 (3)

The particles that form from this acid can be suspended in the air or fall like acid rain [1]. The World
Health Organization (WHO) recommends a daily NO2 concentration of 0.11 ppm

(
200 µg/m3

)
average

of 1 h once a year and 0.023 ppm
(
40 µg/m3

)
as an annual arithmetic average to preserve health [7].

NO2 production volumes correspond to vehicular traffic; being this way, they are generally higher in
cities than in the countryside.

The negative effects that air pollution due to NO2 concentrations has on human health and the
way in which this pollution is produced, lead to the need for an in-depth statistical analysis of the
behavior of this pollutant in environments where its generation is more likely. In this sense, the city
of Quito, the capital of Ecuador, is a good place to carry out this analysis taking into account the
information collected by measurement instruments for more than a decade.

In this paper, Quito was chosen to carry out the analysis mentioned above because this city is an
example of how the environmental impact of vehicular traffic, traffic jams and poor fuel quality can
affect pollution levels. Likewise, the growth of the city, of industrial zones and the fact that Quito is
surrounded by a mountain range are factors that also influence the concentration of pollutants in this
city [8].

Taking into account what has been said above, the main objective of this paper is to carry out the
robust analysis of NO2 concentration measurements in one the most important air-quality monitoring
stations in Quito. To this end, the Belisario air-quality monitoring station [9] was chosen to carry
out the research, and 12 years of NO2 concentration measurements (i.e., from 1 January 2008 to
31 December 2019) were analyzed. Other pollutants that are also measured at Belisario station are the
following: CO (carbon monoxide), SO2 (sulfur dioxide), O3 (ozone), and PM2.5 (fine particulate matter
= particles with a diameter less than or equal to 2.5 µm) [8,10]. However, it is important to mention
that this paper focused on the robust analysis of the behavior of NO2 concentration at Belisario station,
because NO2 is a pollutant that is predominant in the appearance and duration of health problems [3].
In fact, the study of toxicity mechanisms due to NO2 in humans is a subject of great interest to the
international scientific community [3]. For example, it is of great interest to understand the relationship
between exposure to NO2 and sensitivity to viral infections, among other things.

The analysis performed in this paper was aimed at estimating the central tendency and dispersion
of the data, grouping and classifying data, and determining similarities and differences between data.
Furthermore, the analysis was performed by using both robust and nonrobust confidence intervals,
and classical, nonparametric, resampling and robust analysis methodologies were used [11–15].

A research in which the statistical analysis of NO2 concentration measurements was carried out is
shown in [16]. In [16], in order to perform air-quality monitoring measurements in an area of Puerto
Rico, low-cost particulate matter (PM2.5) and NO2 sensors were placed across eight locations of that
area. In [16], the NO2 concentration measurements were taken from October 2016 to February 2017,
spatial and temporal trends of PM2.5 and NO2 were analyzed, and the measurements were collected
using the U.S. Environmental Protection Agency (EPA)-designed Citizen Science Air Monitor (CSAM).

The analysis carried out in [16] was based on the use of classical inference methods, where linear
regressions were used to normalize each low-cost sensor and weather station with a reference signal.
Additionally, the correlation function was used to find the degree of linear dependence between sensor
measurements and the median of the reference signal. Moreover, in [16] the Pearson coefficient and
the coefficient of divergence were used to explore the spatial variability between CSAM locations.
Furthermore, the coefficient of variance was used to calculate the precision between sensors.
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In order to safeguarding human health by establishing limits for air pollution due to NO2,
among other air pollution variables, air quality estimations were conducted in Milan, Italy, from 2013
to 2016 [17]. The research presented in [17] was carried out by using machine learning and deep
learning models aimed at obtaining a robust estimate of pollutants. Additionally, in [17] the following
configurations were employed: a linear regressor, a multilayer perceptron with Bayesian regularization,
a random forest regressor, and a long-short term memory network.

The concept of robustness used in [17] has different meanings. First, it was argued that the first
linear model used in [17] can be seen as a standard ordinary least squares algorithm that reduces the
influence of strong outliers in many cases. Furthermore, the authors of [17] suggested that the linear
models used in the sense of their paper were used as a robust baseline.

Second, in [17] it was stated that due to the sampling procedure and ensemble learning of random
forests, the latter provide solutions that are robust because they do not suffer from overfitting in the
same way that simpler regression trees do.

Third, and finally, in [17] the F1-score was used as a robustness metric against unbalanced classes
in a multi-class categorization problem, which was associated with the estimated time series produced
by the trained models during an evaluation process of the regression estimates.

Seasonal variations in NOx concentrations in Changchun (Jilin, China) were studied in [18]. In that
paper, both monthly and daily average NOx concentration variations were also studied. Additionally,
in [18] the lineal dependence between NOx and NO2, among other air pollutants in Changchun,
was found. Moreover, in [18] the coefficient of divergence was employed to assess the differences
between the spatial distribution of NO2 concentrations at several monitoring sites from 2016 to 2018.

In addition, the sensitivity of SO2, NO and NO2 concentrations to the relevant factors that
had an effect on the air quality inside a 20% biodiesel air-conditioned bus was studied in [19].
The bus used in [19] was chosen from a fleet of Toledo (OH, USA) and continuous monitoring of the
abovementioned pollutants were conducted with indoor temperature and indoor relative humidity
as comfort parameters. The study time of [19] comprised the spring, summer, autumn, and winter
seasons from April 2007 to March 2008. Additionally, in [19] a summary statistic of the seasons was
presented and a linear dependence was detected among month, season and other variables.

Furthermore, in [19] the regression tree method was used to study the sensitivity for in-bus air
pollutant concentrations (i.e., SO2, NO, and NO2), and the analysis of variance was used to determine
the statistically significant variables. Lastly, in [19] the quantification of the relationship between the
in-bus air pollutant concentrations and the statistically significant variables was carried out, and the
dynamics of in-bus pollution was compared with atmospheric physics.

The papers shown above were focused on the statistical analysis of sets of NO2 concentration
measurements that were carried out over long periods of time. In these papers, tools of parametric
statistical inference or artificial intelligence or machine learning were used to estimate the central
tendency of the data and, in some cases, to carry out its modeling. In this sense, the results obtained in
these papers were satisfactory. Nevertheless, several of these papers lack of an exhaustive analysis of
the central tendency of the data and, in general, of the dispersion of the data. Furthermore, they did
not establish the similarities and differences that allow the construction of robust confidence intervals
in which the central tendency of the data is found, with at least the 95% confidence level.

This is important, because robust statistical inference [13–15] allows significant conclusions to be
drawn about the data, even when few data are available and without the need to eliminate outliers,
which could be carriers of important information about the physical system that generated them.

Something worth mentioning is that in practically all the papers shown above [16–19] the authors
faced the problem of missing data, and used different tools to fill in the gaps. However, these values
are artificial and their sole purpose is to put an estimate of the true value that should go in those gaps.
On the contrary, however, using robust statistics in the sense of [13–15] the researchers do not have to
do the above, because the analysis does not require having a large amount of data to draw significant
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conclusions, nor does the data distribution need to be Gaussian or parametric. This last characteristic
is also shared by nonparametric statistical inference [11,12].

The research presented in this paper is in total agreement with what was said in the previous
paragraphs and can be seen as a continuation of the research presented in [4,5,20,21].

At this point, it is important to mentioned that an analysis of air pollution variables in Quito was
also carried out in [8]. However, in the report presented in [8] the robust analysis of air pollution
variables was not performed, and only the mean value and the maximum values of the set of
observations were taken into account. Therefore, the research presented in this paper, together
with the research presented in [4,5,20,21], could be used as reference material to study in a rigorous,
comprehensive way the behavior of the NO2 concentration at Belisario station, from January 2008 to
December 2019. Belisario is one of the most important air-quality monitoring stations of the Ministry of
the Environment of Ecuador and belongs to Quito Metropolitan Atmospheric Monitoring Network [8].

The objectives of this paper are as follows:

(1) Group the NO2 concentration measurements, taken from 1 January 2008 to 31 December 2019 at
Belisario station, in sets of variables that represent the years, months, days of the week, and hours
of the day.

(2) Obtain estimates of the central tendency of the data and their dispersion, using classic,
nonparametric, resampling, and robust methods.

(3) Categorize the data and find confidence intervals that allow quantifying the differences
between categories.

(4) Find periodic behaviors in the variables.

Other research in which some robust statistics tools have also been used in some way are the
following. In [22], robust linear regression models were used to reduce the influence of outliers in
a least square fitting problem using M-estimation. The air pollution variables under study in [22]
were the following: carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (NO2), ozone (O3),
volatile organic compounds (VOC), and particulate matter (both PM2.5 and PM10).

Furthermore, some of the robust statistical methods used in the research presented in this paper
were also used in [23] to compare results obtained in [23] for different lenses and calibration processes,
in a three-dimensional reconstruction problem of archeological remains. Moreover, robust linear
regression was also used in [24] to estimate black carbon concentration in two sites in Helsinki, Finland.

Finally, it is important to mention that nonparametric statistical methods have also been used
to estimate the behavior of air pollution variables [25–32]. However, the results obtained using
nonparametric methods are inferior to those obtained using robust methods, in the sense that robust
methods are practically immune to the influence of extreme values. Therefore, robust methods generate
confidence intervals that are narrower than those generated using nonparametric methods [5,20,21].

In this paper, in order to summarize the set of NO2 concentration measurements, summary
statistics are provided in Section 2. In addition, the analysis of the sets of measurements using
nonparametric methods is carried out in Section 3, and the robust analysis of these sets is carried out in
Section 4. Section 5 of this paper provides a discussion of the results, and the conclusions of the paper
are presented in Section 6.

2. Summary Statistics of 12 Years of NO2 Concentration Measurements at Belisario Station

According to [8], measurements were performed with Thermo Scientific Models 42C and 42i
NO-NO2-NOx analyzers [33,34]. These measuring instruments are used as measurement standards in
many countries. For example, EPA has designated them as reference and equivalent methods [35].
The detailed explanation of the experimental conditions in which the measurements of air pollutants
are carried out in Quito is given in [8].

In Quito, the monthly behavior of the NO2 concentration seems to repeat every year [8]. In addition,
in [8] it is said that the lowest concentrations of NO2 occur in the summer and the highest in the
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months of March, October, and November. In this regard, it is important to mention that, as stated
in [8], there could be reasons, such as rains, high speed winds and volcanic eruptions, that cause the
NO2 concentration to rise or fall at certain times.

The data collection process in this research started on 1 January 2008 and ended on 31 December
2019, and the sampling period was equal to one hour [8,10]. Therefore, 12 years of NO2 concentration
measurements corresponding to 105,193 data will be analyzed. However, since some data did not
appear and others had negative values, the research was carried out with at least 96% of all possible
data. In other words, less than 4% of the total of all possible data was lost. Furthermore, in accordance
with [36], at least 75% percent of scheduled samples for each year were collected.

In this research, NO2 concentration measurements were divided into four families of sets.
These families consisted of the sets that represent the 12 years under study, the sets that represent the
12 months of the year, the sets that represent 7 days a week, and the sets that represent the 24 h of the
day in groups of 2 h. Additionally, the following variables were formed:

• Xk, k = 1, · · · , 12, stands for the set of samples collected in year 2007 + k.
• Yk, k = 1, · · · , 12, stands for the set of samples collected in the k-th month of the year.
• Zk, k = 1, · · · , 7, stands for the set of samples collected on the k-th day of the week.
• Wk, k = 1, · · · , 12, stands for the set of samples collected at each of the 24 h of the day but with

hours in groups of 2 h.

In this paper, since there were no problems related to the lack of data to carry out the analysis,
the time instants in which no information was recorded were not taken into account, because one
of the advantages of robust statistical analysis is that this type of analysis allows to draw significant
conclusions even with a few samples. As can be seen, in the case study in this paper there was a huge
number of samples. Therefore, taking into account the above, there were no data scarcity problems.
Moreover, the variables under study were considered to be linearly independent, because the linear
correlation values between the variables were very close to zero.

In order to understand the characteristics of the NO2 concentration, making a preliminary analysis
of the data, Table 1 shows a statistical summary of the samples collected. Additionally, Figure 1 shows
the box plot diagrams of the NO2 concentration measurements by years, and the moving averages
(MAs) of these measurements are shown in Figures 2–4. Figure 2 shows the MA of the sequence
consisting of all samples collected during the 12 years, Figure 3 shows the MA of the samples of the
first six years, and Figure 4 shows the MA of the samples of the last six years. Time series studies use
this type technique to analyze trends of variables [37,38].

Figure 1. Box plots of the variables. The outliers are shown by using red circles and, according to
QAQI [8], the dashed straight line indicates the separation between the desirable level of pollution (i.e.,[
0, 100 µg/m3

)
) and the acceptable level of pollution (i.e.,

[
100 µg/m3, 200 µg/m3

)
).
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Figure 2. Moving average of the sequence consisting of the NO2 concentration measurements from 1
January 2008 to 31 December 2019.
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Table 1. Summary statistics of the NO2 concentration measurements.

Year Count Mean
(
µg/m3

)
Median

(
µg/m3

)
Standard Deviation

(
µg/m3

)
Skewness Kurtosis Minimum

(
µg/m3

)
Maximum

(
µg/m3

)
Outliers %

2008 (X1) 8420 30.6714 29.190 13.8055 0.7028 3.7409 1.57 104.06 1.90

2009 (X2) 8463 29.0274 27.510 13.5032 0.8793 4.7740 1.39 121.16 1.86

2010 (X3) 8568 29.1409 27.970 13.0294 0.7802 4.5930 1.71 122.61 1.75

2011 (X4) 8462 27.4369 26.010 11.8807 0.6098 3.5480 1.46 84.99 1.67

2012 (X5) 8591 24.6597 23.380 11.8465 0.6422 3.4568 0.42 81.60 1.56

2013 (X6) 8288 28.0209 26.835 12.4174 0.8509 5.0159 1.81 114.84 1.68

2014 (X7) 8647 27.9431 26.430 12.8477 0.8255 4.9352 2.08 149.67 1.54

2015 (X8) 8529 27.0562 25.130 13.4024 0.8700 4.1198 0.29 110.47 2.03

2016 (X9) 8496 26.8132 25.610 12.8345 0.6392 3.6433 0 100.45 1.33

2017 (X10) 8282 23.4152 22.220 10.8507 0.7390 3.8362 0 88.03 1.79

2018 (X11) 8333 28.8103 27.180 12.7965 0.6763 3.5120 0 85.58 1.55

2019 (X12) 8474 25.9156 24.465 11.7287 0.6842 3.6442 2.17 89.66 1.33

Total 101,553 27.4108 25.950 12.7553 0.7747 4.2050 0 149.67 1.66
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Figure 4. Moving average of the NO2 concentration measurements during the years from 2014 to 2019:
X7 (2014), X8 (2015), X9 (2016), X10 (2017), X11 (2018), and X12 (2019).

In the box plots shown in Figure 1, a dashed straight line has been included indicating the separation
between having a desirable level of pollution due to the NO2 concentration at Belisario station (i.e.,[
0, 100 µg/m3

)
) and an acceptable level of pollution (i.e.,

[
100 µg/m3, 200 µg/m3

)
). This classification,

regarding the air pollution due to the NO2 concentration, is established in Quito by the Quito Air
Quality Index (QAQI) [8].

The type of smoothing by using MA employed in this paper is the following: Given the sequence
x of length k, find the average of the data set xh, xh−1, . . . , xh−m+1 for each h ≥ m, where xh is the value
of the sequence at the h position and m < k. This is done in order to make that each particular datum
loses its individual influence, although this process makes that the researcher loses m− 1 observations
when analyzing the data. Here, the size of the MA was 720 due to the fact that this number is the
number of data that there is in a 30-day month [5].

Table 1 shows that, for each of the variables under study, all the medians are less than the means.
Furthermore, it is shown that the value of skewness is greater than zero and that all kurtosis values are
greater than 3.4. In this sense, it should be noted that in the years 2013 and 2014 the kurtosis values
are close to 5. Moreover, the values of the standard deviations are not small when compared with
the values of the means, and Figure 1 shows that there are many outliers. All this indicates that the
variables come from heavy-tailed distributions, or that their behavior may be due to the existence of
a mix of distributions [14,39]. The aforementioned shows that these observations do not come from
variables whose distribution is Gaussian [40].

In Figure 1, it can be seen that half of the years under study have observations that are above the
desirable level of pollution [8]. Nevertheless, every year the NO2 concentration presents abnormally
high observations. The latter again indicates that the variables under study do not come from Gaussian
distributions, although the percentage of outliers does not exceed 2.1%.

Figure 2 shows that the NO2 concentration was stable during the 12 years of the study. In addition,
it is observed that the maximum is reached in the third quarter of the year and the minimum in the
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second quarter. This is in accordance with what was said in [8]. Moreover, Figures 2–4 show that once
smoothing is performed, where each particular value loses importance with respect to the analysis in
general, the values of the observations do not even reach half the maximum value of the desirable
level of pollution. Therefore, exceeding the desirable level of pollution occurs at specific moments,
which are never exceeded in a sustainable manner.

Due to the fact that there is a huge number of observations, in this paper classical statistical
inference was tried to be used. However, as all the variables came from heavy-tailed distributions,
several variable transformations [40] had to be carried out in order to make the variables fit a
Gaussian distribution.

For the purpose of achieving smooth transformations around zero and to work with differentiable
functions in the interval defined by the range of measured values, a transformation of the Ti =

√
Xi + 1

type was used, where Xi was the NO2 concentration in the i-th year, i = 1, . . . , 12 (i.e., X1(2018),X2(2019),
. . . , X12(2019))). One of the advantages of working with smooth transformations is that they share
all the good properties that smooth functions have. Therefore, it is recommended to always look for
simple transformations of the data to make them fit known distributions, starting with the Gaussian
distribution [40].

In this research, with the variable change made, it was possible to adjust all the Ti variables to
normal random variables with p-values greater than 0.05, except for the years 2011 (X4) and 2015 (X8).
However, the year 2011 could be adjusted to observations from a normal distribution by using the
T4 =

√
X4 + 4 transformation, and the year 2015 could also be adjusted to observations from a

normal distribution by using the T8 =
√

X8 + 0.5 transformation. In both cases, the adjustments
were achieved with p-values greater than 0.05. This leads to the use of classical inference, although the
results will be compared with the results provided by nonparametric statistics and robust statistics.
In Figures 5–10, the box plots and the smoothed observations are shown by using moving averages for
the months of the year (Yi, i = 1, . . . , 12), for the days of the week (Zi, i = 1, . . . , 7), and for the hours
of the day in groups of two hours (Wi, i = 1, . . . , 12).

Figure 5. Box plot of data: Y1 (January), Y2 (February), Y3 (March), Y4 (April), Y5 (May), Y6 (June), Y7

(July), Y8 (August), Y9 (September), Y10 (October), Y11 (November), and Y12 (December).
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Figure 6. Box plot of data: Z1 (Monday), Z2 (Tuesday), Z3 (Wednesday), Z4 (Thursday), Z5 (Friday), Z6

(Saturday), and Z7 (Sunday).

Figure 7. Box plot of data: W1 (0:00–1:00), W2 (2:00–3:00), W3 (4:00–5:00), W4 (6:00–7:00), W5

(8:00–9:00), W6 (10:00–11:00), W7 (12:00–13:00), W8 (14:00–15:00), W9 (16:00–17:00), W10 (18:00–19:00),
W11 (20:00–21:00), and W12 (22:00–23:00).

Figure 8. Moving average of the NO2 concentrations: Y1 (January), Y2 (February), Y3 (March), Y4

(April), Y5 (May), Y6 (June), Y7 (July), Y8 (August), Y9 (September), Y10 (October), Y11 (November),
and Y12 (December).
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Figure 9. Moving average of the NO2 concentrations: Z1 (Monday), Z2 (Tuesday), Z3 (Wednesday), Z4

(Thursday), Z5 (Friday), Z6 (Saturday), and Z7 (Sunday).

Figure 10. Moving average of the NO2 concentrations: W1 (0:00–1:00), W2 (2:00–3:00), W3 (4:00–5:00),
W4 (6:00–7:00), W5 (8:00–9:00), W6 (10:00–11:00), W7 (12:00–13:00), W8 (14:00–15:00), W9 (16:00–17:00),
W10 (18:00–19:00), W11 (20:00–21:00), and W12 (22:00–23:00).

The box plots shown in Figures 5–7 show that the variables taken into account have extreme
observations on the right, which are generally close to each other, although occasionally some of
the variables present very extreme observations. Therefore, the desirable NO2 concentration level is
sometimes exceeded.

The behavior between the months of the year is very similar (see Figure 8) and it is also similar
between the days of the week (see Figure 9), except on Sundays. On the other hand, when analyzing
the behavior of the NO2 concentration during daylight hours (see Figures 7 and 10), it is observed
that the concentration seems to increase at certain hours in the morning (approximately at 8:00) and at
certain hours of the night (approximately at 20:00).

To what has been said above, it must be added that there are no differences between the months,
the days of the week, and the hours of the day with respect to the concentration of NO2 across the
years. This is because the moving average graphs of each of the variables (see Figures 8–10) seem to



Sensors 2020, 20, 5831 12 of 31

have behaviors close to periodicity, which is more noticeable when the measurement period is shorter
(see Figures 9 and 10).

Here, it is important to mention that this type of periodic behavior has also been observed in the
analysis of other air pollution variables [21]. However, the perfect understanding of this behavior
requires an in-depth analysis, because at first glance it is seen that the possible period of the signal
depends on the time interval that is chosen for its representation. Therefore, if there is some kind of
periodicity, it manifests itself in a modulated or variable way. Nevertheless, obtaining a mathematical
model that captures the possible periodicity of this signal, together with amplitude, frequency and
phase modulations, is beyond the scope of this paper and remains a future research topic.

In the same way that was done for the analysis by years, it was also attempted to make the
variables that represent the months, days and hours of the day fit a Gaussian distribution. This process
was conducted by carrying out several variable transformations. In the case under study, it was
possible to fit the months to variables from Gaussian distributions with a p-value greater than 0.05 by
using a transformation of the Ti =

√
Yi + 4 type. However, the variables representing the days of the

week and hours of the day could not be fitted to any statistical distribution that were not a heavy-tailed
distribution. Therefore, in this paper, for these last two types of variables, classical inference methods
will be considered to a lesser extent than nonparametric and robust inference methods.

3. Analysis of NO2 Concentration Measurements Using Nonparametric Methods

This section is aimed at testing whether the variables have different medians by using
nonparametric statistical methods. In this research, the variability of the measurements could
be caused by some distinguishing features of the years, months, days, and hours of the day in which
the measurements were taken. In addition, random causes could be generated by undesirable climatic
conditions or by measurement noise of the measuring instrument.

In this paper, the variables under analysis have been considered to be linearly independent,
because the linear correlation between them was very close to zero. Therefore, if there were some kind
of linear dependency between the variables, that dependency would be very weak. Furthermore, it is
important to mention that one of the objectives of this paper is to study whether the distributions of
the variables are equal or not between them, and analyze the differences that may exist between the
variables. Therefore, the study of the study of different types of nonlinear dependencies that may exist
between variables is beyond the scope of the paper.

Here, the Wilcoxon rank sum test [11,12] was used to test whether the observations come from
distributions with equal medians. This test was also satisfactorily used in [4,20,21,25,26]. The null
hypothesis was H0 : Median = M0, and the alternative hypothesis was H1 : Median , M0. In short,
if it is considered that both the null hypothesis is true and the observations are stable, then half of the
observations will be less than M0 and the others will be greater than M0. For the analysis, the confidence
level was (1− α), being α = 0.05 the significance level. Thus, the bilateral nonparametric confidence
intervals for the median were calculated as in [4,20].

With a confidence level equal to 95%, the limits of the confidence intervals for the median that were
found in this paper are shown in Table 2. Additionally, a graphical representation of the confidence
intervals for both the median and the transformed mean are shown in Figure 11. These confidence
intervals are both classic and nonparametric. In Figure 11, the axis of the abscissa represents the
variables (that is, the years) and the ordinate axis represents the NO2 concentration. In addition,
in Figure 11, the nonparametric confidence interval centered on the median is represented to the left of
each variable, while the classic confidence interval for the mean of the transformed data is represented
on the right. Moreover, the x that is shown above each of the classic confidence intervals is the mean of
the untransformed data of the displayed variable.
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Table 2. Confidence interval limits for the median, with α = 0.05

Variable Lower Limit
(
µg/m3

)
Upper Limit

(
µg/m3

)
X1 (2008) 28.84 29.59
X2 (2009) 27.21 27.86
X3 (2010) 27.68 28.31
X4 (2011) 25.75 26.32
X5 (2012) 23.12 23.69
X6 (2013) 26.55 27.16
X7 (2014) 26.18 26.83
X8 (2015) 24.82 25.48
X9 (2016) 25.30 25.98
X10 (2017) 21.91 22.47
X11 (2018) 26.79 27.53
X12 (2019) 24.19 24.75

Figure 11. 95% classic and nonparametric confidence intervals for the mean of the transformed data
and the median of the untransformed data, respectively. The nonparametric confidence interval is
shown to the left of each variable and the classical confidence interval to the right of each variable.
The x above each confidence interval is the mean of the untransformed variable, and the horizontal
dashed lines are used to separate the categories. X1 ( 2008), X2 (2009), X3 (2010), X4 (2011), X5 (2012),
X6 (2013), X7 (2014), X8 (2015), X9 (2016), X10 (2017), X11 (2018), and X12 (2019).

In Figure 11, all the means of the untransformed data are outside both the median-centered
nonparametric confidence intervals and the classic confidence intervals for the transformed data,
although the classic confidence intervals were built for the mean of the transformed data. Additionally,
Figure 11 shows that there is a parallelism between the intervals found by the two methods (that is, the
classic method and the nonparametric method) and that, in each variable, both confidence intervals
contain the median of the data. However, it is important to mention that in the case of nonparametric
intervals, the median is included in these intervals by construction of the intervals, which is not the case
with the classic intervals. This fact corroborates that the data analysis carried out using nonparametric
methods and whose distribution is not a normal distribution, produce satisfactory results in terms of
location measurements.

Analyzing Figure 11, it can be seen how five categories have been established to classify the data,
which are separated by horizontal dashed lines. The year 2008 is in the first category. The years 2009,
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2010, 2011, 2013, 2014, 2015, 2016, and 2018 are in the second category. The year 2019 is in the third
category. The year 2012 is in the fourth category and, lastly, the year 2017 is in the fifth category.

At this point, it is important to mention that all the categories are separated from each other by an
NO2 concentration equal to a unit of measurement. Although, the third category has an amplitude of
three units of measurement. However, there are differences in the widths of the measurement intervals.
On the other hand, it is also verified again that the confidence intervals are at the desirable level of air
pollution, according to QAQI [8]. Furthermore, in no case do the values of the confidence intervals
come close to the acceptable level of air pollution due to the NO2 concentration, which shows that the
desirable level of air pollution is exceeded in a circumstantial way.

Next, Figures 12–14 show the nonparametric confidence intervals for the medians of the variables
that represent the months, days and hours of the day in groups of two hours.

Figure 12. 95% nonparametric confidence intervals for the medians: Y1 (January), Y2 (February),
Y3 (March), Y4 (April), Y5 (May), Y6 (June), Y7 (July), Y8 (August), Y9 (September), Y10 (October), Y11

(November), and Y12 (December).

Figure 13. 95% nonparametric confidence intervals for the medians: Z1 (Monday), Z2 (Tuesday),
Z3 (Wednesday), Z4 (Thursday), Z5 (Friday), Z6 (Saturday), and Z7 (Sunday).
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Figure 14. 95% nonparametric confidence intervals for the medians: W1 (0:00–1:00), W2 (2:00–3:00),
W3 (4:00–5:00), W4 (6:00–7:00), W5 (8:00–9:00), W6 (10:00–11:00), W7 (12:00–13:00), W8 (14:00–15:00),
W9 (16:00–17:00), W10 (18:00–19:00), W11 (20:00–21:00), and W12 (22:00–23:00).

As can be seen in Figure 12, five categories are established for the months using the nonparametric
confidence intervals, which coincide with the results of the Wilcoxon rank sum test [11,12], taking
into account low p-values. The NO2 concentration level, according to the months, seems to behave
periodically across the years. The lowest concentration levels occur in summer, then it grows to the
highest level obtained at the beginning of autumn, to lower and stabilize in winter and spring. At the
end of spring, the decline in concentration begins. Although the variation is very small, the larger the
median, the grater the width of the nonparametric confidence intervals. This feature has already been
seen in other studies [20].

With respect to the analysis of the NO2 concentration by weeks, Figure 13 shows that this
concentration decreases by 20% on weekends compared to working days, where there is a maximum
on Fridays. Additionally, the NO2 concentration remains stable during the working days. The results
obtained with these nonparametric confidence intervals are analogous to those obtained by using the
Wilcoxon rank sum test. Four categories are established for the NO2 concentration: one formed on
Sunday, another formed on Friday, a third formed on Tuesday, Wednesday and Thursday, and the
last one formed on Monday and Saturday. This last category represents the transition from weekdays
to weekends.

Finally, in the study of the hours of the day, Figure 14 shows that the NO2 concentration has two
minimums, two maximums, and hours of transition between these extremes. The minimums occur at
approximately 2:00 and 14:00 each day, while the maximums occur at 9:00 and 19:00. Furthermore,
the increases and decreases in NO2 concentrations are very pronounced. These go from concentration
values ranging from 18 µg/m3 to 33µg/m3 or from 20 µg/m3 to 36 µg/m3, representing jumps in
value almost twice the concentration. There are many categories similar to those obtained with the
Wilcoxon rank sum test, but these can be summarized in five: one formed by each minimum, another
formed by each maximum, and the rest of the categories are transition categories from one state
to another.

4. Robust Analysis of the NO2 Concentration Measurements

Robust Statistics is concerned with carrying out the analysis using statistics that suffer little
variation compared to samples that present observations that are far from the vast majority of the
data [13–15]. Therefore, this paper is aimed at both obtaining measures of central tendency and scale
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that are insensitive to extreme observations and assessing which parameters can help characterize the
variables that are under consideration.

Extreme observations have little influence on the behavior of robust estimators, because with
these estimators the influence curves are bounded [41]. These curves are used to characterize
robust estimators and are intended to measure the influence that one observation has on the others.
Furthermore, in addition to the property of being bounded, the influence curves have other properties,
such as continuity and differentiability.

In this paper, robust estimators are applied to the ordered sample [12] of O1, . . . , On, which
is O(1) ≤ O(2) ≤ . . . ≤ O(n), where O(1) stands for the observation that has the smallest value,
O(2) stands for the observation that has the second smallest value, and so on.

4.1. Estimators of Central Tendency and Scale

In this section, location statistics will be used to indicate around which values most of the data are
grouped. In addition, these values will be used to obtain deductions that determine the center of the
distributions. The statistics used in this section can be found in [13–15,42–44].

L-location estimators:

• Trimean (TM) [15,42].
• α-trimmed mean (T(α)) [13–15].
• α-winsorized mean (W(α)) [13].

M-location estimators:

• Andrew’s wave (Twa(c)) [13,15].
• Biweight (Tbi(c)) [13,14].

Scale estimators:

• Sample standard deviation (sx) [13,14].
• Mean absolute deviation (MADmean) [13,14].
• Median absolute deviation (MAD) [13,14].
• One-half of the fourth-spread (SRH) [13,43].
• Least median squares (LMS) [14].
• Winsorized standard error (sW(α)) [15].
• Andrew’s wave (sωa(c)) [13].
• Biweight (Sbi(c)) [13,14].
• Estimator based on a subrange (Cαn) [44].

Table 3 shows the point estimates of location and the point estimates of scale are shown in
Table 4. A graphical representation of the aforementioned location and scale estimators is shown
in Figures 15 and 16, respectively.

Figure 15 shows the location estimates, which indicate that NO2 concertation levels are very stable
across the years. Furthermore, there is a maximum in 2008 and another in 2018. In addition, there is a
minimum in 2012 and another in 2017, and the oscillation occurs between 20

(
µg/m3

)
and 30

(
µg/m3

)
.

Note that, in general, all measures of centralization for each variable fluctuate between the mean and
0.3-trimmed mean.

Figure 16 shows that all the scale estimators are very similar to each other, varying 3
(
µg/m3

)
up

or down. In addition, the behavior of all estimates is very uniform, growing and decreasing in the same
periods. Moreover, it is observed that the standard deviation is the highest scale estimate and that the
other scale estimates are bounded lower by the scale estimator 0.2-winsorized standard deviation.
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Table 3. Point estimates of location
(
µg/m3

)
.

Year Mean Median me Trimean Tm 0.2-Trimmed Mean T(0.2) 0.3-Trimmed Mean T(0.3) 0.2-Winsorized Mean W(0.2) 0.3-Winsorized Mean W(0.3) Andrew’s Wave Twa(2.4π) Biweight Tbi(9)

2008 (X1) 30.6714 29.1900 29.4600 30.1907 28.3553 29.7156 29.4234 29.9821 29.9665
2009 (X2) 29.0274 27.5100 27.8175 27.4588 25.5255 28.0363 27.7640 28.2836 28.2726
2010 (X3) 29.1409 27.9700 28.1075 29.8856 29.1451 28.3203 28.0605 28.5222 28.5242
2011 (X4) 27.4369 26.0100 26.4650 26.9828 24.9782 26.7571 26.4540 26.9136 26.8660
2012 (X5) 24.6597 23.3800 23.6725 22.8323 20.3695 23.9037 23.6632 24.1463 24.1215
2013 (X6) 28.0209 26.8350 27.0750 27.9641 24.9496 27.2365 27.0573 27.4127 27.4106
2014 (X7) 28.0209 26.8350 27.0750 27.9641 24.9496 27.2365 27.0573 27.4127 27.4106
2015 (X8) 27.9431 26.4300 26.8250 25.8820 24.2028 27.1266 26.7925 27.3246 27.2912
2016 (X9) 27.0562 25.1300 25.6250 25.3397 22.3397 25.9492 25.5318 26.2370 26.1992
2017 (X10) 26.8132 25.6100 25.8300 24.5848 22.0544 26.0465 25.7487 26.3029 26.2872
2018 (X11) 23.4152 22.2200 22.4400 23.3262 23.3533 22.6466 22.3710 22.8758 22.8619
2019 (X12) 28.8103 27.1800 27.6150 28.3698 25.1177 27.9231 27.5771 28.2248 28.1775
All years 27.4108 25.9500 26.2850 27.0175 27.1500 26.5410 26.2272 26.7754 26.7526

Table 4. Point estimates of scale
(
µg/m3

)
.

Year sx mADmean mAD SRH LmS sW(0.2) swa(2.4π) sbi(9) C0.2
n

2008 (X1) 13.8055 10.8025 8.7000 8.7900 8.5300 8.3386 13.4431 13.4482 12.7180
2009 (X2) 13.5032 10.4953 8.5100 8.6250 8.4100 8.2029 12.8821 12.9066 12.5176
2010 (X3) 13.0294 10.1525 8.2800 8.3350 8.2150 7.9726 12.6009 12.6008 12.2625
2011 (X4) 11.8807 9.3367 7.4600 7.6000 7.3750 7.3040 11.7007 11.6932 11.0964
2012 (X5) 11.8465 9.3780 7.7500 7.8050 7.6050 7.4137 11.6913 11.6828 11.3332
2013 (X6) 12.4174 9.6233 7.9650 7.9850 7.8200 7.5782 11.8653 11.8836 11.7341
2014 (X7) 12.8477 10.0650 8.2400 8.4300 8.0400 7.9912 12.4651 12.4657 12.0803
2015 (X8) 13.4024 10.4634 8.4100 8.6400 8.0400 8.1693 12.8284 12.8536 11.9345
2016 (X9) 12.8345 10.1818 8.5650 8.6400 8.3300 8.2007 12.6827 12.6662 12.3354
2017 (X10) 10.8507 8.5253 6.9600 7.0100 6.7900 6.7041 10.5899 10.5901 10.1125
2018 (X11) 12.7965 10.1228 8.3600 8.5200 8.0150 8.0536 12.5949 12.5894 11.9163
2019 (X12) 11.7287 9.2944 7.6050 7.7100 7.5000 7.3684 11.5476 11.5364 11.3150
All years 12.7553 9.9982 8.1800 8.2700 8.0250 7.8793 12.3747 12.3789 11.9345
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Figure 15. Graphical representation of the location estimates for the twelve years under study. Location
estimators: mean, median, trimean, 0.2-trimmed mean, 0.3-trimmed mean, 0.2-winsorized mean,
0.3-winsorized mean, Andrew’s wave, and biweight.

Figure 16. Graphical representation of the scale estimates for the twelve years under study.
Scale estimators: sample standard deviation (sx, mean absolute deviation (MADmean), median absolute
deviation (MAD), one-half of the fourth-spread (SRH), least median squares (LMS), estimator based
on a subrange (Cαn), winsorized standard error (sW(0.2)), Andrew’s wave (sωa(2.4π)), and biweight
(Sbi (c)).

At this point, it is important to note that these scale estimates are relatively high compared to the
location estimates. The foregoing indicates that the variability in the NO2 concentration measurements
is high. Furthermore, it indicates that although there are few outliers, there are many observations
with high values, when these observations are compared with the center of the distribution. This had
already been seen before when observing the amplitude of the box plot diagrams in Figure 1.

Figure 17 shows the location estimates by month, day and hour, where the variables are as
follows: Y1 (January), Y2 (February), Y3 (March), Y4 (April), Y5 (May), Y6 (June), Y7 (July), Y8 (August),
Y9 (September), Y10 (October), Y11 (November), and Y12 (December); Z1 (Monday), Z2 (Tuesday),
Z3 (Wednesday), Z4 (Thursday), Z5 (Friday), Z6 (Saturday), and Z7 (Sunday); an W1 (0:00–1:00),
W2 (2:00–3:00), W3 (4:00–5:00), W4 (6:00–7:00), W5 (8:00–9:00), W6 (10:00–11:00), W7 (12:00–13:00),
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W8 (14:00–15:00), W9 (16:00–17:00), W10 (18:00–19:00), W11 (20:00–21:00), and W12 (22:00–23:00).
In addition, for the abovementioned variables, the scale estimates are shown in Figure 18.
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Figure 18. Estimates of scale by month, day and hours.
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In Figure 17, the estimates of location by months, days of the week and hours of the day in groups
of two hours are very similar to each other, with the difference of 1 µg/m3 from one type of estimator
to another. Therefore, the difference between the estimators is negligible.

Figure 17a shows that the location estimates again reflect the same characteristics seen in the
nonparametric estimates. In the analysis by months, the concentration of NO2 goes from having a
minimum at approximately 22 µg/m3, in the middle of summer, to having a maximum at the beginning
of autumn, showing a growth of 50% in the concentration of NO2. Afterwards, there is a decrease
in the concentration of NO2 tending towards 25 µg/m3, where the NO2 concentration remains in a
steady state until the arrival of the following summer.

In Figure 17b, the days of the week show two states, that on working days and that on weekends.
On weekends, the NO2 concentration drops considerably compared to the value it reaches during
working days. Lastly, Figure 17c shows that the hours of the day have two very pronounced minimums
and maximums, in which the value of the NO2 concentration of the minimums is almost doubled.

Comparing Figures 17 and 18, it is observed that the scale estimates are very high with respect
to the location estimates, which suggests high variability in the data, although with few outliers.
In addition, Figure 18 shows that the scale estimates are grouped into three steps: (1) the step formed
by the highest estimates, sx, swa(2.4π), sbi(9) and C0.2

n ; (2) the step formed by MADmean; and (3) the step
formed by lowest estimates, LMS, SRH, MAD and 0.2-winsorized standard deviation.

Figure 18 also shows that the variables representing the months, days and hours seem to follow
the same pattern. Specifically, these variables increase and decrease at the same times, for the group
that represents the months (see Figure 18a), the one that represents the days of the week (see Figure 18b)
and the one that represents the hours of the day (see Figure 18c).

Finally, it is observed that there is a concordance between location and scale estimates. Specifically,
the increase in the NO2 concentration leads to an increase in its variability.

4.2. Confidence Intervals

Following the methodology used in [5,20,21], in this section confidence intervals will be constructed
to classify the variables under study, categorize said variables, and establish similarities and differences
between these variables that bring out possible patterns of behavior of the concentration of NO2 at
Belisario station. In addition, the location and scale estimators presented in Section 4.1 were used to
build the following confidence intervals.

•

(
X, sx

)
, where X stands for the mean.

• (Me, MAD), where Me stands for the median.
• (Me, IQR), where IQR stands for the interquartile range.

•

(
T(α), sW(α)

)
.

• (Twa(c), swa(c)).
• (Tbi(c), sbi(c)).

Furthermore, a bootstrap method was used to build confidence intervals [15,20,21]. With all the
above, nine confidence intervals were built for all variables: one classic confidence interval, one classic
confidence interval based on data inversion of the transformed data using the function

√
Xi + 1, being

Xi the i-th variable to be transformed, one confidence interval based on a bootstrap method, one
nonparametric confidence interval, and five robust confidence intervals.

Figure 19 shows the confidence intervals built for the years 2008, 2014 and 2019. Showing the
confidence intervals for more variables does not provide significant information, because these intervals
present the same characteristics for all the variables.
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Figure 19. 95% confidence intervals (CI0.95): classic, classic based on data inversion of transformed
data, robust, boostrap, and nonparametric confidence intervals.

Specifically, the classic confidence intervals are those that are the most displaced towards the
highest values, while the confidence intervals based on the Andrew’s wave and the biweight are
analogous in all variables. Furthermore, these two types of intervals cover lower values than those
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mentioned above, with a difference equal to 1 µg/m3. The rest of the confidence intervals cover the
median of the data and differ from the first ones by 1 µg/m3. Therefore, the difference between the
highest estimates and the lowest estimates is equal to 2 µg/m3, which is practically negligible.

Taking into account all the above, the pairs of estimators
(
T(α), sW(α)

)
and (Tbi(c), sbi(c)),

for α = 0.2 and c = 9, will be used to carry out the comparison of the variables. The reasons that
justify having made this decision are the following.

First, the classical confidence intervals are based on the underlying distribution of the data being
approximately normal, which is not true in this research.

Second, the results obtained with the estimators (Me, MAD), (Me, IQR) and bootstrap are
analogous to those obtained by the nonparametric estimators. Although, it must be said that
the pair of estimators (Me, MAD) allows us to better observe the differences in the grouping of variables.
Therefore, the possibility of carrying out the grouping of similar behaviors in the NO2 concentration
by years has been lost.

Third, and finally, as the results obtained with the Andrew’s wave are similar to those obtained
with the biweight, any one of these two estimators can be chosen to perform the analysis.

Table 5 shows the limits and lengths of the 95% confidence intervals for
(
T(0.2), sW(0.2)

)
) and

(Tbi(9), sbi(9)). In addition, a graphical representation of the confidence intervals is shown in Figure 20.
In this figure, horizontal dashed lines have been included to classify the variables. Note that this
was done previously when the classification of the medians provided by the Wilcoxon rank sum test
was performed in Section 3, when building the nonparametric confidence intervals. When looking at
Figure 20, it is important to mention that with the estimators (T(0.2),sW (0.2)) and (Tbi (9),sbi (9)) the
classifications of the variables are more refined than those obtained by the nonparametric estimators.
Nevertheless, it must be realized that the differences between one another do not reach 1

(
µg/m3

)
,

which represents a very insignificant difference.
Regarding the amplitudes of the confidence intervals, Figure 20 shows that the confidence intervals

found with the pair of estimators (Tbi(9), sbi(9)) are narrower than the confidence intervals found
with the pair of estimators

(
T(0.2), sW(0.2)

)
. Specifically, the width of the confidence intervals found

with (Tbi(9), sbi(9)) is between 2.8% and 7.2% narrower than the width of the intervals found with(
T(0.2), sW(0.2)

)
. Furthermore, it is important to mention that the amplitudes of these intervals evolve

in parallel to the median of the data.

Figure 20. Cont.
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Figure 20. 95% confidence intervals by using the pairs of estimators (T(0.2),sW (0.2)) and (Tbi (9),sbi (9)).

Table 5. 95% confidence intervals (CI0.95 and confidence interval lengths: (T(0.2),sW (0.2))
and (Tbi (9),sbi (9)).

Variable CI95 Lower Limit
(
µg/m3

)
Upper Limit

(
µg/m3

)
Length

(
µg/m3

)
X1 (2008)

(
T(0.2), sW(0.2)

)
29.8938 30.4876 0.5938

(Tbi(9), sbi(9)) 29.6949 30.2693 0.5745

X2 (2009)

(
T(0.2), sW(0.2)

)
27.1675 27.7502 0.5827

(Tbi(9), sbi(9)) 28.0091 28.5581 0.5490

X3 (2010)

(
T(0.2), sW(0.2)

)
29.6042 30.1670 0.5628

(Tbi(9), sbi(9)) 28.2554 28.7891 0.5337

X4 (2011)

(
T(0.2), sW(0.2)

)
26.7233 27.2422 0.5189

(Tbi(9), sbi(9)) 26.6642 27.1629 0.4987

X5 (2012)

(
T(0.2), sW(0.2)

)
22.5709 23.0936 0.5227

(Tbi(9), sbi(9)) 23.8990 24.3935 0.4945

X6 (2013)

(
T(0.2), sW(0.2)

)
27.6921 28.2360 0.5440

(Tbi(9), sbi(9)) 27.1572 27.6682 0.5110

X7 (2014)

(
T(0.2), sW(0.2)

)
25.6012 26.1627 0.5616

(Tbi(9), sbi(9)) 27.0618 27.5874 0.5256

X8 (2015)

(
T(0.2), sW(0.2)

)
25.0507 25.6287 0.5780

(Tbi(9), sbi(9)) 25.9647 26.5093 0.5446

X9 (2016)

(
T(0.2), sW(0.2)

)
24.2941 24.8755 0.5814

(Tbi(9), sbi(9)) 26.0332 26.5726 0.5395

X10 (2017)

(
T(0.2), sW(0.2)

)
23.0855 23.5669 0.4814

(Tbi(9), sbi(9)) 22.6477 23.1040 0.4562

X11 (2018)

(
T(0.2), sW(0.2)

)
28.0815 28.6580 0.5765

(Tbi(9), sbi(9)) 27.9544 28.4953 0.5410

X12 (2019)

(
T(0.2), sW(0.2)

)
24.5174 25.0405 0.5231

(Tbi(9), sbi(9)) 25.1326 25.6244 0.4918

Figure 21 shows the confidence intervals based on
(
T(0.2), sW(0.2)

)
and (Tbi(9), sbi(9)) for the

analysis by months, days and hours. In Figure 21a,d, it is observed that the lowest NO2 concentration
values are reached in the month of July, with values that are approximately equal to 20µg/m3.
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Figure 21. 95% confidence intervals, (T(0.2),sW (0.2)) and (Tbi (9),sbi (9)), by month (Y1 = January,
. . . , Y12 = December), day of the week (Z1 = Monday, . . . , Z7 = Sunday), and every two hours
(W1 = 0:00–1:00, . . . , W12 = 22:00–23:00).

From that moment, the NO2 concentration rises until reaching to its maximum value, which is
approximately equal to 33 µg/m3 and which is reached in October. In other words, in the summer
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months the NO2 concentration drops to a little more than half its maximum value. Furthermore,
the drop in NO2 concentration levels appears to have two steps. The first of these steps is reached at
the end of the year, at which point the NO2 concentration stabilizes and remains stable until April.
Then, the NO2 concentration drops again until it reaches its minimum value in July. These results are
similar to those obtained in Figure 12. Furthermore, the amplitudes of the confidence intervals seem,
in general, to be smaller than for the analysis by years. Likewise, there is also the effect that the higher
the median value, the greater the width of the intervals.

Regarding the analysis by days of the week (see Figure 21b,e), it can be said that this is in every
way analogous to that obtained with nonparametric estimators (see Figure 13). On weekends, the NO2

concentration reaches the minimum, reducing to 25% of the value reached on weekdays. In addition,
there are three categories: one for Sundays, another for weekdays, and then the transition categories.
Although, it should be noted that on Fridays the highest NO2 concentration value of the entire week
is reached.

Finally, with respect to the analysis by hours of the day (see Figure 21c,f), it is important to say that
the results are also very similar to those found with nonparametric estimators (see Figure 14). For both
types of confidence intervals, the NO2 concentration reaches maximum values at approximately 9:00
and 19:00. That is, the maximum is reached in the first hours of the beginning of the working day
and at the end of the working day. In addition, the concentration of NO2 suffers very pronounced
falls, reaching two relative minimums: one at approximately 2:00 and the other at approximately
14:00, the minimum reached at 2:00 being the deepest. Among the abovementioned minimums
and maximums, there are only transitioning levels, because there is no any value at which the NO2

concentration remains stable for several hours.

5. Discussion

From a statistical summary of the data it could be observed that the vast majority of the observations
are at a desirable level of air pollution, due to the levels of NO2 concentrations at the Belisario air-quality
monitoring station [9]. Furthermore, those observations that were not at a desirable level of pollution
were few extreme values that were at an acceptable level of air pollution. The criteria used in Quito
to establish desirable and acceptable levels of air pollution are defined by QAQI [8]. Although, it is
worth mentioning that each urban city in the world sets its own criteria. Therefore, it could happen
that in other cities of the world, the desirable level of air pollution is only used to say that the level of
air pollution due to the concentration of air pollution variables is 0 and that the rest of the levels range
from being not harmful to humans to the danger of death.

To the aforementioned, it must be added that, after a preliminary analysis of the data, it was
observed that the samples came from heavy-tailed distributions. But, it was possible to discover
transformations that allowed to carry out the transformation of the original variables into other
variables from Gaussian distributions. However, this was only possible for some types of variables.
Therefore, it became necessary to combine various types of statistical analysis to be able to explain in a
precise, exhaustive and comprehensive way the behavior of the NO2 concentration at the Belisario
air-quality monitoring station.

Within the part of the research aimed at carrying out the descriptive analysis of the data, the
original data were also smoothed to try to reduce the influence that each datum has on the rest of the
data. This process revealed that observations show low air pollution values, below half the desirable
level of pollution. Therefore, exceeding this level of air pollution is something very specific and does
not sustain over time. Thus, at first glance, this confirms that the level of air pollution at Belisario
station is not harmful to humans. This result is in agreement with what was said in [8].

In general, this type of comprehensive preliminary analysis of measurements of NO2 concentrations
in urban cities is not very common. For example, in [16–19] researchers tend to eliminate outliers
following certain criteria and then use artificial intelligence or machine learning tools to carry out data
analysis. In addition, after the data cleaning process, including the elimination of extreme values,
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researchers tend to look for linear dependencies between the variables in order to apply linear analysis
tools and interpret the data in this way.

However, unlike what was said previously, in this research it was decided to analyze the data
taking into account the contribution of extreme values, because these values are the response of the
dynamic system under study to certain types of inputs. Therefore, in this research the extreme values
were considered as carriers of useful information and allowed to justify the robust analysis of the data.

Nonparametric statistical inference tools have also been used in the analysis of air pollution
variables [25–32]. This has been important, because if the data do not follow parametric distributions,
then classical statistical inference is unfounded, which is the case of study in this research. In this sense,
in [25–32] nonparametric analysis tools have been used to study several variables of air pollution.
Nevertheless, nonparametric analysis is much more sensitive to the influence of extreme values than
robust analysis. But it also provides relevant information that allows to classify data and determine
similarities and differences between them, which also allows the researcher to categorize variables.
All of this has been done in this research and has paved the way for applying robust data analysis tools.

In this paper, nonparametric and robust statistical hypothesis testing and nonparametric and
robust confidence intervals were also used to compare the results with the results obtained using
classical techniques. Furthermore, this was used to justify why not all the variables supported the
analyzes using classical techniques. In addition, using the Wilcoxon rank sum test, it was verified that
the variables could be grouped into different groups.

Here, the results obtained by using nonparametric confidence intervals for the median were very
similar to those obtained by using the classical methods applied to the transformed observations.
In short, for the analysis by years, five strata were established: four formed by a single year, 2008,
2012, 2017 and 2019, and another formed by the other years. Each stratum differs from the others by
1 µg/m3.

The classes for the months were five, but could be reduced to four: one class for the maximum,
Y10 (October), another class for the minimum, Y7 (July), the third class for the end of the year and
the first quarter of each year, and the last class formed by moments of transition between the three
abovementioned classes.

On the other hand, the days of the week are grouped as follows. First, on the central three days of
the work week (that is, Tuesday, Wednesday, and Thursday). Second, on Fridays, this part being the
highest in terms of NO2 concentration levels. Third, on Sundays, this part being the one with the lowest
concentration values. Fourth, and finally, on Saturdays and Mondays, which are part of the transition
from some levels to other levels. Furthermore, the value of the reduction of the NO2 concentration
levels from Friday to Sunday is approximately equal to one third of the NO2 concentration levels
on Friday.

Regarding the analysis by hours, several groupings were also obtained. These groups have a
maximum at 9:00 and another at 19:00, and two minimums, one at the end of business hours and
another in the early hours of the morning.

Next, as was done in [5,20,21], different location and scale statistics were found, which were used
to build robust confidence intervals. At this point, it is worth mentioning that all location estimates
were bounded by the median and the 0.2-trimmed mean. In addition, it is clearly observed that the
concentration of NO2 has all its values in the range of desirable values, decreases in the years 2012,
2017 and 2019, and is higher in 2008. But, the difference between the greatest concentration value and
the smallest value on each curve representing the location estimates by year is less than 9 µg/m3.

Regarding the scale statistics used, these were the same as those used in [5,20,21]. In addition,
for the design of the families of estimators, values that are mentioned in the specialized literature as
suitable values were chosen.

All the scale estimates are in one band, where the standard deviation is well above all of them
and the rest of the estimates have the least median of squares as the lower bound. Here, there is a
parallel between the location and scale estimates, in the sense that the rise (respectively decrease) in
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the value of the location estimate produces a rise (respectively decrease) in the scale estimates. All this
leads to the conclusion that extreme observations, both in quantity and value, are the observations that
determine the values of the location and scale estimates.

After analyzing the robust confidence intervals, it was concluded that the most appropriate pairs
of estimators for the analysis based on confidence intervals were

(
T(0.2), sW(0.2)

)
and (Tbi(9), sbi(9)).

The classifications of the variables made with these pairs of estimators were very similar to those
obtained with the nonparametric estimators and with the classical methods applied to the transformed
variables, in the case of the years, but with small differences.

On the other hand, in the analysis of the variables by months, days and hours, it is observed that
there is a possible periodicity. Specifically, the analysis by months shows notable rises at the beginning
of autumn and falls in April and July. Furthermore, stability is observed in the first quarter and in the
last months of each year. In the analysis by days of the week, there is a notable difference between the
NO2 concentration on weekdays, with a higher concentration on Fridays, and on weekends. Finally,
in the hourly analysis, maximum values are also seen at 9:00 and 19:00. The minimums are found in
the early afternoon and early morning, while the rest of the categories are transition categories from
one level to another, without periods of stable concentrations.

With all the above, groupings of variables were obtained by comparing the results obtained by
years, months, days of the week, and hours. In addition, the differences between categories of variables
were found and these differences were quantified using both robust and nonrobust confidence intervals.

A comprehensive study of NO2 concentration trends at Belisario station has been carried out in
this paper. The results of this study showed that the NO2 concentration at Belisario station is stable
when is analyzed by years, it is highly variable when is analyzed by months and hours of the day, and
it is slightly changeable when is analyzed by days of the week.

Regarding the behavior of the NO2 concentration shown in this paper, it is important to say that this
behavior bears some similarity to that of other pollution variables in urban cities. For example, in [21]
maximums and minimums were also observed in the CO concentration in hours of the day close to those
shown in the present paper. The aforementioned is important, because the study carried out in [21] was
also carried out at Belisario station during the same time interval that was taken into account in the present
paper. Another example that shows the existence of maximums and minimums at different times of the
day in the behavior of the concentration of pollutants in urban cities, is the one shown in [24]. Specifically,
in [24] it is observed how the concentration of black carbon varies throughout the hours of the day in two
air quality monitoring stations located at Mäkelänkatu and Kumpula in Helsinki.

The behavior of the concentration of pollutants observed both in this paper and in the research
carried out in [21,24], among others, shows that anthropogenic emissions play a fundamental role in
the concentration levels of pollutants in urban cities.

Before finishing this section, it is important to say that the abovementioned possible periodic
behavior has also been observed in the behavior of other air pollution variables [21]. However,
data analysis showed that this behavior was only observed when the data were analyzed for certain
time scales. Therefore, a transient phenomenon or a variable frequency signal could be observed,
among other things. Here, this possible periodic behavior was shown by using robust confidence
intervals. Additionally, the values of the possible periodic wave were categorized and the differences
between categories were found with the measurement precision provided by robust statistical methods.
All this constitutes another contribution of this research. Nevertheless, the analysis of the possible
periodicity of this signal is beyond the scope of this paper, but it remains as a future research topic.

6. Conclusions

The objective of this paper was to carry out the robust analysis of the behavior of the NO2

concentration at the Belisario air-quality monitoring station, Quito, Ecuador from 1 January 2008 to
31 December 2019. Here, the NO2 concentration was decomposed into variables whose behavior
was analyzed by years, months, days and hours of the day. Furthermore, after verifying that no
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set of separate variables came from the same distribution, the differences between parameters that
characterized these variables were determined.

This is the first time that an exhaustive statistical analysis of the NO2 concentration at Belisario
station has been carried out. In the report presented in [8], the concentration of several variables of air
pollution in Quito was analyzed in a general way, but a robust statistical analysis was not carried out.
Specifically, the analysis carried out in [8] only took into account the mean and maximum values of the
concentration of the air pollution variables. Therefore, the research presented in this paper could serve
as a reference material to comprehensively analyze the NO2 concentration at Belisario station in the
last 12 years. This highlights some of the possible uses of the results of this research.

The results of the study conducted here robustly proved that the NO2 concentration levels at
Belisario station are not harmful to humans. In addition, it was also shown that the behavior of
this concentration tends to be stable across the years, changes slightly during the days of the week,
and varies greatly when analyzed by months and hours of the day.

In the report presented in [8], the main sources of air pollution in Quito are mentioned, highlighting
among them the means of transport, large traffic jams, and all the industries that are located in the
capital and its surroundings that use bunker and fuel oil. Additionally, since Quito is a long, narrow
city, there are many traffic jams in the city center when traveling from one end of the city to the other.
To all this it must be added that the city center is located on the slopes of the Pichincha volcano,
and volcanic eruptions are air pollution sources [8].

What has been said in the previous paragraph highlights the need to improve the urban dynamics
of the city, in order to contribute to the reduction of NO2 concentration levels across the city. In this
sense, the authors of this research suggest the need to carry out the set of proposals made by themselves
in [4,21]. For example, it is important to improve the quality of the main means of transport that are
used in the city, build more green areas that serve as effective filters for air pollution, and establish air
pollution criteria that are adaptive, being more severe in the regions of the city where there is a greater
concentration of people. For more information on things that can be done to improve air quality in
urban cities, it is recommended to see [4,21], for the case of Quito, and other scientific publications
dedicated only to this topic worldwide.

Finally, depending on the time interval used to represent the data, a possible periodicity in the NO2

concentration measurements at Belisario station was observed. However, the in-depth mathematical
modeling of this signal is a complex issue that falls outside the scope of this research, but remains
pending to be performed in a future research of the authors.
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