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ABSTRACT
Toll-like receptors (TLRs) play important role in the innate immune system. TLR15 is
reported to have a unique role in defense against pathogens, but its structural and
evolution characterizations are still poorly understood. In this study, we identified
57 completed TLR15 genes from avian and reptilian genomes. TLR15 clustered into
an individual clade and was closely related to family 1 on the phylogenetic tree.
Unlike the TLRs in family 1 with the broken asparagine ladders in the middle,
TLR15 ectodomain had an intact asparagine ladder that is critical to maintain the
overall shape of ectodomain. The conservation analysis found that TLR15 ectodomain
had a highly evolutionarily conserved region on the convex surface of LRR11
module, which is probably involved in TLR15 activation process. Furthermore, the
protein–protein docking analysis indicated that TLR15 TIR domains have the potential
to form homodimers, the predicted interaction interface of TIR dimer was formed
mainly by residues from the BB-loops and αC-helixes. Although TLR15 mainly
underwent purifying selection, we detected 27 sites under positive selection for TLR15,
24 of which are located on its ectodomain. Our observations suggest the structural
features of TLR15 which may be relevant to its function, but which requires further
experimental validation.

Subjects Bioinformatics, Immunology
Keywords Toll-like receptor 15, Innate immunity, Structural characteristics,
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INTRODUCTION
Innate immunity stands on the first line of immune defense against pathogens. Toll-like
receptors (TLRs) are amajor class of pattern recognition receptors in innate immunity, they
recognize a variety of highly conserved pathogen-associatedmolecular patterns (PAMPs) in
pathogens to initiate an innate immune response and prime the adaptive immune system
(Akira & Takeda, 2004). TLR is characterized by the presence of an ectodomain that is
involved in recognizing ligands and an intracellular Toll/IL-1 receptor-like (TIR) domain
that mediates signaling (Kang & Lee, 2011). The ectodomain of TLR contains a large
number of leucine-rich repeat (LRR) modules and is generally bent into a characteristic
horseshoe-shaped structure (Botos, Segal & Davies, 2011).
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So far, 27 types of TLRs have been identified in vertebrates (Wang et al., 2015a;
Wang et al., 2015b), the ligand specificities of some TLRs have been clarified. TLR2 is able
to form a heterodimer with TLR1, TLR6 or TLR10 to detect microbial lipopeptides (Guan
et al., 2010; Jin et al., 2007; Kang et al., 2009); TLR3 and TLR22 detect double-stranded
RNA (Liu et al., 2008; Matsuo et al., 2008); TLR4 recognizes to lipopolysaccharides from
Gram-negative bacteria (Park et al., 2009); TLR5 binds to bacterial flagellin (Yoon et al.,
2012); TLR7, TLR8, and TLR13 bind to single-stranded RNA (Heil et al., 2004; Shi et al.,
2011; Tanji et al., 2015), TLR9 and TLR21 recognize unmethylated CpG-containing DNA
(Brownlie et al., 2009; Keestra et al., 2010; Ohto et al., 2015; Yeh et al., 2013), and TLR11
and TLR12 respond to profilin (Koblansky et al., 2013; Yarovinsky et al., 2005).

TLR15 can be identified in avian and some reptilian species (Alcaide & Edwards, 2011;
Boyd et al., 2012). TLR15 was considered to play a constitutive role in the immune defense
of chickens (Higgs et al., 2006). The expression of TLR15 was strongly up-regulated after
Salmonella enterica infection (Higgs et al., 2006; Hu et al., 2016; Shaughnessy et al., 2009).
TLR15 was reported to have a unique activation mechanism, where the cleavage of TLR15
ectodomain by secretedmicrobial proteases results in its activation (De Zoete et al., 2011). A
later study showed that TLR15 recognized a yeast-derived agonist that was heat labile and in-
hibited by PMSF (Boyd et al., 2012). The diacylated lipopeptide fromMycoplasma synoviae
was reported to mediate TLR15-dependent innate immune responses (Oven et al., 2013).

Benefiting from the recently rapid increasing of genome data, a large number of TLR
sequences are determined (Zhang et al., 2014). In the current work, we identified 57
completed TLR15 genes from the genomes in vertebrates, investigated the phylogenetic
relationships, structural and evolutionary characterizations using these sequences, and
predicted the dimeric interaction of TLR15 TIR domains.

MATERIALS AND METHODS
Phylogenetic analysis
The coding sequences of vertebrate TLR genes were retrieved from NCBI (GenBank) and
Ensembl databases (Benson et al., 2013; Cunningham et al., 2015). All the partial sequences
(<1,800 bp) and pseudogene sequences were excluded. A multiple sequence alignment
of the TLR proteins was constructed with MAFFT (FFT-NS-i, BLOSUM62) (Katoh &
Standley, 2013), and a phylogenetic tree was calculated from it with PhyML using the
LG substitution model and four substitution rate categories (Guindon et al., 2010; Le &
Gascuel, 2008). Branch support was calculated with an approximate likelihood ratio tests
(aLRT SH-like) (Anisimova & Gascuel, 2006). The phylogenetic tree was visualized with
MEGA 6 (Tamura et al., 2013).

Structural elements analysis
SignalP, SMART, andTMHMMwere used to identify the signal peptide, ectodomain, trans-
membrane region, and intracellular TIR domain of TLR15 (Krogh et al., 2001; Letunic, Do-
erks & Bork, 2015; Petersen et al., 2011). The delimitation of each LRRmodule in the TLR15
ectodomain was determined with the LRRfinder software (Offord, Coffey & Werling, 2010).
The delimitations of chicken TLR15 were used as the reference for the remaining species.
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Structural modeling
I-TASSER was used to model the structure of the ectodomain and TIR domain of TLR15
based on a threading approach (Yang et al., 2015). I-TASSER is a hierarchical method for
protein structure prediction. Structural templates were first identified from the PDB by
the multiple-threading program LOMETS; then, full-length models were constructed by
iterative template fragment assembly simulations. The modeled structure was displayed by
PyMol (Schrödinger, LLC).

Protein–protein docking analysis
The two modeled structures of chicken TLR15 TIR domains were submitted as target 1
and target 2, respectively, to PRISM protein–protein docking server (Baspinar et al.,
2014; Tuncbag et al., 2011). PRISM predicts possible interactions, and how the interaction
partners connect structurally, based on geometrical comparisons of the template structures
and the target structures.

Residue conservation analysis
A multiple sequence alignment of the TLR15 proteins was constructed with MAFFT.
The evolutionary conservations of amino acid residue positions in the TLR15 sequences
was estimated by using ConSurf algorithm (Ashkenazy et al., 2010). The JTT substitution
matrix was used and computation was based on the empirical Bayesian paradigm. The
conservation scale was defined from the most variable amino acid positions (grade 1)
which were considered as rapidly evolving, to the most conservative amino acid positions
(grade 9) which were considered as slowly evolving. The sequence and modeling structure
of chicken TLR15 were used to show the nine-color conservation grades.

Codon-based analyses of positive selection
A multiple sequence alignment of the nucleic acid sequences of the TLR15 genes, based
on their codons, was established with TranslatorX (Abascal, Zardoya & Telford, 2010). The
ratio of the number of nonsynonymous substitutions per nonsynonymous site (dN ) to
the number of synonymous substitutions per synonymous site (dS), dN/dS, an indicator
of the selective pressure acting on a protein-coding gene, at the TLR15 locus and the
corresponding 95% confidence interval were calculated with the Datamonkey web server
(Delport et al., 2010).

The SLAC, FEL, REL, and FUBARmethods were implemented inDatamonkey to explore
the evidence of positive selection acting on the individual codon of the TLR15 sequences
(Kosakovsky Pond & Frost, 2005; Murrell et al., 2013). To minimize the overestimation of
the positively selected codons, codons with p values < 0.1 for SLAC and FEL, with Bayes
Factor > 50 for REL, and with posterior probabilities > 0.9 for FUBAR were considered as
candidates to be under positive selection.

RESULTS
TLR15 is phylogenetically closely related to family 1
We obtained all the known vertebrate full-length TLR gene sequences and constructed
their phylogenetic relationships based on maximum likelihood method (Fig. 1A). TLR15
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Figure 1 Phylogenetic analysis of TLR15 and the other vertebrate TLRs. (A) A large unrooted tree of all the known vertebrate TLRs. Maximum
likelihood tree was constructed based on the full-length sequences of TLRs. Six TLR families are labeled in the tree. The clades of family 1 are shown
in red and the clades of TLR15s are shown in bold. (B) Amplified TLR15 clades of the large unrooted tree. The support value at each branching
point is shown. Its robustness was estimated with an aLRT SH-like method.

clusters into an individual clade and is closely related to the TLRs in family 1 (TLR1,
TLR2, TLR6, TLR10, TLR14, TLR18, TLR25 and TLR27) on the phylogenetic tree. This is
consistent with the early finding (Roach et al., 2005).

We identified 57 completed TLR15 genes through the phylogenetic analysis (Fig. 1B,
Table S1). These TLR15 sequences are derived from 54 avian and 3 reptilian species
(Burmese python, Chinese alligator, and American alligator). TLR15 exists in these species
as a single gene copy in each species’ genome. Also, the phylogenetic tree showed that
TLR15 has evolved following the phylogeny of species. These results indicate that TLR15 is
possibly subjected to strong selection constraints.

TLR15 ectodomain possesses an intact asparagine ladder
TLR15 generally include 860∼880 amino acids. Motif prediction showed that TLR15
included the signal peptide, ectodomain, transmembrane region, and intracellular TIR
domain. The structure of chickenTLR15 ectodomainwasmodeledwith threading approach
(Fig. 2A). The estimated TM-score (0.72 ± 0.11) for this modeled structure showed that
it was acceptable. TLR15 ectodomain contains a LRRNT, a LRRCT, and 19 LRR modules,
which is identical to the number of LRRmodules of the known TLRs in family 1. The LRR3
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Figure 2 Comparison between the asparagine ladders in the ectodomains of TLR15 and the other
TLRs in family 1. (A) TL15 has an intact asparagine ladder in the ectodomain. The model is chicken
TLR15 ectodomain. There was a predicted long loop between LRR3 and LRR4 modules, in which the
conserved ‘‘LxxLxLxxNxL’’ motif was not found. (B) The asparagine ladders of the other TLRs in family
1 are broken in the middle. The crystal structure of human TLR2 ectodomain (PDB code: 2Z7X) is
displayed as an example. The ectodomain structures are shown in cartoon mode. The residues in the
asparagine ladder position (cyan) are shown by sphere mode. The identifying numbers of the 19 canonical
LRR, LRRNT and LRRCT modules are labeled.

module of TLR15 is quite long, for example, the LRR3 of chicken TLR15 has 99 amino
acids that far exceed the lengths of common LRR modules (∼24 amino acids).

The LRR module is characterized by a conserved ‘‘LxxLxLxxNxL’’ motif on the concave
surface. Among them, the conserved asparagine plays important role in maintaining
the overall shape of TLR ectodomain by forming a continuous hydrogen-bond network
(called as asparagine ladder) with backbone carbonyl oxygens of neighboring LRRmodules
(Kang & Lee, 2011). The asparagines can be substituted by other amino acids that are able
to donating hydrogens, such as threonine, serine, and cysteine. We analyzed the asparagine
ladder in the ectodomain of TLR15. The results showed that the asparagine ladder was
intact throughout the TLR15 ectodomain, suggesting that TLR15 possesses an intact and
continuous hydrogen-bond network (Fig. 2A).

Although both TLR15 and the TLRs in family 1 contain 19 LRR modules, the known
crystal structures indicate that the asparagine ladders of the ectodomains of TLRs in family
1 are broken in the middle (Fig. 2B). TLR15 ectodomain more approximates to those TLRs
with intact asparagine ladders in the ectodomains, for example, TLR3, TLR5, TLR7, and
TLR21 (Table S2). Therefore, the ectodomain of TLR15 is obviously structurally different
from the TLRs in family 1.
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Figure 3 Evolutionary conservation s of amino acid positions displayed in the sequence of TLR15. The
conservation scale was defined from the most variable amino acid positions (grade 1, colored turquoise) to
the most conservative amino acid positions (grade 9, colored maroon). Positions, for which the inferred
conservation level was assigned with low confidence, are marked with light yellow. The sequence of
chicken TLR15 was used to show the nine-color conservation grades. The signal peptide, the predicted
LRR modules of the ectodomain, transmembrane region (TM), and intracellular domain (TIR) for TLR15
are labeled. The residues in asparagine ladder positions in the concave surface of each LRR module, the
sites under positive selection, and the residues involved in the homodimeric interaction of TLR15 TIR
domains are marked with solid gray circles, solid red circles, and solid green circles under the sequence,
respectively.

The convex surface of TLR15 ectodomain has a highly evolutionarily
conserved region
We calculated the evolutionary conservation scores of all residue positions of TLR15
based on the phylogenetic relationships between homologous sequences (Fig. 3). The
conservation scale was defined from the most variable amino acid positions, which were
considered as rapidly evolving, to the most conservative amino acid positions, which were
considered as slowly evolving. Further, the mean evolutionary conservation score of each
module in TLR15 was also calculated (Fig. 4).

The results showed that the majority of amino acid positions of intracellular TIR domain
were highly evolutionarily conserved. However, the average evolutionary conservation of
different LRR module in the ectodomain had large differences. Most of LRR3 module was
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Figure 4 Mean evolutionary conservation of each module of TLR15. SP, Signal peptide; NT, LRRNT
module; CT, LRRCT module; TM, transmembrane region; TIR, intracellular domain. The different LRR
modules of the ectodomain are represented by their identifying numbers. The lowest score represents the
most conserved position in a protein. The error bars represent the standard error of the mean (SEM).

composed of highly variable positions. The loop of convex surface in LRR9 module also
includes a number of highly variable positions. The average evolutionary conservations of
LRR18, LRR19, and LRRCT modules are very high, this could be adapted to their function
participating in the dimerization of C-terminal region of TLR15 ectodomain. The average
evolutionary conservations of LRR10-13 modules are also very high, indicating that they
are possibly related to the function of the ectodomain sensing pathogens.

We further displayed the evolutionary conservations of amino acid residue positions
in the ectodomain of TLR15 using the modeled structure (Fig. 5). The asparagine ladder
with high evolutionary conservation is located on the ascending lateral surface, which
contains loops connecting the β-strand of the concave surface to the convex surface and
participates in the dimerization of TLRs (Botos, Segal & Davies, 2011). Compared to the
ascending lateral surface, its opposite side, the descending lateral surface, includes fewer
evolutionarily conserved positions. Interestingly, we found a highly conserved region on
the convex surface of TLR15 ectodomain, which is exactly located on the LRR11 module.
For chicken TLR15, the highly conserved region on the convex surface of its LRR11module
ranges from 397th to 406th amino acid residues (SIVELPEWFA). The high conservation
of this region across species might suggest that it is involved in ligand recognition.

TLR15 TIR domains are able to form homodimers
We further studied TLR15 intracellular TIR domain that is responsible for the signal
transduction. The structure of TIR domain (from Pro706 to Thr848) of chicken TLR15
was modeled with threading approach. This modeled structure mainly contains a central
three-stranded parallel β-sheet surrounded by five α-helices (Fig. 6A).

Protein–protein docking analysis showed that TLR15 TIR domain was able to form
the homodimer with itself (Fig. 6A). The dimeric interface is mainly formed by the
residues from the BB-loops and αC-helixes. The fifteen residues of TLR15 TIR domain
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Figure 5 Surface evolutionary conservation of TLR15 ectodomain. A highly evolutionarily conserved
region on the convex surface of TLR15 ectodomain is labeled with dashed yellow circle. The modeling
structure of chicken TLR15 was used to show the conservation. The surfaces are colored according to
ConSurf results: the most variable (turquoise) to the most conserved (maroon).

Figure 6 Prediction of TLR15 TIR domain homodimeric interaction. (A) Cartoon figure of TLR15 TIR
homodimeric interaction predicted through docking calculations. The left monomeric structure is colored
according to the conservation score of each residue position, while the N-terminus to the C-terminus
of the right one is colored from blue to red. The homodimerization interface has been split and rotated
to show the involved residues. (B) Inter-residues interaction in potential dimerization interfaces. The
interaction partners are connected by broken lines. The modeled structure of chicken TLR15 TIR domain
was used for docking analysis. The residues are numbered according to the chicken TLR15 sequence.
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were predicted to participate in its homodimerization, the five of them are located on the
BB-loops and six of them are located on the αC-helixes (Fig. 6B). Cys777 in αC-helix
at one monomer (chTLR15) probably formed disulfide bond with the same residue
from the second molecule (chTLR15’). The amino acid residue positions involved in the
interaction of TIR homodimer are highly evolutionarily conserved among 57 TLR15
sequences (Fig. 6B). The fourteen of fifteen residue positions involved in the homodimeric
interaction have an evolutionary conservation score greater than or equal to the grade 8.

We compared the predicted dimerization of TLR15 with those of the TLRs in family
1. The multiple sequence alignment showed that there were 30% identical amino acid
residues among the TIR domains of chicken TLR15, human TLR1, human TLR2, human
TLR6, and human TLR10 (Fig. 7). The known five functionally critical residues in TLR2
TIR domain are conserved among different TLRs (Tao et al., 2002), which correspond to
Phe743, Pro745, Cys777, Leu781, and Lys812 in chicken TLR15. The homodimer interface
of TLR6 TIR domains is considered to be formed mainly by the residues from αC-helixes
(Jang & Park, 2014), the six of its eight interaction residues was also found in the interaction
of TLR15 TIR domain homodimer. The homodimer interface of TLR10 TIR domains was
reported to mainly contain residues from the BB-loops and αC-helixes (Nyman et al.,
2008). The nine of its eleven interaction residues was also detected in the interaction of
TLR15 TIR domain homodimer. Comparatively speaking, the interaction mode of TLR15
TIR homodimer is more similar to that of TLR10.

Twenty-seven sites under positive selection were detected for TLR15
The estimated dN/dS value for theTLR15 locus is 0.318 (95%CI [0.308–0.328]), suggesting a
clear excess of synonymous over nonsynonymous substitutions at TLR15 locus. However,
numerous sites under positive selection were found in TLR15 with the codon-based
maximum likelihood methods (Table 1). The SLAC, FEL, REL, and FUBAR methods
identified statistically significant positive selection in 24, 29, 22, 14 amino acid sites across
TLR15s, respectively. To identify robust candidate sites under positive selection, only
27 codons with evidence of positive selection identified by at least two methods were
considered, which account for 3.1% of the total sites in TLR15.

These 27 sites under positive selection belong to the most variable positions identified
by evolutionary conservation analysis (Fig. 3). The 24 of 27 sites under positive selection
are located on TLR15 ectodomain. Among them, the LRR3 module contains seven sites
under positive selection. The proline-rich loop on the convex surface of LRR9 module
includes two sites under positive selection. There is also a site under positive selection
(407th) closely neighboring to the highly evolutionarily conserved region on the convex
surface of LRR11 module.

DISCUSSION
Although TLR15 is phylogenetically close to family 1, our modeling structure showed
that TLR15 ectodomain was obviously structurally different from the TLRs in family 1.
The known crystal structures indicate that the asparagine ladders in the ectodomains
of TLRs in family 1 are broken in the middle, thus resulting in the structural transition
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Figure 7 Alignment of representative TIR domain sequences from different TLRs. The surface residues
involved in the homodimeric interaction detected by protein–protein docking analysis for TLR15 are
shaded in green. The surface residues on TLR6 and TLR10 involved in TIR–TIR interaction are shaded
in pink and yellow, respectively. The surface residues on TLR2 that have been known to be critical for
the TLR signaling are shaded in light blue. The elements of secondary structures are labeled above the se-
quence. Consistent with the previous work of TIR domains, the loops are named by the strands and he-
lices that they connect.

Table 1 Tests for positive selection of TLR15s.

Methods Sites under positive selectiond

SLACa 19, 26, 33, 89, 102, 120, 136, 169, 188, 197, 253, 262, 283, 326, 333,
376, 407, 430, 517, 615, 617, 621, 716, 862

FELa 19, 26, 89, 102, 114, 120, 136, 169, 185, 188, 197, 253, 262, 326, 333,
353, 360, 376, 407, 430, 517, 544, 597, 615, 617, 621, 643, 716, 862

RELb 89, 114, 120, 132, 169, 197, 253, 262, 333, 337, 376, 407, 410, 430,
452, 517, 544, 615, 617, 650, 655, 862

FUBARc 26, 102, 136, 185, 197, 253, 326, 333, 353, 360, 430, 615, 617, 621

Notes.
aCodons with p values < 0.1.
bCodons with Bayes factor > 50.
cCodons with posterior probability > 0.9.
dThose positively selected sites identified by more than one method are underlined. Sites are numbered according to the
chicken TLR15 sequence.

of their ectodomain in the middle, and further causing the formation of a hydrophobic
pocket at the boundary between the LRR11 and LRR12 modules that is responsible for
binding to ligands (Jin et al., 2007; Kang et al., 2009). In contrast, the asparagine ladder in
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the ectodomain of TLR15 is intact, thus indicating that TLR15 possibly does not have the
structural transition and also does not form a hydrophobic pocket in the middle of its
ectodomain. Therefore, considering the large sequence and structural differences between
TLR15 and the TLRs in family 1, TLR15 should be regarded as an individual family.

TLR15 is able to be activated through the cleavage of its ectodomain by secreted
virulence-associated fungal and bacterial proteases, and also can be activated by the
diacylated lipopeptide from Mycoplasma synoviae (De Zoete et al., 2011; Oven et al., 2013).
However, the functional sites on the ectodomain of TLR15 are still unclear. We found
a highly evolutionarily conserved region in the convex surface of TLR15 ectodomain
by using the information of a large number of the known sequences. We infer that this
highly evolutionarily conserved region is probably closely related to the function of TLR15.
Interestingly, this highly evolutionarily conserved region in TLR15 ectodomain is located
on the convex surface of LRR11 module, whereas the known ligand-binding regions of
TLRs in family 1 are also located on the border between the LRR11 and LRR12 modules.

The TIR domains of TLRs are responsible for signal transduction in response to
stimulation from pathogens. The formation of TIR domain complex is critical for receptor
signaling. The TIR domain interactions mediate the oligomerization of receptor TIR
domains, and also mediate the association between the receptor and adapter TIR domains
(Xu et al., 2000). We predicted that there was quite strong interaction between TLR15 TIR
domain and itself, suggesting that TLR15 may recruit downstream adaptor in the form
of a homodimer. The formation of TLR15 TIR domain homodimers can be bolstered by
the known ability to signal when only TLR15 is transfected into HEK293 cells (Boyd et al.,
2012; De Zoete et al., 2011). In previous structural works, several TIR-dimer interaction
modes have been proposed (Jang & Park, 2014; Nyman et al., 2008; Xu et al., 2000). The
five residues in TLR2 TIR domain were verified to be functionally important for signaling
(Tao et al., 2002). We found that their equivalent residues in TLR15 were involved in
the predicted homodimerization of TIR domains. Also, these five residues are highly
evolutionarily conserved among TLR15s. In particular, the previous study demonstrated
that Pro681 in the BB-loop of TLR2 TIR domain (corresponding to Pro745 in chicken
TLR15)mediated the interactionwith adaptorMyD88 and further BB-loopwas suggested to
be the site of adaptor protein recruitment (Xu et al., 2000). The mutation of the equivalent
residue in the BB-loop of human TLR10 TIR domain also affects the interaction with
adaptor MyD88 (Hasan et al., 2005). Therefore, some residues on the interface of TLR15
TIR domain homodimer also probably participate in the interaction with downstream
adapter.

Toll-like receptors are located directly on the host-pathogen interface andmight undergo
coevolutionary dynamics with their pathogenic counterparts. The dN/dS value showed that
TLR15 was evolutionarily conserved, but many positively selected sites were still identified.
The previous study identified 8 positively selected sites in the ectodomain among six
TLR15 sequences through REL method (Alcaide & Edwards, 2011). We identified 27
robust positively selected sites among 57 full-length TLR15 sequences using four methods.
These positively selected sites are mainly located on the ectodomain that is responsible for
recognizing the ligands, and are possibly related to the function of TLR15. Therefore, the
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fact that somany positively selected sites were identified shows that there are coevolutionary
dynamics between TLR15 and their pathogenic counterparts.

CONCLUSIONS
In this study, we identified 57 completed TLR15 genes from a large number of avian
and reptilian genomes. TLR15 is phylogenetically closely related to family 1. Unlike the
TLRs in family 1 with the broken asparagine ladders in the middle, TLR15 ectodomain
possesses an intact asparagine ladder. The convex surface of TLR15 ectodomain has a
highly evolutionarily conserved region, which is probably related to the function of TLR15.
We found that TLR15 TIR domains were able to form homodimers in silico. The major
contributions to the homodimer interface of TLR15 TIR domains are made by residues
from the BB-loops and αC-helixes. Twenty-seven sites under positive selection that are
probably associated with function were detected for TLR15. Overall, these findings provide
novel insights into the structural and evolutionary characterizations of TLR15.
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