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Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease primarily characterized by
upper and lower motor neuron degeneration, muscle wasting and paralysis. It is increasingly
accepted that the pathological process leading to ALS is the result of multiple disease
mechanisms that operate within motor neurons and other cell types both inside and outside
the central nervous system. The implication of skeletal muscle has been the subject of a
number of studies conducted on patients and related animal models. In this review, we
describe the features of ALS muscle pathology and discuss on the contribution of muscle to
the pathological process. We also give an overview of the therapeutic strategies proposed to
alleviate muscle pathology or to deliver curative agents to motor neurons. ALS muscle
mainly suffers from oxidative stress, mitochondrial dysfunction and bioenergetic
disturbances. However, the way by which the disease affects different types of myofibers
depends on their contractile and metabolic features. Although the implication of muscle in
nourishing the degenerative process is still debated, there is compelling evidence suggesting
that it may play a critical role. Detailed understanding of the muscle pathology in ALS could,
therefore, lead to the identification of new therapeutic targets.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a devastating condition pri-
marily characterized by the selective loss of upper motor neurons in
the motor cortex and lower motor neurons in the brainstem and the
spinal cord. Clinical hallmarks include progressive muscle wasting,
speech and swallowing difficulties, fasciculations, altered reflexes,
and spasticity. Death usually occurs by respiratory complications
within 2–5 years of diagnosis. The disease typically appears between
40 and 70 years of age, and affects about two in 100 000 people.
Around 90% of cases are sporadic. The remaining 10% exhibit a
Mendelian pattern of inheritance, mainly in an autosomal dominant
manner. Both forms are clinically and pathologically undistinguish-
able, so that it is assumed that they share common pathogenic mech-
anisms. Riluzole, which provides neuroprotection against glutamate-
induced excitotoxicity, is the only accepted medication for the treat-
ment of ALS, although its benefit is limited (56).

Defects in a heterogeneous group of genes have been implicated
in the pathogenesis of ALS (listed at http://alsod.iop.kcl.ac.uk/).
Mutations in SOD1, which encodes the free radical-scavenging
enzyme Cu/Zn superoxide dismutase, account for 20% of familial
cases and 2%–7% of sporadic cases (96, 100). Transgenic mice
with mutations in sod1 have precipitous, age-related loss of motor

neurons, and are a well-characterized animal model of human ALS
(44, 98, 130). Most of the investigations presented in this article
have been conducted on transgenic mouse lines overexpressing
mutant forms of SOD1. Other major genes whose mutations
cause ALS are C9orf72 (40% of familial cases and 5–7% of spo-
radic cases), FUS (5% of familial cases and less than 1% of
sporadic cases) and TARDBP (3% of familial cases and 1.5% of
sporadic cases) (27, 64, 108).

Multiple pathogenic mechanisms have been proposed to contrib-
ute to motor neuron degeneration, including excitotoxicity, oxidative
stress, aberrant protein aggregation, defective axonal transport, mito-
chondrial dysfunction and altered RNA metabolism (4, 6, 7, 19, 40,
68). However, the precise nature of the selective loss of motor neu-
rons still remains obscure. The situation is even more complex than
imagined, since growing evidence supports that ALS not only affects
motor neurons but also other cells. In the spinal cord, astrocytes and
microglial cells, as well as oligodendrocytes and interneurons, which
have been more recently implicated, appear to contribute to the
degenerative process (84, 93, 95, 120). Other neurons are also
affected, such as serotonergic neurons in the brainstem and neurons
in the frontal and temporal lobes (28, 118). Beyond the central nerv-
ous system, it is also commonly accepted that the dismantlement of
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neuromuscular junctions is one of the earliest events occurring prior
to motor neuron degeneration (81). In this context, it has been postu-
lated that skeletal myocytes could play an active role, instead of
merely suffering from motor neuronal loss. Here, we describe the
features of ALS muscle pathology and discuss on the contribution of
muscle to the pathological process. We also give an overview of the
therapeutic strategies proposed to alleviate muscle pathology or to
deliver curative agents to motor neurons.

OXIDATIVE STRESS AND
MITOCHONDRIAL DYSFUNCTION
CHARACTERIZE ALS MUSCLE
PATHOLOGY

Early studies conducted on mutant SOD1 mice showed a progres-
sive age-dependent aggregation of mutant enzyme in hindlimb
muscle (116), leading to the belief that similar pathogenic events
might affect motor neurons and myofibers. In addition, heat shock
proteins were present in muscle at lower levels than in spinal cord
(5, 126), suggesting that myofibers would be intrinsically suscepti-
ble to accumulation of malformed proteins. In parallel, increased
amounts of reactive oxygen species were found in mutant SOD1
muscle even before motor impairment (46). As a result, superoxide
dismutase and catalase activities were shown to increase in an
attempt to counterbalance the disturbances in the normal redox state
of myofibers (65, 72). The stimulation of these antioxidant defen-
ces, therefore, points to the presence of oxidative stress. Interest-
ingly, this would account for the enhanced vulnerability of mutant
SOD1 muscle to paraquat, which is an herbicide that generates
high amounts of highly toxic radicals (92).

On the basis of proteomics studies, it was postulated that the
accumulation of reactive oxygen species in mutant SOD1 muscle
might be at least in part the result of an exacerbated oxidative
metabolism (12). The increased expression of several genes
involved in lipoprotein clearance and fatty acid transport, even
during the presymptomatic stage (35, 39), would be related to such
a boosted metabolism. Interestingly, high fat diets provided
beneficial effects to mutant SOD1 mice, suggesting that a
“hypermetabolic” condition could help to fight against the disease
(35). This viewpoint is supported by recent studies that investigated
the consequences of the genetic ablation of AMPK, an enzyme that
typically stimulates the consumption of fatty acids in skeletal mus-
cle via the b-oxidation pathway. AMPK knockout mice exhibited
gait disturbances reminiscent of that observed in the mutant SOD1
model (121). However, it should be taken into account that an
enhanced oxidative metabolism, together with an excess of reactive
oxygen species, would eventually lead to dysfunction of the respi-
ratory electron transport chain, which would generate in itself more
oxidative strees. The altered expression of PGC-1a, a transcription
coactivator that normally stimulates mitochondrial biogenesis (101,
113), would contribute to this vicious circle. In fact, increasing
PGC-1a content in mutant SOD1 muscle by genetic means main-
tained mitochondrial biogenesis and improved muscle function
even at end-stage disease (23), further reinforcing the relevance of
mitochondrial dysfunction to ALS muscle.

Metabolic perturbations were also observed in other animal
models of ALS, such as mice knockout for TDP-43 and VAPB
(47, 109). In addition, several studies conducted on muscle biopsies

obtained from patients pointed to mitochondrial dysfunction, as
revealed by biochemical abnormalities (22, 106, 107, 123, 127),
alterations of mitochondrial DNA (2, 122) and, in some cases,
ultrastructural modifications (16). Contrasting with these observa-
tions, other studies showed that mitochondrial damage was only
mild (1, 37, 62, 102) but increased with disease progression (36).
Taken together, these findings support the notion that oxidative
stress and bioenergetic alterations are essential features of ALS
muscle pathology.

MOTOR NEURONS OR MYOFIBERS:
WHO ARE FIRST?

Some studies mentioned above suggested that skeletal muscle
can be precociously affected in ALS in a manner that is inde-
pendent on the denervation process propelled by degenerating
motor neurons. Several lines of research support this hypothesis.
First reports provided evidence for the activation of an antioxi-
dant response during the presymptomatic stage in muscle of two
transgenic mouse lines expressing mutant SOD1 (60). Based on
magnetic resonance imaging, other investigations revealed that
muscle volume of mutant SOD1 mice was reduced from as early
as 8 weeks of age, long before disease (75). By injecting oocytes
with muscle membranes derived from ALS patients, it was
shown that the affinity of acetycholine receptors for their ligand
was lower than that of receptors coming from surgically dener-
vated muscle (88). Additional studies reported electrophysiologi-
cal postsynaptic alterations in diaphragm at 4–6 weeks of age
(99), indicating that neuromuscular transmission could be intrinsi-
cally affected. Several other changes at the molecular level
occurred presymptomatically, that is, between 27 and 40 days of
age, including a decrease in the activity of CDK5, which has
been involved in myogenesis (90), and an abnormal cytoplasmic
accumulation of nNOS, which has been shown to stimulate mito-
chondrial oxidative phosphorylation (112). Finally, the expression
of different panels of genes involved in muscle growth and
development was reported to be up-regulated in gastrocnemius of
presymptomatic mutant SOD1 mice (25, 41).

In view of these findings, several studies aimed at answering
to the question of whether skeletal muscle plays a critical role in
ALS neurodegeneration. It was first reported that mutant SOD1
overexpression in muscle could be partially reduced by genetic
means without affecting disease progression or survival. In addi-
tion, AAV-based delivery of follistatin to muscles of mutant
SOD1 mice stimulated, as expected, their growth but had no
effect on survival (79). Using a complementary experimental
approach, it was shown that the muscle specific expression of
mutant SOD1 was able to reduce muscle strength, induce atrophy
and cause mitochondrial dysfunction, but it was not sufficient to
trigger motor neuron degeneration consistent with ALS (32).
These initial findings led to the conclusion that skeletal muscle
do not seem to be a primary source of toxicity for killing motor
neurons. Contrasting with these results, follow-up studies
revealed that muscle overexpression of mutant SOD1 did repro-
duce ALS hallmarks, including muscle weakness, abnormal neu-
romuscular junctions, axonopathy and motor neuron degeneration
(129). These findings provided evidence for a muscle-to-motor
neuron dying-back process which, in fact, is not without

Skeletal Muscle in ALS Loeffle et al

228 Brain Pathology 26 (2016) 227–236

VC 2016 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology



precedent. For instance, muscle specific overexpression of the
axon regeneration inhibitor Nogo-A triggered shrinkage of the
postsynaptic apparatus and retraction of the presynaptic motor
ending (54). In as much as Nogo-A up-regulation was observed in
atrophic myofibers of ALS patients at levels that correlated with
the severity of the clinical symptoms (55), its expression could be
related to neuromuscular junction dismantlement (10). Additional
studies reported that transgenic mice overexpressing UCP1, as a
means to generate muscle restricted mitochondrial uncoupling,
suffered from a progressive deterioration of neuromuscular junc-
tions associated with signs of denervation and mild late-onset
motor neuron pathology (34). Although not treated in this review,
it is noteworthy to mention that skeletal muscle has been shown
to contribute to motor neuron degeneration in another motor neu-
ron disease such as spinal and bulbar muscular atrophy (18). In
all, these findings provide the proof of concept that specific mus-
cle defects can destabilize motor nerve terminals and hence con-
tribute to ALS.

Last but not least, a few studies focused on the effects of ALS
on satellite cells, which are skeletal muscle stem cells that can con-
vert into mature myofibers in response to regenerative stimuli. It
was shown that the expression of the satellite cell marker Pax7 was
up-regulated in presymptomatic but not end-stage mutant SOD1
mice (74). Most importantly, satellite cells isolated from presymp-
tomatic animals exhibited less proliferative capacity in vitro than
satellite cells isolated from wild-type littermates (73). This dimin-
ished capacity to develop normally was also observed in satellite
cells derived from ALS patients (94, 103). As these cells neither
contract nor receive direct motor neuronal input, it is speculated
that their modifications could attest at least in part to an intrinsic
muscle pathology.

DOES MUTANT SOD1 TOXICITY
AFFECT ALL MUSCLES INDISTINCTLY?

Skeletal muscle is a heterogeneous tissue composed of several
kinds of myofibers with distinctive ultrastructural, contractile and
metabolic features. The orchestrated action of different types of
myofibers enables muscles to adapt to changing functional require-
ments. Whether or not these myofibers, or whole muscles, are
affected by ALS in the same manner has been the subject of a num-
ber of (conflicting) studies. First experiments performed on mutant
SOD1 mice showed decreased maximal oxygen consumption in
mitochondria of oxidative slow-twitch soleus, compared to that
observed in glycolytic fast-twitch extensor digitorum longus
(EDL), suggesting that the disease would affect in particular
muscles displaying oxidative metabolism (65). Mass spectrometry
studies of the wobbler mouse model of motor neuron disease
revealed an increase in the amount of the glycolytic enzyme
G3PDH, hence suggesting a shift from oxidative to glycolytic
metabolism during the course of the disease (110). Contrasting
studies established, however, that, despite a similar charge in
mutant SOD1, fast-twitch fibers isolated from transgenic mice
developed less force than slow-twitch fibers in response to calcium
stimulation, when compared to control fibers isolated from wild-
type littermates (3). Using mutant SOD1 mice expressing neuronal
YFP, additional studies demonstrated that motor terminals from
EDL and plantaris were more affected by ischaemia/reperfusion

stress than motor terminals from soleus. Most importantly, this phe-
nomenon was observed presymptomatically from as early as 31
days of age (24). Similarly, quantification of isometric forces in
several fast-twitch muscles of mutant SOD1 mice revealed a
decrease in the number of motor units from 40 days of age, whereas
this number was found to decline in slow-twitch soleus only after
the onset of symptoms (48, 49).

The reasons for the differential vulnerability between myofib-
ers are still obscure. The axon repellent semaphorin 3A was
shown to be expressed by terminal Schwann cells only in fast-
fatigable neuromuscular junctions of mutant SOD1 mice, thus
suggesting a mechanism by which these synapses would exhibit
less plasticity in response to ALS and hence would be affected
earlier (26). It was also reported that the disease in mutant SOD1
mice progressed faster in the absence of microRNA-206, which
has been involved in the regeneration of neuromuscular junctions
in response to injury (117, 128). The expression of microRNA-
206 was selectively up-regulated in fast-twitch muscle, likely as
a compensatory mechanism to halt disease progression in this
muscle (114). Notably, it has been observed that fast-twitch
motor units become hyperactive in response to mild denervation.
Thus, the exposure of mutant SOD1 mice to this challenge was
able to prevent the reduction in the number of fast-twitch motor
units in presymptomatic animals (43). Similarly, the recovery of
muscle function after sciatic nerve crush was accelerated by
repressing the expression of SCD1 or by reducing its enzymatic
activity, both of which stimulate the b-oxidation of fatty acids
(51). It seems, therefore, plausible that converting fast-fatigable
fibers into slow fatigue-resistant ones render them more resistant
to ALS. This phenomenon was observed to occur in mutant
SOD1 mice during the course of the disease (104). However, the
shift from glycolytic to oxidative metabolism is not without risk.
Our more recent studies demonstrated that glycolytic muscle
from presymptomatic mutant SOD1 mice switched in fuel prefer-
ence toward fatty acids but this phenomenon was accompanied
by mitochondrial dysfunction and oxidative stress (87), providing
further evidence of the selective vulnerability of muscles in ALS.

MULTIPLE PATHWAYS LEAD TO ALS
MUSCLE DEGENERATION

Multiple mechanisms have been implicated in the degeneration
of skeletal muscle in ALS. The comparison of the effects of
overexpressing mutant SOD1 only in muscle and in whole body
showed that the atrophy process originated independently of
denervation by way of inhibiting the PI3K/Akt pathway and
stimulating FOXO3 (31). Down-regulation of the pro-survival
Akt pathway was confirmed in muscle biopsies of ALS cases
(66, 133). Afterward, atrophy progressed through caspase-
dependent apoptosis in parallel to motor neuron degeneration (31).
Although initial investigations reported accumulation of mutant
SOD1 in skeletal muscle, more recent studies have cast doubts.
Indeed, it was observed that mutant SOD1 activated the ubiquitin-
proteasome and autophagy systems in muscular C2C12 cells to a
greater extent than in the motor neuronal NSC34 cell line. This phe-
nomenon would explain why mutant SOD1 accumulation could not
be seen always in vivo (21). In the absence of aggregates of mutant
enzyme, it was postulated that several as yet unidentified proteins
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with aberrant conformation would be in fact responsible for trigger-
ing oxidative stress and mitochondrial dysfunction (125). Alterna-
tively, the expression of mutant SOD1 in muscle would rather
induce its presymptomatic accumulation inside mitochondria, sub-
sequently causing loss of mitochondrial inner membrane potential
and fragmentation of the mitochondrial network (71). Under these
circumstances, an excess of calcium release from mitochondrial
stores was shown to occur before the onset of symptoms, particu-
larly in fiber segments near the neuromuscular junctions (135).
Accompanying these changes, levels of several calcium buffering
proteins, such as SERCA and parvalbumin, were shown to be
reduced, further reinforcing the progression of the degenerative pro-
cess (15).

Autophagy is a major intracellular pathway for degradation of
misfolded proteins. The expression of several autophagic factors,
including LC3, p62 and Beclin-1, increased in muscle of mice
overexpressing mutant SOD1 ubiquitously (20, 85) or specifically
in muscle (32). However, in contrast to that observed at the level of
gene expression, the autophagy flux was unexpectedly low in
mutant SOD1 muscle in response to stimulation by starvation. This
deficiency was explained by the concomitant caspase-3 dependent
cleavage of Beclin-1 that had been found under these conditions
(131). An alternative explanation came from studies overexpressing
in muscle mutant forms of VCP, a member of the ATPase family
implicated in cellular protein homeostasis and degeneration affect-
ing muscles and neurons. Tubular lysosomes in these mutants
appeared disrupted, and were not able to fusion with autophago-
somes (53). This phenomenon could represent another mechanism
by which the activity of the autophagy degradation system would
be altered in ALS muscle.

The abnormal accumulation of misfolded proteins in the endo-
plasmic reticulum activates the unfolded protein response, to
restore the physiological equilibrium. However, if the stress per-
sists, the response is aberrantly boosted, and eventually leads to
cell death. The unfolded protein response was shown to be stimu-
lated in ALS muscle, since the expression of several factors impli-
cated in endoplasmic reticulum stress, including PERK, IRE1a,
BiP and CHOP, was up-regulated in gastrocnemius of presympto-
matic mutant SOD1 mice (14). Moreover, the IRE1a-dependent
pathway was impaired in C2C12 cells transfected with mutant
VAPB, which is a cause of familial ALS involved in vesicle traf-
ficking. This occurred in association with a limited capacity to form
myotubes, thus suggesting that the dysfunction of the unfolded pro-
tein response might interfere with the maintenance of muscle integ-
rity in ALS (115).

HDAC4 is known to play an important role in muscle develop-
ment and maturation, via the suppression of the stimulatory effect
of MEF2 on the transcription of structural and contractile genes.
MEF2-dependent gene expression was inhibited by abnormally
high levels of HDAC4 observed in muscle of mutant SOD1 mice, a
mechanism that would contribute to muscle degeneration (17). In
support of this notion, HDAC4 up-regulation in patients’ muscle
samples negatively correlated with reinnervation and functional
outcome (11). Finally, a perturbed metabolism of iron, together
with its subsequent accumulation, was also envisaged to play a role
in muscle pathology, as deduced from increased amounts of ferritin
H that correlated with the progression of disease in mutant SOD1
rats (45).

MUSCLES ARE A PRIMARY SITE FOR
THERAPEUTIC INTERVENTION

Beyond the question of whether or not skeletal muscle contributes
to ALS, numerous studies have attempted to palliate muscle pathol-
ogy in itself as a means to counterbalance motor neuron degenera-
tion (Table 1). Based on the presence of mitochondrial dysfunction,
early investigations showed that oral supplementation with creatine,
given as an energy source, was beneficial to mutant SOD1 mice
(59). Follow-up studies, however, did not find any effect, except
that the degree of atrophy in EDL was partly diminished (29). Simi-
larly, muscle-restricted expression of PGC-1a in mutant SOD1
mice was able to increase mitochondrial ATP production and mus-
cle endurance but did not affect lifespan (23). In contrast, stimula-
tion of the b-oxidation of fatty acids by L-carnitine ameliorated
motor function and extended survival (57). Highly energetic diets,
mainly in the form of elevated lipid content, also prolonged life
expectancy, and improved muscle function and motor neuron sur-
vival (35, 76, 86).

Some studies performed on muscle biopsies obtained from
patients revealed a decrease in the amount of Igf-1, which is a well-
known stimulator of growth and development (70). Although this
finding was not confirmed in other cohorts (38), interfering with
the process of muscle atrophy using growth factors has been
another way to fight against ALS. Thus, preclinical investigations
conducted on mutant SOD1 mice aimed at increasing the muscle
content of Igf-1. This growth factor ameliorated muscle function
and increased motor neuron survival in most cases (30, 33, 97), but
not always (77). Similar effects were observed with subcutaneous
implants of dihydrotestosterone which, indeed, induced muscle
expression of Igf-1 (134). Another anabolic steroid derivative
called nandrolone also increased muscle mass but only slightly sus-
tained muscle innervation (13). Blocking the activity of the muscle
growth inhibitor myostatin promoted muscle mass and strength but
did not affect survival (50, 82). More recent studies evaluated the
influence of manupulating myogenic factors as a means to keep
muscles in health. Strinkingly, gene transfer of myogenin into mus-
cle ameliorated motor neuron survival and improved innervation
but, in contrast, gene transfer of MyoD aggravated the condition
(89). Additional studies also demonstrated beneficial effects on
ALS muscle by targeting the response to stress (42) and oxidative
damage (119), the stimulation of the contractile apparatus (52, 105)
or the inhibition of several cell death pathways (9, 83).

The high levels of several neurotrophins found in muscle sam-
ples of ALS patients were interpreted as a compensatory mecha-
nism to prevent motor neuron degeneration (63). Therefore, some
therapeutic strategies have proposed that muscles may serve to
deliver protective molecules to motor neurons in a retrogade man-
ner. We cannot rule out, however, the possibility that these neuro-
protective strategies, although designed in principle to target
specifically motor neurons, could, in some cases, exert beneficial
actions at the muscle level. The most significant results were
achieved by providing motor neurons with GDNF, which is a
potent survival factor for these cells. Delivery approaches included
the use of retroviral vectors (69, 80, 124), electroporation (132),
transgenic muscle-restricted overexpression (67) and intramuscular
transplantation of stem cells (61, 91, 111). Neuroprotective effects
were also obtained by delivering other neurotrophic factors, such as
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Table 1. Experimental approaches with therapeutic potential targeting ALS muscle pathology.

Target Approach Model Survival Effects Ref.

Creatine Oral SOD1(G93A) Yes � oxidative stress

� mitochondrial dysfunction

� motor neuron loss

� motor performance

(45)

Creatine Oral SOD1(G93A) No � EDL atrophy (59)

PGC-1a Muscle expression SOD1(G37R) x MCK/PGC-1a No � mitochondrial ATP production

� muscle endurance

� muscle degeneration

(23)

L-carnitine Injection (s.c.) SOD1(G93A) Yes � myofiber apoptosis

� motor function deterioration

(29)

HF diet Oral SOD1(G86R) Yes � muscle denervation

� motor neuron survival

(35)

HF/HC diet Oral SOD1(G93A) Yes Delayed onset (76)

Olive oil Oral SOD1(G93A) Yes � MyoD and MyoG expression

� LC3 and Beclin-1 expression

� Atf6 and Grp78 expression

� myofiber area

� motor performance

(86)

Igf-1 Muscle expression SOD1(G93A) x MLC/mIgf-1 Yes � satellite cell activation

� NMJ stabilization

� motor neuron survival

� muscle atrophy

� spinal cord inflammation

(33)

Igf-1 Muscle expression SOD1(G93A) 3 SaA/hIgf-1 No No effect (77)

Igf-1 Muscle expression SOD1(G93A) 3 MLC/mIgf-1 N/A � ubiquitin expression

� caspase activity

� p25 accumulation

� CDK5 expression

(30)

MGF Plasmid SOD1(G93A) N/A � muscle strength

� motor neuron survival

(97)

DHT Implant SOD1(G93A) Yes � Igf-1 expression

� muscle atrophy

� motor neuron loss

� muscle strength

� motor function

(134)

Nandrolone Injection

(s.c.)

SOD1(G93A) N/A � muscle mass

� pre-synaptic activity

(13)

Myostatin Antibody SOD1(G93A) No � muscle mass

� muscle strength

� motor neuron loss

(50)

Myostatin ActRIIB injection (i.p.) SOD1(G93A) No � muscle mass

� muscle strength

(82)

Myogenin AAV SOD1(G93A) N/A � muscle innervation

� motor neuron survival

(89)

MyoD AAV SOD1(G93A) No Aggravated phenotype (89)

Hsp70 Injection

(i.p.)

SOD1(G93A) Yes � innervated NMJ number

� motor neuron survival

� motor function

(42)

Nrf2 Muscle expression SOD1(G93A) x MLC/Nrf2 No Delayed onset (119)

Tirasemtiv Oral SOD1(G93A) N/A � forelimb strength

� rotarod performance

(52)

Tweak Antibody SOD1(G93A) No � muscle atrophy (9)

GPNMB Plasmid SOD1(G93A) N/A � myofiber number

� myofiber atrophy

(83)

“Yes” means an increase in survival while “No” means lack of effect. (�) 5 increased effect; (�) 5 decreased effect; AAV 5 adeno-associated

virus; ActRIIB 5 soluble activin receptor type IIB; DHT 5 dihydrotestosterone; GPNMB 5 glycoprotein nonmetastatic melanoma protein B (osteoac-

tivin); HF 5 high fat; HF/HC 5 high fat/high carbohydrate; i.p. 5 intraperitoneal; MGF 5 mechano-growth factor (Igf-1 splice variant); MLC 5 myosin

light chain; N/A 5 not applicable; NMJ 5 neuromuscular junction; SaA 5 skeletal alpha actin; s.c. 5 subcutaneous; Tirasemtiv 5 fast skeletal tropo-

nin activator; Tweak 5 tumor necrosis factor-like weak inducer of apoptosis.
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VEGF (61, 58) and cardiotrophin-1 (8), or by supressing mutant
SOD1 overexpression with RNAi (78).

CONCLUSION

As a matter of conclusion, it is recognized that oxidative stress,
mitochondrial dysfunction and bioenergetic disturbances are hall-
marks of the pathology of ALS muscle. However, the way by
which the disease affects myofibers depends on their contractile
and metabolic features. The implication of muscle in nourishing the
degenerative process is still debated but there exists compelling evi-
dence suggesting that it may play a critical role. Detailed under-
standing of this contribution could, therefore, lead to the
identification of new therapeutic avenues.
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