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In the case of translational noncrystallographic symmetry

(tNCS), two or more copies of a component in the asymmetric

unit of the crystal are present in a similar orientation. This

causes systematic modulations of the reflection intensities in

the diffraction pattern, leading to problems with structure

determination and refinement methods that assume, either

implicitly or explicitly, that the distribution of intensities is a

function only of resolution. To characterize the statistical

effects of tNCS accurately, it is necessary to determine the

translation relating the copies, any small rotational differences

in their orientations, and the size of random coordinate

differences caused by conformational differences. An algo-

rithm to estimate these parameters and refine their values

against a likelihood function is presented, and it is shown that

by accounting for the statistical effects of tNCS it is possible to

unmask the competing statistical effects of twinning and tNCS

and to more robustly assess the crystal for the presence of

twinning.
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1. Introduction

There have been great advances in the methods available for

macromolecular crystallography, such that a significant frac-

tion of structure determinations are now relatively straight-

forward. However, there is still the potential for serious

complications when the crystals possess features that break

the assumptions underlying the routine structure-solution

pathways. The presence of translational noncrystallographic

symmetry (tNCS) is particularly insidious in causing difficul-

ties in all stages of crystal structure determination, from

indexing the diffraction pattern to refining the structure.

In tNCS, two or more crystallographically independent

copies are in the same (or nearly the same) orientation in the

unit cell. Their contributions to a structure factor have the

same (or similar) amplitudes but have relative phases deter-

mined by the projection of the translation vector on the

diffraction vector. As a result, they interfere constructively for

some reflections and destructively for others, so that there is a

systematic modulation of the sum of their contributions. The

most serious case is when the translation is approximately, but

not exactly, equal to a potential lattice translation such as a

centring operator or a cell doubling. The exact relationship is

often broken by a small rotation (typically less than 10�) in

addition to the translation. Such translations are referred to

as pseudo-translations or pseudo-centrings because of their

pseudo-crystallographic nature, and they lead to pronounced

effects, with large numbers of systematically very weak and

very strong reflections. The perturbation of the distribution of

intensities leads to difficulties with statistical tests based on

intensity statistics, as well as violating the assumptions behind
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likelihood targets for phasing and refinement, which assume

that the data follow an isotropic Wilson distribution.

Translational NCS is a frequent issue in solved macro-

molecular crystal structures. The frequency of tNCS has been

investigated by Zwart et al. (2005). The existence of tNCS can

be detected by the presence of a large non-origin Patterson

peak. Using the criterion that a non-origin peak greater than

20% of the origin peak was present in a Patterson map

computed using data to 5 Å resolution, it was found that about

8% of structures deposited in the Protein Data Bank (PDB;

Berman et al., 2000) probably possess tNCS. Translational

NCS can also prevent structure solution, for which there are

anecdotal accounts but no statistical records.

In the following, the effect of tNCS on structure-factor

intensity statistics is investigated. A method to characterize

the parameters describing the tNCS has been developed and

tested, and it is shown that corrected intensity statistics can be

used to detect the presence of twinning. The implications for

molecular replacement, experimental phasing and refinement

will be explored in subsequent publications.

2. Statistical effects of noncrystallographic symmetry

A full maximum-likelihood treatment of NCS would cover the

very general case of a number of different components that

are related by different noncrystallographic symmetries. In

practice, the NCS-related deviations in structure-factor

intensities from an isotropic Wilson distribution are most

serious when there is exact translational NCS or nearly exact

translational NCS (a small rotation is present), particularly

if these are translations close to crystallographic centring

operators and if only one set of NCS operators is present. For

this reason, and for simplicity of notation, we will only deal

with the case where there is one set of NCS operators,

although the formulae are presented in a way that may be

generalized to multiple sets of operators. In order to deal with

the very common case that the relationship is not a perfect

translation but is rather a translation combined with a small

rotation, we start with the case of NCS operations that

combine translations with rotations of any size.

2.1. Covariance elements sensitive to the effects of
noncrystallographic symmetry

The statistical effects of NCS are easiest to evaluate by

considering correlations between NCS-related contributions

to the structure factors and then assembling them into a

picture of the overall effects of NCS.

As pointed out by Bricogne (1997), the presence of NCS

leads to modulations in the intensities, which can be used to

characterize the nature of the NCS. The following treatment of

intensity statistics is similar in spirit to that of Bricogne, with

the addition of an allowance for small random differences

among the NCS-related copies in the positions and scattering

factors of the atoms that make them up. As in Bricogne (1997)

we will not consider correlations among structure factors,

so the structure factors are all implicitly assumed to be for

reflection h.

Consider a crystal containing in its asymmetric unit two or

more copies of components with similar structure. The total

structure factor (F) is made up of contributions from copies

related by a combination of Nncs noncrystallographic and Nsym

crystallographic operations,

F ¼
PNsym

k¼1

PNncs

m¼1

Fkm;

Fkm ¼
PN
j¼1

fjm expð2�ih � xjkmÞ; ð1Þ

where

xjkm ¼ Tk½O
�1

FVmOðxj þ F�jmÞ þ Fvm� þ tk

¼ TkO�1
FVmOðxj þ F�jmÞ þ ðTkFvm þ tkÞ:

In this, there is an allowance for differences in the scattering

factors for atoms in different copies ( fjm could differ among

NCS-related molecules m, particularly because of differences

in the incorporated effects of B factors). The coordinates are

represented in terms of those from a canonical copy of the

molecule centred on the origin and conformational differences

relative to that molecule (F�jm). For convenience, we can take

the canonical copy to be in the same orientation as the copy

with k = m = 1, so that xj = xj11 � Fv1 � F�j1 and FV1 is an

identity matrix. Note that since conformational differences are

assigned even to the first copy, the canonical copy can be

considered to be an average structure. The number of atoms in

one copy of the component is given by N. The NCS rotations

could be represented in terms of one matrix, C, in the notation

used by Bricogne (1997), but the physical meaning is easier to

understand in terms of rotations (FVm) in orthogonal space, so

that the transformations from (O) and to (O�1) fractional

coordinates must be included explicitly. The crystallographic

symmetry operations are represented by a rotation matrix, Tk,

and a translation vector, tk.

We start by considering the covariances among the contri-

butions to the structure factor where (similar to the case of

experimental phasing; Read, 2003) terms between common

atoms will dominate,

hFkmF�lni ’
PN
j¼1

hfjmfjn exp½2�ih � ðxjkm � xjlnÞ�i: ð2Þ

For covariances involving atoms within the same copy (k = l

for crystallographic symmetry and m = n for noncrystallo-

graphic symmetry), we can consider the atoms to be inde-

pendent because we have factored out any relationships

leading to correlations,

hFkmF�kmi ¼ �Fm ’
PN
j¼1

f 2
jm: ð3Þ

If the expressions for the transformed coordinates are

entered explicitly, the dot product inside the exponential in (2)

can be expanded as follows:
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h � ðxjkm � xjlnÞ ¼ h � ½ðTkO�1
FVmO� TlO

�1
FVnOÞxj

þ ðTkFvm þ tkÞ � ðTlFvn þ tlÞ ð4Þ

þ ðTkO�1
FVmOF�jm � TlO

�1
FVnOF�jnÞ�:

With some rearrangement and changes of variable, this can

be expressed more succinctly:

h � ðxjkm � xjlnÞ ¼ FFhklmn � xj þ h � FFvklmn þ h � FF�jklmn; ð5Þ

where

FFhklmn ¼ ðO
T

FVT
mO�1TTT

k �OT
FVT

n O�1TTT
l Þh;

FFvklmn ¼ ðTkFvm þ tkÞ � ðTlFvn þ tlÞ;

FF�jklmn ¼ TkO�1
FVmOF�jm � TlO

�1
FVnOF�jn

so that

hFkmF�lni ’
PN
j¼1

hfjmfjn expð2�iFFhklmn � xjÞ expð2�ih � FFvklmnÞ

� expð2�ih � FF�jklmnÞi: ð6Þ

The first exponential term in (6) accounts for the effect of

rotation on interference, with FFhklmn being equal to the

difference between two copies of the original index h rotated

by different combinations of crystallographic and noncrys-

tallographic symmetry in the crystal; the closer FF hklmn is to

zero, the larger the interference effect. The second exponen-

tial accounts for a systematic translation-derived phase shift

between the contributions of the two copies of the component.

The third exponential (along with the scattering factors)

accounts for the effects of differences among the NCS-related

copies. Note that if the coordinate differences are considered

to be drawn randomly from a spherically symmetric distribu-

tion, then rotating these differences (e.g. in the variable F�jm)

will not change the nature of their probability distributions, so

that the distribution of FF�jklmnwill be independent of k and l.

(The subscripted prefix FF indicates terms relating two

contributions to the observed structure factor, F, to distinguish

them from terms relating contributions involving calculated

structure factors, G. Such terms will be needed for subsequent

work on applications to molecular replacement, experimental

phasing and refinement.)

For the covariances between copies related purely by

crystallographic symmetry (m = n but k 6¼ l), the presence or

absence of tNCS is not relevant. These terms will only differ

significantly from zero when the symmetry rotation is parallel

to the diffraction vector (Tk
Th = Tl

Th, so that FFhklmn = 0). When

there is no phase shift between the contributions of these

copies, they will contribute to increasing the expected intensity

factor; otherwise, they will lead to systematic absences. Such

pairs of contributions can be handled in a simple fashion by

setting the covariance terms for m = n, k 6¼ l to zero and then

multiplying the remaining diagonal elements in the covariance

matrix by the usual expected intensity factor ".
The interesting covariances are those between copies

related by noncrystallographic symmetry (m 6¼ n). If we

assume that the differences in scattering factors and atomic

positions are independent of the positions of the atoms within

the components, then the expected value can be treated as a

product of expected values, separating the correlation (FF�mn)

of the structure factors for the components if they were in the

same position and orientation from the interference effects,

hFkmF�lni ’ FF�mnð�Fm�FnÞ
1=2
hexpð2�iFFhklmn � xjÞi

� hexpð2�ih � FFvklmnÞi; ð7Þ

where

FF�mnð�Fm�FnÞ
1=2
¼

PN
j¼1

fjmfjn expð2�ih � FF�jklmnÞ

* +
:

If there is an atomic model, then at least the approximate

locations of the atoms in each component are known, so that

the expected value of the rotational interference term can be

computed. However, if we are characterizing translational

NCS prior to structure solution, the best we will have is some

idea of the envelope containing the component. In this case,

the expected value of the interference term is an integral over

the volume of the envelope (denoted UF for the volume of

a unique component contributing to the structure factor F),

which is equivalent to the Fourier transform of the envelope

or a G-function (Rossmann & Blow, 1962). Because the

envelope is finite in volume and does not possess crystallo-

graphic symmetry, it is convenient to index it in terms of a

diffraction vector (in units of Å�1),

hexpð2�iFFhklmn � xjÞi ¼
R

UF

expð2�iFFhklmn � xjÞ

¼ GFðFFsklmnÞ; ð8Þ

where

FFsklmn ¼ O�1T
FFhklmn

¼ ðFVT
mO�1TTT

k � FVT
n O�1TTT

l Þh:

Before the shape of the molecule (or at least its orientation)

is known, it may be appropriate to approximate it as a sphere

with radius r, so that the G-function is the Fourier transform of

a sphere (Rossmann & Blow, 1962),
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Figure 1
G-function computed from the Fourier transform of a sphere centred on
the origin plotted as a function of the product of r and s, i.e. the ratio of
the sphere radius and the resolution.



Gðr;jFFsklmnjÞ

¼
3½sinð2�rjFFsklmnjÞ � 2�rjFFsklmnj cosð2�rjFFsklmnjÞ�

ð2�rjFFsklmnjÞ
3

: ð9Þ

A G-function computed from a sphere centred on the origin

(Fig. 1) gives insight into the general behaviour of the inter-

ference term; the G-function differs significantly from zero

only for values of FFsklmn with a magnitude substantially less

than the reciprocal of the sphere radius. G-functions from

volumes with finer details in their shapes and lacking

symmetry will also lack spherical symmetry and will have

features extending to higher resolution, although the largest

values will still be close to the origin.

The argument of the G-function, FFsklmn, will be near zero

either when the two corresponding copies of the structure

component (related by combinations of crystallographic and

noncrystallographic symmetry) are in nearly the same orien-

tation or when the rotation axis is nearly parallel to the

diffraction vector, so that

FVT
mO�1TTT

k h ’ FVT
n O�1TTT

l h: ð10Þ

The former condition will apply for all structure factors,

leading to an overall modulation of the diffraction pattern,

while the latter condition will lead to spikes in the diffraction

pattern with a significant modulation (Bricogne, 1997). The

maximum modulation along the direction of the spikes arising

from this component of the symmetry would be equal to the

number of copies in the asymmetric unit. However, the

maximum would only be reached if the direction of the rota-

tion axis coincided with the diffraction vector and if the

disposition of the copies were such that they were equally

spaced between the Bragg planes. In principle, knowing the

directions of such spikes would contribute to understanding

the rotational part of the NCS, and the pattern of intensity

modulation along these spikes would give information about

the relative positions of copies of components. However, this

is a minor contribution to the overall modulation of the

structure-factor intensities in the case of translational NCS.

Including this term does not significantly alter the corrective

factors, but does significantly increase the computation time

(results not shown). In the remainder we will neglect the

contribution to the covariances of copies in significantly

different orientations.

Although a noncrystallographic translation can be gener-

ated by a combination of crystallographic symmetry and

noncrystallographic symmetry (for example, a crystallographic

twofold and a nearly parallel noncrystallographic twofold), we

can choose without loss of generality to consider the copies

related by noncrystallographic translations as belonging to

the same asymmetric unit, so that k = l for the pairs we will

consider; the covariance elements hFkmF�lni will be approxi-

mated as zero for k 6¼ l. (As above, we deal with the case in

which the symmetry rotation is parallel to the diffraction

vector by multiplying included terms by the expected intensity

factor ".) This leads to simplification of the expressions in the

covariances,

FFvkkmn ¼ TkðFvm � FvnÞ;

FFskkmn ¼ ðFVT
m � FVT

n ÞO
�1TTT

k h;

FF�jkkmn ¼ TkO�1
ðFVmOF�jm � FVnOF�jnÞ: ð11Þ

Note that the phase-shift term containing FF vkkmn now only

depends on the translation vector between the NCS-related

copies and not on the translational component of the crys-

tallographic symmetry operators. This has the advantage that

an analysis of the effects of tNCS can be carried out when the

Laue group is known but not necessarily the particular space

group.

2.2. Effect of tNCS on the expected intensity of the observed
structure factor

Correlations among the components of the structure factor

lead to systematic modulation of the observed intensities.

The variance (expected intensity) of the structure factor

that is the sum of the contributions of the different compo-

nents is the sum of all of the covariances between these

contributions. This is simplified by the fact that we are ignoring

terms between different crystallographic symmetry operators

and collecting their influence in the expected intensity factor ".
To allow simply for the possibility of a part of the crystal that

does not obey these NCS operators, we can add a term �Fr

for the rest of the structure. (Note that �Fr could include the

contribution of another component with a different set of NCS

operators, showing how the treatment presented here could

easily be generalized.)

hF2
i ¼ "�Fr þ "

PNsym

k¼1

PNncs

m¼1

�
�Fm þ 2

PNncs

n¼mþ1
FF�mnð�Fm�FnÞ

1=2

� Re½GFðFFskkmnÞ expð2�ih � FFvkkmnÞ�

�
: ð12Þ

In this expression, terms with m < n have been paired with

their complex conjugates, i.e. the terms with m > n, so that

the imaginary parts cancel. The unmodulated terms can be

collected into a term representing the intensity that would be

expected after averaging over the modulations, �N,

hF2i ¼ "�N þ 2"
PNsym

k¼1

PNncs

m¼1

PNncs

n¼mþ1
FF�mnð�Fm�FnÞ

1=2

� Re½GFðFFskkmnÞ expð2�ih � FFvkkmnÞ�

¼ "�N

�
1þ 2

PNsym

k¼1

PNncs

m¼1

PNncs

n¼mþ1

FF�mnð�Fm�FnÞ
1=2

�N

� Re½GFðFFskkmnÞ expð2�ih � FFvkkmnÞ�

�
: ð13Þ

The term in the curly braces can be thought of as an extra "
factor accounting for the modulation of the intensities by NCS.

This general expression could be applied when there is an

atomic model, which defines the envelope enclosing the parts

of the structure that obey tNCS, and the rotations and trans-

lations that relate these parts of the structure. Before the

structure is solved, there is no way to know the shape of the

envelope (or at least how it should be oriented, if there is a
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molecular-replacement model), so it is simplest to assume a

sphere, in which case the G-function is real and depends only

on the resolution. This approach should capture the most

important effects of tNCS even when there is a detailed atomic

model,

hF2
i ¼ "�N

�
1þ 2

PNsym

k¼1

PNncs

m¼1

PNncs

n¼mþ1

FF�mnð�Fm�FnÞ
1=2

�N

� GFðjFFskkmnjÞ cosð2�h � FFvkkmnÞ

�
: ð14Þ

For the very common special case in which there is only one

translational NCS operator, the equation can be simplified

further,

hF2
i ¼ "�N

�
1þ 2F�ncs

PNsym

k¼1

GFðjFFskk12jÞ

� cos½2�TT
k h � ðFv1 � Fv2Þ�

�
; ð15Þ

where

F�ncs ¼
FF�12ð�F1�F2Þ

1=2

�N

:

In this form, the weight F�ncs applied to the modulation term

is effectively the fraction of the scattering of one component in

the unit cells that obeys the translational NCS, corrected for

the effect of differences among tNCS-related copies. Note that

this automatically allows the presence of a component that

does not obey tNCS.

3. Simulations to test the probability distributions

The probability distributions describing the statistical effects

of tNCS have been tested by simulations in Mathematica

(v.8.0; Wolfram Research, Champaign, Illinois, USA). In these

simulations, data have been generated for a crystal in space

group P1 containing two ‘molecules’ related by tNCS. For the

first copy of the molecule, atoms were generated randomly

within a sphere and copies of these atoms were then generated

by applying a small rotation, a translation and a random shift.

Since the molecules have a spherical envelope, the G-function

is the Fourier transform of a sphere, as discussed by Rossmann

& Blow (1962). The simulations show that accounting for the

effects of orientation and conformation differences between

tNCS-related copies will be essential to gain a good agreement

between theory and observation.

3.1. Modulations of observed intensities

As described by (13), tNCS introduces a modulation of the

expected intensities depending primarily on the phase shift of

the contributions from copies related by tNCS. The modula-

tion drops in strength if there are differences in the confor-

mations or the orientations of the copies. Fig. 2 illustrates the

effects of random coordinate differences (assumed to be

drawn from a Gaussian distribution) and differences in

orientation on the strength of modulation for structure factors

obtained from a crystal with two spherical molecules. Note

that when the model is complete and the two copies scatter

with the same strength then the term F�ncs in (15) is equal to

half of the complex correlation between these copies FF�12.

When the coordinate differences are drawn from a Gaussian

distribution with an r.m.s. coordinate difference of �r, then this

complex correlation can be calculated using the appropriate

formula for �A, which is also a complex correlation (Read,

1990),
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Figure 2
Predicted average intensity in the direction parallel to c* for a crystal
(space group P1, unit-cell parameters a = b = c = 50 Å, � = � = 	 = 90�)
containing two copies [separated by a fractional translation of (0.47, 0.47,
0.47), i.e. approximately body-centred] of a spherical molecule (r = 20 Å)
comprised of 200 single-electron point scatterers. The solid lines shows
the case in which the two copies are identical in conformation but differ
by a 5� rotation around the x axis (black line) or around the z axis (grey
line). The dashed line shows the case in which the two copies are in the
same orientation but have r.m.s. coordinate differences of 1.5 Å.

Figure 3
Comparison of predicted average intensity (line) with simulated average
intensity (points). The crystal is equivalent to that used for Fig. 2, except
that the two copies differ by a rotation of 2� around the x axis and an
r.m.s. coordinate difference of 0.5 Å. Each point (corresponding to a 00l
reflection) is obtained by carrying out 1000 simulations in which 200
atoms are generated randomly within the spherical envelope of the first
molecule (centred on the origin); the second copy is then generated by
perturbing these atomic positions followed by rotation and translation.
The points for the first-order and second-order reflections are omitted
because the assumptions behind the Wilson (1949) distribution are
violated when the Bragg spacings are large compared with the size of the
molecular envelope.



FF�12 ¼ exp �
2�2

3
�2

r jsj
2

� �
: ð16Þ

As shown in Fig. 2, random conformational differences and

rotational differences between the copies can have a similar

effect on the strength of the intensity modulation, except that

there is a direction-dependence of the effect of the rotation

difference: a rotation around the diffraction vector has no

effect (because it does not change the positions of the atoms

relative to the Bragg planes), whereas a rotation around an

axis perpendicular to the diffraction vector has a large effect.

This figure also shows that the information to distinguish the

effects of random conformational differences and rotational

differences may be most obvious at higher resolution.

The simulation in Fig. 3 demonstrates that (15) provides an

excellent description of the average intensities for different

reciprocal-lattice vectors, even when there is a combination of

conformational and orientation differences between the

copies.

4. Refining parameters characterizing tNCS

To characterize tNCS from a data set, parameters describing

the NCS translation, the difference in orientation of the

tNCS-related copies and the random differences between the

structures of the copies must be estimated and refined. This

has been implemented with the following algorithm in Phaser

(McCoy et al., 2007). The current implementation is optimized

for the common case of two copies related by tNCS. Multiple

tNCS copies can also be handled, as long as the copies are

generated by successive applications of the same translation

vector, but a more general treatment has not yet been

implemented. The parameters characterizing the tNCS are

refined against a likelihood function given by the Wilson

(1949) distribution of amplitudes for acentric reflections,

paðFÞ ¼
2F

hF2i
exp �

F2

hF2i

� �
; ð17Þ

or centric reflections,

pcðFÞ ¼
2

�hF2i

� �1=2

exp �
F2

hF2i

� �
: ð18Þ

In this likelihood function, the expected value of the

intensity is computed using (14), so the refined parameters are

the parameters from that equation.

An initial estimate of the translation vector between the

two copies (or the first two of successive copies), Fv1 � Fv2, is

obtained from the largest off-origin peak in a native Patterson

map. If the translation is close to a centring operator,

symmetry-related copies of the Patterson peak will merge into

a single peak on a special position. Refinement would not be

able to move this translation vector to one of the equidistant

symmetry copies so, if the Patterson peak is on a special

position, the translation vector is first perturbed by a small

translation of dmin/6 in each of the x, y and z directions; we

have found this to be sufficient to avoid the refinement being

trapped on an exact centring translation.

A refinement of the relative orientation is carried out if

there are two copies related by tNCS; for multiple copies, we

currently approximate the effect of rotational differences as

random differences among copies related by a pure transla-

tion. Because the orientation refinement does not always

converge uniquely from any starting point, refinements are

started from several relative orientations and that giving the

best agreement with the data is chosen. The rotational

difference between the two copies is parameterized as a

combination of small rotations about the x, y and z axes, which

behave well in refinement because they are approximately

orthogonal. Note that when the exact shape and size of the

molecule that obeys tNCS is not known, there is a trade-off

between the assumed radius of the sphere that approximates

the molecular envelope and the size of the rotation angles. The

rotational difference enters the likelihood target through the

G-function term, which depends on the amount by which the

rotational difference rotates the diffraction vector. For small

rotations, the absolute size of the movement of the diffraction

vector is, to a good approximation, proportional to the rota-

tion angle, so an error in the assumed sphere radius can be

compensated by a reciprocal change in the size of the rotation

angle.

Finally, the complex correlation between pairs of tNCS-

related copies (FF�mn in 14) is currently assumed to be

equivalent for all pairs when there is more than one NCS

translation, and we do not currently account for the possibility

of different overall B factors among the copies. In this case, we

can refine the resolution-dependent parameter F�ncs assumed

to be equivalent for all pairs of tNCS-related copies. In Phaser

this is reported as a Luzzati D factor (Luzzati, 1952). In fact,

the refined parameter is given by the corresponding variance

term

�2
ncs ¼ 1� F�

2
ncs; ð19Þ

which has better refinement properties, as the likelihood

function is more nearly quadratic when expressed in terms of

this parameter.

5. Intensity moments in the presence of tNCS

Intensity moments can be a useful diagnostic for the presence

of twinning (Stanley, 1972; Rees, 1980), but their usefulness

can be reduced by other influences on the distribution of

intensities, such as overall anisotropy and, in particular, tNCS

(Padilla & Yeates, 2003; Lebedev et al., 2006). Corrections for

overall anisotropy are now well established (Popov & Bour-

enkov, 2003; McCoy et al., 2007). We were interested in

determining whether a further correction for the statistical

effects of tNCS would at least partially unmask the statistical

effects of twinning.

E-values that have been corrected for the statistical effects

of tNCS can be computed using the expression for the

expected intensity in (14),

E ¼
F

hF2i
1=2

ð20Þ
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and then these E-values can be used in the standard moment

tests.

Several test data sets were selected from the PDB for

structures with pairs of molecules or assemblies in the asym-

metric unit related by tNCS: PDB entries 2fuq (Shaya et al.,

2006), 1un7 (Vincent et al., 2004), 1y9r (Fagart et al., 2005),

1eh4 (Mashhoon et al., 2000) and 1upp (Karkehabadi et al.,

2003). These cases were chosen to illustrate the effects of

anisotropy, twinning and small rotational deviations from a

pure translation. One of these cases, 1upp, was also chosen by

Lebedev et al. (2006) to illustrate the effect of combining

twinning and tNCS.

Table 1 shows the results that are obtained by computing

second intensity moments for centric and acentric reflections

before and after correction for overall anisotropy and for the

effects of tNCS. Note that if the data obey standard Wilson

distributions the expected value for this moment is 3 for

centric reflections and 2 for acentric reflections, but in the

presence of perfect twinning the moments would be reduced

to 2 for centric reflections and 1.5 for acentric reflections

(Stanley, 1972). To assess the significance of any deviation

from the values expected for untwinned data, a p-value is also

shown; this p-value is the probability (computed from the

observed distribution of intensities) that the true value of the

second moment for the acentric reflections is 2 or greater. In

Phaser, a p-value of 0.001 or less triggers a warning that the

crystal is likely to be twinned.

As an objective measure of twinning, the twin fraction

obtained by twin refinement in phenix.refine (Afonine et al.,

2012) is shown for the structures in cells that support mero-

hedral or pseudomerohedral twinning. In addition, Table 2

compares the refined values for the tNCS operators with the

values determined from the deposited models to allow an

assessment of the simplified model of the crystal used to

characterize tNCS.

These tests demonstrate that the correction for the statis-

tical effects of tNCS can indeed unmask the statistical effects

of twinning. The p-values for twinned crystals are significantly

lower than the threshold of 0.001 even when the twin fraction

is as low as about 0.1. However, for the case of nearly perfect

twinning in 1upp, the second moment is 1.71, which is signif-

icantly larger than the value of 1.5 that would be expected for

perfect twinning. This may, at least in part, be because the

molecular assembly differs significantly from the assumed

spherical shape with a radius of about 33 Å; it is a U-shape

fitting into a box of approximately 88 � 54 � 42 Å. More

importantly, the twin-related reflections in this case will be

affected by different modulations, so that the model of the

effects of tNCS will be a compromise. In 1upp the two mole-

cules are related by a translation of approximately 0, 1/2, 1/2

and a rotation of 3.43� about an axis very nearly parallel to the

y axis. The largest modulations will therefore be seen for

reflections with small h and l indices, for which the rotation has

very little effect on scattering. However, the twin law is k, h,

�l, so that reflections near the h00 axis, with large values of

the h index and thus relatively little modulation, are super-

imposed on reflections near the 0k0 axis with significant

modulation.

The results in Table 2 show that the method is able to detect

deviations from exact centring operators, even when the

Patterson peaks merge into a single peak consistent with a

perfect centring operation. The refined translation vectors

agree well with the vectors determined from the refined

models. Also, even though the assumption of spherical mole-

cules is not necessarily obeyed well, the refined rotations are

correlated to the true rotations. The rotations are determined

more accurately when the translations are closer to centring

operators. In this situation, more of the reflections are affected

by strong modulations, so that there is more signal from which

the rotational parameters can be deduced.

To test whether it is important to model the rotational

difference between pairs of tNCS-related molecules, or

whether the refinement of the Luzzati D parameters can

compensate, we repeated the test calculations for two of the

crystals that showed a significant rotational difference, 1un7

and 1eh4, but not allowing the modelled rotation to refine

away from zero. For 1un7, the mean value of the second

moment of the intensity was 2.25, compared with 1.97 when
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Table 1
Second moments of intensity (hE4

i/hE2
i

2) in the presence and absence of twinning.

Before anisotropy correction Before tNCS correction After tNCS correction

PDB code Centric Acentric �Baniso (Å2) Centric Acentric Centric Acentric Twin fraction p-value

2fuq 5.04 3.10 29.0 4.42 2.81 3.01 2.01 —† 1
1un7 4.33 2.84 4.5 4.44 2.88 2.73 1.97 —† 0.221
1y9r — 1.88 0.2 — 1.88 — 1.75 0.08 1.4 � 10�20

1eh4 2.45 2.35 0.0 2.45 2.38 2.56 1.81 0.10 3.6 � 10�6

1upp 3.05 1.84 2.3 3.04 1.84 2.52 1.71 0.46 2.1 � 10�76

† No merohedral or pseudomerohedral twin operator possible.

Table 2
Comparison of estimated and refined tNCS operators.

Rotation angle (�) Translation vector (fractional)

PDB
code Refined PDB

Angular
difference† Refined PDB‡

2fuq 0.33 0.89 0.78 �0.038, 0.497, 0.000 �0.038, 0.499, 0.000
1un7 2.05 2.52 1.05 0.487, 0.500, 0.500 0.482, 0.499, 0.500
1y9r 2.49 1.24 2.60 0.325, 0.662, 0.589 0.324, 0.662, 0.589
1eh4 3.63 4.00 1.24 0.009, 0.007, 0.493 0.002, 0.010, 0.493
1upp 4.01 3.43 2.93 0.004, �0.496, 0.494 0.007, �0.498, 0.496

† Angular difference measured using the symmetry-related transformation that agrees
most closely with the NCS translation in the PDB file and choosing the (arbitrary)
direction of rotation that minimizes the angular difference. ‡ PDB translation vector
measured as a vector between centres of mass of common main-chain atoms



the rotation was modelled. For 1eh4, the second moment

without refining the rotational parameters was 1.94, compared

with 1.81. Note that a second moment of 1.94 does not differ

significantly from the value of 2 expected for an untwinned

crystal, with a p-value of 0.148. These results demonstrate that

it is indeed important to model the rotational differences when

characterizing tNCS.

6. Conclusions

This analysis has shown that the effects of tNCS depend on

the exact values of the translation, which can be estimated

precisely, and on small differences in orientation between the

NCS-related copies, which can be given better than random

estimates even under conditions where the simplifying

assumptions of spherical molecules are not valid. By taking

account of the statistical effects of tNCS, the statistical effects

of twinning can be unmasked sufficiently to provide a clear

diagnostic for twinning. This is important in practice because

tests that depend on twin laws rely on having the symmetry

correctly assigned (Lebedev et al., 2006). If the data have been

merged with too high symmetry these tests cannot be applied,

but if the data have been merged with too low symmetry then

these tests will generate false positives. Note that when the

symmetry is correctly assigned, tests such as the L-test (Padilla

& Yeates, 2003) are preferable for their ability to assess the

twin fraction reasonably reliably. In the application of the

L-test, reflections with indices differing by even numbers are

typically chosen to minimize the statistical effects of tNCS

arising from pseudo-centring (Padilla & Yeates, 2003);

however, when the tNCS differs from a pseudo-centring

operation it may be helpful to correct for the statistical effects

of tNCS before applying the L-test.

In future work, we will show how this understanding of the

statistical effects of tNCS can be used to improve methods for

molecular replacement, phasing by single-wavelength anom-

alous diffraction and structure refinement.
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