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Abstract

Network biology is useful for modeling complex biological phenomena; it has attracted attention with the advent of novel
graph-based machine learning methods. However, biological applications of network methods often suffer from inadequate
follow-up. In this perspective, we discuss obstacles for contemporary network approaches—particularly focusing on
challenges representing biological concepts, applying machine learning methods, and interpreting and validating
computational findings about biology—in an effort to catalyze actionable biological discovery.
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Networks: A Useful But Limited Abstraction

With over 700 publicly available pathway and molecular interac-
tion databases [4, 5], it is difficult to choose the right network.
Networks can model biological systems at levels ranging from
molecular to population-scale [6–13], where edges typically rep-
resent interactions between nodes corresponding to biological
entities (drugs, genes, proteins, diseases, etc.; see [14, 15] for
comprehensive reviews of graph theory applied to biological
applications).

Biological networks are often incomplete [16, 17]. The miss-
ingness of protein–protein interaction (PPI) data is as much as
80% [18]. Even with high-throughput datasets [19–21], building
accurate and comprehensive network models is a behemoth
task.

The first step to ensure network quality is proper docu-
mentation of process and metadata annotation. The second
step is to evaluate the network’s ability to recapitulate known
interactions; manual curation is the typical gold standard [22].
A silver standard is the corroboration of interactions derived
from orthogonally curated experimental sources, as done with
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PCNet [23]. Finally, another means of ensuring network speci-
ficity is removing potential false positive interactions due to
experimental artifact. CRAPome is a contaminant repository
for mass spectrometry (AP–MS) experiments used to build PPI
networks that provides putative negative interaction data. Each
of these approaches can increase confidence in the accuracy of
new networks.

To address the issue of sparsity, networks are often aggre-
gated from independent data sources to form a more compre-
hensive ‘interactome’ [24]. However, integrating heterogeneous
information into a homogeneous network abstracts away bio-
logical nuance, such as cell-type specificity [8], spatial [25] and
temporal [26] resolution or environmental factors [27], and so
precision suffers. In addition, PPI networks are inherently biased
[28, 29] by the characteristics of experimental methods as well
as external factors such as funding biases—these may make
heavily-studied proteins appear to have artificially high degree
in networks.

One potential solution to the problem of heterogeneous data
is to use attributed knowledge graphs [30]—edges are qualified
by specific semantic relations between nodes and can record
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Figure 1. A harmonious research pipeline for network methods in machine learning applied to biology.

relevant attributes such as the ‘confidence’ in a relationship.
These graphs are able to capture nuance that qualifies ‘known’
knowledge in the network [31, 32]. These techniques have not
been broadly applied to molecular biology, and machine learning
methods for these heterogeneous models are needed.

A host of network-based biological models can capture
dynamic relationships, particularly the relationship between
genes, proteins and other cellular entities in gene regulatory
networks (GRNs; [33]). GRNs are flexible and enable temporal
representation of node states that incorporate uncertainty in
stochastic (as opposed to deterministic) models, thus making
them amenable to Boolean [34, 35] and Bayesian network
approaches [36]. These networks have been used to model
dynamic cellular behavior [37–41]. Other architectures for
dynamic models include differential equations [42], neural
nets [43] and information theory-based approaches [44], all of
which use gene expression data under differing experimental
conditions to capture a system’s behavior in response to pertur-
bations. The number of perturbational datasets and parameters
required to accurately recapitulate a system is a combinatorial
optimization problem [37], making it computationally difficult
to kinetically model full-scale networks. Increasing computing
power and the proliferation of large-scale sequencing datasets
may enable more tractable modeling of the dynamics of
biological systems at scale.

Furthering Biologically Principled Inference
Over Networks
A major force driving the explosion of network biology is the
availability of network-based machine learning methods to bio-
logical problems [1, 2, 45–47]. These have often been framed as
the tasks of link prediction, community detection and network
alignment [48]; comprehensive reviews [49, 50] survey applica-
tions of these network inference methods. Without diligence,
however, the mapping from biological questions to neat net-
work methods may be unprincipled and suffer from inadequate
biological follow-up [3].

A key issue when using network inference methods is the
quantity and quality of data used for training; however, system-
atic evaluations of the sensitivity of results to these parameters
are rare. Huang et al. [23] studied the ability of different net-
work topologies to recapitulate known disease gene sets using a
network propagation approach [51]. They concluded that larger
networks, such as STRINGdb [32], yield the best performance
but observe diminishing returns in the size of the network.
In addition, Menche et al. [18] used percolation theory (which

describes the behavior of clustered components in networks
as one randomly adds or removes edges) to draw connections
between network sparsity and utility for biological tasks; they
proposed heuristics about which disease gene sets might form
identifiable modules in the network and their potential utility
for applications.

Machine learning methodologies that use vectorized rep-
resentations of graphs present opportunities and challenges
when ported to biology. Recently, network embedding methods,
whereby low-dimensional representations of network structures
are learned, have become popular in network biology due to their
power and flexibility [52]. In addition, graph-based representa-
tion learning has become popular in deep learning-based frame-
works for inference over networks [53]. These methods, however,
have limitations. First, the network embedding strategy must be
relevant in the context of a biological question. For instance, if
nodes are embedded based on local network topology, then the
biological problem should depend strongly on topology alone,
since other features are not captured in this embedding. Second,
embedding methods usually include simplifying assumptions,
for example regarding transitive and semantic matching [54],
which may limit their ability to capture symmetric, inversion
and compositional properties, all of which may be biologically
relevant. Finally, many embedding methods offer no biological
interpretation to explain predictions, which limits their broader
utility to biologists, although work in this space is emerging
[55, 56].

Closing the Loop with Biological Validation
In the machine learning community, validation typically entails
data partitioning followed by testing on a held-out dataset con-
taining gold standard interactions. Although this can lead to
reproducible results, it has drawbacks. First, in network theory,
the idea of a truly isolated, held-out partition of data is dif-
ficult to implement. Cross-validation via edge removal across
the network removes key network structural features, thus bias-
ing algorithmic evaluation [57]. Second, biological gold stan-
dard data are incomplete, and ‘truly negative’ relationships are
difficult to define [58]. Therefore, it is critical to validate on
a variety of sources and use metrics that are robust to the
level of missing data. Cross-validation across multiple networks
may reduce specific network bias. However, given that networks
often share a common underlying structure and content, purely
computational validation may not distinguish true biological
discovery from sensitive informational retrieval. In biology, inde-
pendent and prospective experimental validation remains the
only generally agreed-upon gold standard.
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Indeed, the strongest form of validation comes from experi-
mental and/or clinical evidence that support network-generated
hypotheses. Drug repurposing studies propose drugs that can
be examined by subject matter experts and validated by in vitro
drug screens or even clinical trials [22]. However, these efforts are
rare due to cost (time and money). Case studies can demonstrate
biological applicability [59], but these studies can only provide
incremental evidence of biological validity.

Biologists routinely expect that computational models
produce inference that are mechanistically grounded and
experimentally confirmable. ‘Interpretable machine learning’
seems desirable but is ill-defined [60]. For network biology, inter-
pretability has two facets. ‘Representational interpretability’ is
the ease of mapping biological abstractions to computational
abstractions. It defines the scope of information represented
by the network; capturing nuance such as cell-type, dynamics
and directionality yields representations that are more faithful
to underlying biology [61–64]. ‘Algorithmic interpretability’ is
the ability to generate traceable features sets that support a
biological hypothesis. For instance, in link prediction tasks over
knowledge graphs, the capacity to find paths of known biological
relations might serve as a form of deductive reasoning to support
generated hypotheses [46, 65].

The pipeline from computational exploration to biological
validation is not a linear path but rather an iterative process,
wherein each step must be closely aligned with fundamen-
tal biological principles (Figure 1). We are optimistic that by
first ensuring robust and relevant mappings to biological con-
cepts, network methods will generate impactful insights that
will accelerate progress in biological discovery.

Key Points
• The promise of network tools for biological discov-

ery is great, albeit the field is filled with addressable
computational and validation challenges.

• Heterogenous network models, such as knowledge
graphs, are needed to capture the growing number
of literature-based and structured biological datasets
and can provide context and metadata for properly
qualifying our biological models.

• The availability of more computationally powerful
hardware allows cross-validating and testing on mul-
tiple networks and thus reduces specific network bias
while enabling better empirical ‘null’ models used to
assess significance within methods.

• Machine learning methods for more complex, het-
erogenous network models are still needed.
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55. Veličković P, Casanova A, Liò P, et al. Graph attention net-
works. In: 6th Int. Conf. Learn. Represent. ICLR 2018- Conf. Track
Proc, 2018.

56. Brasoveanu A, Moodie M, Agrawal R. GNN explainer: a
tool for post-hoc explanation of graph neural networks.
CEUR Workshop Proc. 33rd Conference on Neural Informa-
tion Processing Systems (NeurIPS 2019), Vancouver, Canada,
2020;2657.

57. Tabe-Bordbar S, Emad A, Zhao SD, et al. A closer look at cross-
validation for assessing the accuracy of gene regulatory
networks and models. Sci Rep 2018;8:1–11.

58. Schrynemackers M, Küffner R, Geurts P. On protocols and
measures for the validation of supervised methods for the
inference of biological networks. Front Genet 2013;4:262.

59. Sirota M, Dudley JT, Kim J, et al. Discovery and preclinical
validation of drug indications using compendia of public
gene expression data. Sci Transl Med 2011;3:96ra77:1–22.

60. Lipton ZC. The mythos of model interpretability. Commun
ACM 2018;61:36–43.

61. Carrera J, Covert MW. Why build whole-cell models? Trends
Cell Biol 2015;25:719–22.

62. Karr JR, Sanghvi JC, MacKlin DN, et al. A whole-cell com-
putational model predicts phenotype from genotype. Cell
2012;150:389–401.

63. Terzer M, Maynard ND, Covert MW, et al. Genome-scale
metabolic networks. Wiley Interdiscip Rev Syst Biol Med
2009;1:285–97.

64. Covert MW, Knight EM, Reed JL, et al. Integrating high-
throughput and computational data elucidates bacterial
networks. Nat 2004;429:92–6.

65. Sosa DN, Derry A, Guo M, et al. A literature-based knowledge
graph embedding method for identifying drug repurpos-
ing opportunities in rare diseases. Pacific Symp Biocomput
2020;25:463–74.


	Challenges and opportunities in network-based solutions for biological questions
	Networks: A Useful But Limited Abstraction 
	Furthering Biologically Principled Inference Over Networks
	Closing the Loop with Biological Validation
	Conflict of Interest
	Funding


