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Abstract

Background Virtual reality (VR) as surgical training tool
has become a state-of-the-art technique in training and
teaching skills for minimally invasive surgery (MIS).
Although intuitively appealing, the true benefits of haptic
(VR training) platforms are unknown. Many questions
about haptic feedback in the different areas of surgical
skills (training) need to be answered before adding costly
haptic feedback in VR simulation for MIS training. This
study was designed to review the current status and value
of haptic feedback in conventional and robot-assisted MIS
and training by using virtual reality simulation.

Methods A systematic review of the literature was
undertaken using PubMed and MEDLINE. The following
search terms were used: Haptic feedback OR Haptics OR
Force feedback AND/OR Minimal Invasive Surgery AND/
OR Minimal Access Surgery AND/OR Robotics AND/OR
Robotic Surgery AND/OR Endoscopic Surgery AND/OR
Virtual Reality AND/OR Simulation OR Surgical Training/
Education.

Results  The results were assessed according to level of
evidence as reflected by the Oxford Centre of Evidence-
based Medicine Levels of Evidence.

Conclusions In the current literature, no firm consensus
exists on the importance of haptic feedback in performing
minimally invasive surgery. Although the majority of the
results show positive assessment of the benefits of force
feedback, results are ambivalent and not unanimous on the
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subject. Benefits are least disputed when related to surgery
using robotics, because there is no haptic feedback in
currently used robotics. The addition of haptics is believed
to reduce surgical errors resulting from a lack of it, espe-
cially in knot tying. Little research has been performed in
the area of robot-assisted endoscopic surgical training, but
results seem promising. Concerning VR training, results
indicate that haptic feedback is important during the early
phase of psychomotor skill acquisition.

Keywords Haptic feedback - Minimal invasive surgery -
Robotic surgery - Surgical training - Virtual reality

In every day life, the importance of the sense of touch is
eminent. Recent studies have shown that loss of sense of
touch can be catastrophic. Skilled actions, such as using
tools, holding objects, or even plain walking, may become
almost impossible upon losing the sense of touch [1]. Touch
is the earliest sense developed in human embryology and is
believed to be essential for good clinical practice [2, 3].
Therefore, the potential of haptic technology may not be
underestimated for clinical specialities that rely on sensory
input, such as minimally invasive surgery (MIS).

In surgery, haptic or force feedback refers to the sense of
touch that a surgeon experiences—both consciously and
unconsciously—while performing surgery. It is known that
in MIS haptics are deprived compared with open surgery [4—
7]. Haptics provide sensation to numerous surgical proce-
dures, varying from structure to structure and depending on
type of force applied, and relates to tissue damage,
straightness of suturing, and task completion time [3, 8].

Within the various applications of MIS, a distinction can
be made between conventional endoscopic surgery (CES)
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and robot-assisted endoscopic surgery (RAS). For CES the
surgeon operates directly on the patient by using an
endoscopic interface, whereas for RAS a computer-instru-
mented interface (surgical robot) is positioned between the
surgeon and patient. Deprived haptic feedback, as experi-
enced while performing CES, or a total lack of it, as
experienced while performing RAS, may be a missing
feature for the endoscopic surgeon [2, 9-11].

Next to ongoing developments in MIS, such as RAS,
surgical training in MIS also has experienced rapid change.
Virtual reality (VR) simulation is a computer-based
application for MIS training. Beyond its infancy, VR
simulation is integrated in many MIS training curricula
throughout the world [9, 10, 12-16].

A comment that often is heard when discussing the inte-
gration of VR systems in MIS training curricula is the
omission of haptic feedback in the many “basic” types of
MIS-VR trainers. Again, no consensus is available on the
importance of missing this type of feedback in training MIS
surgery. Before validated implementation of costly haptic
devices in basic and advanced MIS training can be accounted
for, the importance of the lack of haptics in conventional
CES and its omission in RAS should be assessed.

No clear consensus within the MIS performing commu-
nity exists on the importance of deprived haptic feedback in
MIS, related to MIS surgical outcome, and therefore in MIS
training. We present a current overview of studies that
assessed haptics in MIS and VR simulation and its possible
implications. All studies were inventorized according to
level of evidence as reflected by the Oxford Centre of
Evidence-based Medicine Levels of Evidence [17].

Minimal invasive surgery: comparing conventional
endoscopic surgery with robotic-assisted endoscopic sur-
gery: The principle of MIS (e.g., operating through
minimal incisions) is the same in CES as it is in RAS;
however, there are some differences. The most obvious one
is that in RAS a surgical robot is placed between the
endoscopic surgical instruments and operating hands of the
surgeon. This is referred to as “the master-slave principle.”
The surgeon performs the movements while seated com-
fortably in a surgical operating console (master) and the
movements are translated to the arms of a MIS robot
(slave), thus executing them. The benefits commonly
attributed to MIS, such as reduced morbidity, lower
infection rates, less pain, faster recovery, and improved
cosmesis, apply equally to CES and RAS [18-24].

A potential major drawback, comparing RAS to CES, is
the absence of haptic feedback in RAS. In CES force
feedback is experienced by the surgeon through the lapa-
roscopic instrument handles, resulting from the interaction
of the laparoscopic instruments tips with the tissue. In
RAS, the latter end is formed by robotic arms, teleoperized
by a console in which the surgeon performs his gestures.

As a result, no force feedback or haptics resulting from
interaction with patient’s tissue are provided to the sur-
geon. In the literature, this is considered to be a (potential)
major drawback because of the experienced difficulties in
applying the correct amount of force on delicate tissue and
suture materials, resulting in risk of slippage and tissue
damage [4, 7, 25, 26].

Training MIS: Surgical training has become a subject of
discussion and ongoing change. Receiving full training “on
the job” is challenged by concerns for patient safety and
resident working hour restrictions [6]. Therefore, alterna-
tive training methods must be provided to the resident
within validated training curricula [6, 27]. These curricula
may employ simple box trainers, inanimate and (live)
animal models, and VR simulators [6].

Box trainers are well-known, inexpensive, and offer the
experience of haptic feedback in contrast to nonhaptic-
enhanced VR simulators. Animate models are logistically
and ethically challenging. Virtual reality offers the possi-
bility to train psychomotor skills using software, varying
from simulating basic laparoscopic exercises to simple
surgical tasks toward full operative procedures. By using
repetitive VR training, a substantial part of the individual
learning curve can be overcome before practicing on real
patients [2, 14, 16]. One of the newest developments in VR
training is VR training for RAS [11, 28, 29].

VR simulators offer value benefits in training compared
with box trainers, in terms of repetitive training scenarios
overcoming psychomotor learning curves, integration of
didactic modalities, and objective assessment of outcome
parameters.

Haptic feedback in MIS and training: Although non-
haptic VR simulators have proven a transfer of skill to the
operative room [9, 12-14, 30], the lack of haptic feedback
is still considered as a potential drawback. The general
opinion is that, in theory, realistic procedural simulations
with haptic feedback lead to better performances, faster
performance curves, and a high transfer of operative skill
[18]. No consensus in literature, however, could be found
about the importance of haptic feedback in VR simulation
devices and the right manner of implementation.

To assess the importance of haptics, one-first needs to
know precisely what the limitations are in haptic sensations
when performing or training MIS. What kind of haptic
input—or how many different levels of force—does a MIS
surgeon actually receive? And what type of force generated
through haptic feedback is optimal? In what manner is the
current loss of haptic feedback substituted to perform
optimal MIS and VR training and are there alternatives? In
which areas of VR training and in which way can haptic
feedback be applied? And, most importantly, are results in
CES or RAS improving by adding haptic feedback? Is an
improvement in MIS outcome by adding haptics a stable
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trait, or does the effect wear off when a surgeon becomes
more experienced in performing a certain MIS procedure?
These questions are addressed in the following paragraphs.

Haptic feedback in conventional endoscopic surgery

Present research focusing on haptic feedback and CES
assesses aspects such as the decrease of haptic feedback in
endoscopic surgery (due to the interposition of endoscopic
instruments) and impaired sensoric feelings [4-6, 25, 31—
33]. It is known that in surgery, sensoric stimuli are best
felt through bare hands, followed by conventional surgical
instruments, and lastly, by endoscopic instruments [32, 34,
35]. The amount of sensitivity loss measured when using
endoscopic instrumentation instead of bare fingers varies
between a factor of 8-20 [32]. Theoretically, however,
using the instrument as a lever, the force generated from
contact with an organ can be fed back to the surgeon 0.2—
4.5 times the force generated by the organ-instrument
interaction. This could imply a sensitivity enhancement, or
at least a disturbance of haptic sensation, depending on the
depth of instrument insertion into the body cavity [26].
Although the amount of force feedback is reduced, the
interpretation of texture, shape, and tissue consistency are
altered but present upon use of conventional endoscopic
instruments [5, 20, 26, 35-38].

An endoscopic surgeon applies forces at the extremity of
the instruments ranging from 0.5—12 Newton. These forces
are translated to the instrument tips during endoscopic
gestures, resulting into tissue handling ranging from 0.1-
10.5 Newton [26, 38].

The main cause of disturbance of haptic sensations is
frictional forces, which may exceed 3 Newton [26]. Fric-
tional forces are forces caused by the friction between the
instruments and the trocar. The fluctuation in frictional
forces depends on the type of trocar used, the brand of the
particular endoscopic instrument used, and the movement
direction and velocity of the endoscopic instruments [39].

Frictional force may be reduced when enhancing the
mechanical efficiency of the endoscopic instrument, for
instance by lubricating the shaft of the instrument [39]. As
a result, the amount of haptic feedback may be enhanced
[32, 34]. The optimal mechanical efficiency depends on the
specific task being performed [25, 38—43].

It seems that by combining several factors, such as
visual feedback, haptic feedback, and endoscopic experi-
ence, performances of certain surgical tasks can be
improved [5, 25]. Analyses performed by Tholey et al.
show that no significant differences in performance occur
when only one of these factors was present [5].

“Endoscopic experience” is a key factor in many of the
assessed studies. The fact that experienced surgeons are
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able to perform both CES and RAS successfully is an
indication for some researchers that the possible positive
effect of the addition of haptic feedback may be overesti-
mated [25, 26]. It is suggested that haptic feedback should
not be superimposed, because it may be subject to inter-
fering forces. Furthermore, the amount of force feedback
will differ according to, and depend on, the specific task
being performed. High variance in interfering forces may
worsen an endoscopic surgeon’s performance during tasks
that require utmost precision [26, 39].

Patient safety is, as always in the field of medical
research, an important aspect in the discussion on the
importance of haptic feedback in MIS. Several authors
assessed this area matter by conducting research in the
occurrence of surgical error during CES, performed with-
out force feedback. Video analysis of endoscopic
procedures showed tissue slippage occurring during
grasping actions, resulting in tissue damage, when haptic
feedback was absent [25, 40, 44, 45].

A recent review by Westebring-van der Putten et al.
supports the concept of using haptic feedback in MIS. It is
stated that the concept is indeed promising, although rare in
actual presence. Surgeons could possibly benefit from
additional feedback, but there is still much to learn about
the specifics and advantages of included force feedback
when it comes to preventing surgical errors [46]. The
results are summarized in Table 1.

Haptic feedback in robot-assisted endoscopic surgery

In RAS, lack of force feedback may prologue operative
times and learning curves, and increase the risk of surgical
errors [38, 47-50]. Bethea et al. reported that even expe-
rienced surgeons training with RAS often tear apart sutures
and damage delicate tissues [7]. This is attributed to the
exertion of excessive force by the surgeon during his per-
formance, because any form of force feedback is absent. In
a study investigating the effects of haptic feedback on blunt
dissection using a telerobotic system, Wagner et al. found
that the absence of haptic feedback increased errors caus-
ing tissue damage by a mere factor of 3 [51].

The loss of force feedback in RAS compared with CES
may be balanced partly by the restoration of three-dimen-
sional vision. This is important because in the current
operative situation, a surgeon must foremost rely on the
visual deformation of tissue when performing MIS in
general, and even more so in performing RAS [7, 51].
Several studies report direct improvements in performance
times, accuracy, and decrease in error rates for both inex-
perienced and experienced endoscopic surgeons, when
using three-dimensional vision instead of conventional
two-dimensional vision in MIS [52-54].
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Some study results suggest that other forms of feedback
may prove a successful compensation for loss of force
feedback, for example, visual cues indicating the visual
deformation of tissue. This is a suitable substitution if the
surgeon is able to correlate the forces applied and tissue
deflection on a good internal model of tissue consistency
[7, 51]. Bethea et al. demonstrated that during robotic knot
tying, greater and more consistent tension may be applied
to suture materials when haptic feedback is applied [7].
Haptic feedback was supplied in the form of a visual color
bar scale, which changed color when different forces were
applied. In the literature, this concept often is called
“visual haptics.”

The use of visual and auditory feedback of force levels
combined has been found to improve consistency of
applied forces during knot tying, even more consistent than
with those being hand-tied. In a preliminary study by
Okamura et al., auditory feedback as sensory substitution
was tested and proven a success [55]. The accompanying
additional noises, added to sounds already present during
operation, such as those made by hemodynamic/pulse
oximetry monitors, may undesirably interfere with the
surgical process [7, 53].

Addition of force feedback in MIS would enable sur-
geons to “feel” tissue characteristics, identify pathologic
tissue, and tie sutures with appropriate tension, as in open
surgery [54]. In the past, various system technologies,
actuators, and forms of sensory substitution have been
tested to accomplish an alternative for the missing tactile
information, to estimate the amount of force applied [56].
Tavakoli et al. successfully describe a robotic sensory end-
effector [57]. Besides the incorporation of haptic feedback,
authors suggest the end-effector to be of use in evaluating
skills and monitor learning curves in RAS training.

A new development in the area of robotic sensory end-
effector technology is pneumatic tactile displays [56].
Preliminary human perceptual tests of King et al. with
implemented pneumatic balloon actuators provide effective
force feedback to the human index finger [55]. So far, the
implementation of force sensors has not been commercially
successful, despite the fact that there are currently several
robotic surgical systems on the market [4, 58]. Reasons for
this are unclear; (mass) production and research of the
above-mentioned sensory end-effector technologies are
probably still in an experimental phase. The results are
summarized in Table 2.

Most studies conducted regarding CES and the possible
influence of haptic feedback are case—control-type surveys
and literary reviews. Although the number of studies con-
ducted concerning RAS and haptic feedback is scarce
compared with the number of studies concerning CES and
force feedback, the level of evidence and results are alike.
Study populations are small and do not involve multiple

study centers. Therefore, they can be classified as having a
level of evidence of 4 or 3b at most, according to the
guidelines of the Oxford Centre of Evidence-based Medi-
cine Levels of Evidence [17].

Haptic feedback in VR (MIS) training
Application of haptic feedback in virtual reality training

According to Fager et al., haptics using VR simulation can
be implicated in two distinct areas: medical training and
clinical practice [2]. Overviews of MIS-haptic training
possibilities, potential VR implications, and current VR
simulators available with haptic feedback are shown in
Tables 3, 4, 5 [2, 6, 59].

VR simulation with haptic feedback

Currently, study results indicative for a true value of haptic
feedback in VR simulation are low. Many conclusions on
the subject are drawn from study results primarily based on
the possible importance of haptic feedback in MIS, not so
much in VR training [5, 25, 33, 60, 61].

The majority of studies support the idea that haptic
feedback should be implemented onto VR simulators [5,
33, 62]. Various forms of haptic feedback can only be felt
up to four or five different levels—important information
for simulator calibration [5]. Some results suggest that the
addition of haptic feedback in an early training phase may
improve the trainee’s performance, by enhancing the trai-
nee’s sensoric perception capabilities and thus facilitating
transfer of skill from simulation to the operating room [31,
33, 63]. It is suggested that force feedback is a must for VR
simulators if tissue consistency information is to be
delivered [33]. This is supported by the study results of
Chamarra et al. [64]. This group warns about a negative
learning effect that may occur when performing tasks
where pulling and pushing forces play a major role on
surgical task outcome, after being trained using VR sys-
tems without realistic haptics. Their recommendation is to
use VR trainers solely to overcome hand-eye coordination
problems and continue training using a classic box trainer
in which training set-ups allow for realistic pulling and
pushing forces.

Results of studies on the frictional forces of various
trocars used in endoscopic surgery further emphasize the
importance of the realism of implemented force feedback.
Implementation of realistic haptic devices applicable to VR
simulators seems to be difficult. One-first needs to know
what type of haptic feedback in combination with dis-
turbing frictional forces is optimal, realistic, and applicable
to VR simulation [26, 39].
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Table 2 Current status of haptic feedback in RAS

Subject Study purpose Conclusion Level of Literature
evidence® reference

Consequences
Influence on Compare robotically and traditionally Absence of haptic feedback prolongs operative 1b [47]
operative times of performed laparoscopic colorectal surgery times in robot-assisted colorectal surgery
absence of haptic  Trja] of robot-assisted vs. laparoscopic Nissen Absence of haptic feedback prolongs operative 1b [48]
feedback fundoplication times in robot-assisted Nissen fundoplication
Study the feasibility of the Nissen procedure  Absence of haptic feedback prolongs operative 1b [49]
using the da Vinci robot and evaluate the times in robot-assisted cholecystectomy
benefits and costs new technique compared
with the conventional laparoscopic approach
Evaluate the efficiency and feasibility of Absence of haptic feedback prolongs operative 1b [50]
robotically assisted cholecystecomy times in robot-assisted coronary artery bypass
compared with standard laparoscopic surgery
cholecystectomy.
Influence on surgical Does haptic feedback, in the form of sensory Haptic feedback increases consistency, 3b [7]
performance of substitution, facilitate the performance of precision, and performance in robotic knot
absence of haptic surgical knot tying? tying
feedback

Without haptic feedback, sutures and tissues are
torn, even by experienced surgeons

Role of force feedback in blunt, surgical, Absence of force feedback increased the 3b [51]
dissection number of errors that damage tissue by factor
3
Possible solutions
Alternative forms of Does haptic feedback, in the form of sensory  Visual sensory substitution helps to apply more 3b [7]1 [51]
feedback substitution, facilitate the performance of consistent, precise, and greater tensions to
surgical knot tying? fine suture materials without breakage during
RAS
Overview of research in dexterous Audio feedback is proven as a valuable sensory 4 [55]
manipulation substitution
Addition of haptic Test pneumatic haptic feedback actuator array, Pneumatic balloon-based actuation is a viable 3b [55]
feedback suitable for mounting on surgical robotic solution for generating haptic feedback in [56]
tools RAS

Studies were conducted as literary review, individual case—control study, prospective randomized trial, or randomized clinical trial

* Based on the guidelines of the Oxford Centre of Evidence-based Medicine Levels of Evidence [17]

Table 3 MIS training devices and presence haptic feedback Occasionally, the value of adding haptic feedback in VR
Training device Haptic training is discussed as experienced surgeons have long

feedback? performed both CES and RAS, without force feedback,
without complications [25, 60].

Box trainers Yes
Animal models Yes Specific RAS traini th haptic feedback
VR training without haptic feedback No pecthe training with haptic feedbac
VR training with haptic feedback Yes . .. e e .
X . p. . Specific RAS-training methods are still in its infancy, and
Augmented reality training (AR)* Yes

few study results are known on the subject. A preliminary

Table 4 Application of haptic

feedback in VR training Medical training Clinical practice
Procedural training (e.g., broncho-/colono-/ Surgery/treatment planning (e.g., testing of
gastroscopy, cricothyroidotomy, laparoscopic multiple reconfigurations for reconstructive
cholecystectomy, vascular interventions) surgery)
Anatomy learning (e.g., palpation and dissection) Robotic surgery

Diagnostics (e.g., medical image interpretation,
invasive procedures, tumor diagnostics)
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Table 5 Currently available VR trainers with haptic feedback
appliance

VR trainer Manufacturer
Procedicus MIST Mentice (Www.mentice.com)
Lapsim Basic Skills/Dissection/ Surgical Science
Gyn (www.surgical-science.com)
Reachin Laparoscopic Trainer Reachin Technologies
(www.reachin.se)
Virtual Endoscopic Surgery Select IT VEST Systems
Trainer (www.select-it.de)

study by Jacobs et al. demonstrated the potential value and
impact of training RAS with a combination of haptic and
visual feedback [65]. Results indicate improved training
performances with applied haptic feedback as to task com-
pletion time, accuracy, and number of errors made compared
with task performances with only visual feedback, sug-
gesting a complete altering of RAS training in the future.

Recapitulating the results of forementioned studies, as
with MIS, there is no absolute consensus on the importance
of haptic feedback in (VR) training for MIS. To date, little
is known on the subject. Preliminary studies indicate a
positive result of the addition of haptic feedback to VR
simulation for MIS and RAS training regarding training
performance. It is believed that the degree of realism of
implemented haptic feedback is to play a crucial role in
task-specific VR training. In general, studies do not qualify
above a level of evidence 3b [17]. A summary of the
known study results concerning haptic feedback in VR
training is displayed in Table 6.

Discussion

Reflected in literature are many studies assessing the char-
acteristics, possible benefits, and drawbacks of haptic

Table 6 Current status of haptic feedback in VR simulation and RAS training

Subject Study purpose Conclusion Level of Literature
evidence® reference
Miscellaneous Evaluate the role of force feedback with Haptic feedback is essential to deliver tissue 3b [5]

applications to minimally invasive surgery

consistency

Various forms of haptic feedback can only be

felt up to 4 or 5 different levels

Does addition of haptics improve Early exposure to haptic feedback enhances 3b [31] [33]

performance in surgical training?

performance in surgical simulator training

Sensory stimuli are more important than

visual cues. During early stages of training,
sensory perception capabilities improve

Study perception of tissue consistency VR simulators need haptic devices with force 3b [33] [64]

feedback capability if tissue consistency
information is to be delivered

Determine whether force feedback influences Negative learning effect may occur when

movements of instruments

performing tasks where pulling and
pushing forces play a role in VR systems
without haptics

Characterize laparoscopic gestures and The question of whether to equip a trainee’s 3b [26]

quantitative measurement of the various
interactions between organs and
instrument

simulator with a force feedback system
remains open

Description of a framework that includes Haptic feedback involves touching, feeling, 3b [61]

most of the important aspects of haptics in
minimally invasive surgical simulation and
training

and manipulating organs through
instruments and should be implemented in
MIS and VR training

Current status in acquisition and assessment Haptic feedback is the most important factor 3b [62]

of surgical skills by using VR simulators

in learning surgical dexterous skills

Demonstrate the potential value of haptic and Compared with traditional use of only visual 3b [65]

visual feedback combined in RAS training

feedback, a combination of haptic and
visual feedback improves training
accuracy, fastens task completion times,
and decreases number of errors

Studies were conducted as literary review or individual case—control study

* Based on the guidelines of the Oxford Centre of Evidence-based Medicine Levels of Evidence [17]
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feedback in relation to the various forms of minimally inva-
sive surgery, conventional endoscopic surgery, robotic-
assisted surgery, and MIS training. In an overview of the
results, one could state that there is no clear and absolute
consensus found on the benefits of haptic feedback in MIS and
MIS training. However, scrutinizing the results in more detail,
the authors feel that one’s opinion is not likely to be firm.

Upon assessing the evidence, authors assessed both the
interarticle consensus on the respective topics and the
extent to which evidence seemed to be useful in answering
the questions annotated in the introduction of this article.

The cause of haptic limitations in performing MIS is
well assessed and caused by the interposition of endoscopic
instruments. Despite this alteration in haptics, researchers
agree that interpretation of texture, shape, and tissue con-
sistency is possible in current CES, but not in current RAS.
Studies assessing quantification of sensitivity loss report
variation in received haptic feedback, depending on fric-
tional forces and specific tasks being performed. Exact
quantification of haptic alteration is not unanimous, but
results so far are in concordance.

Then, what kind of haptic input—or how many different
levels of force—does a CES surgeon actually receive? And
what type of force generated through haptic feedback is
optimal? Reports on generated forces during endoscopic
gestures range from 0.1-12 Newton, translating into a
surgical interpretation of only up to four or five different
levels of haptic feedback in the operative situation. This is
important information when attempting to apply haptics
into VR surgical simulation and in calibrating simulators.
The optimal, most realistic type of haptic feedback for
possible implementation remains unclear to authors. Both
the ideal type of generated force feedback as well as the
ideal mechanical efficiency of endoscopic instruments
depends on the specific task being performed.

To perform optimal MIS and VR training, one must first
and foremost rely on the visual deformation of tissue when
haptics are absent, even more so in RAS than in CES. This
states the obvious, because haptics are completely lacking in
current RAS. Further results, which indicate the huge value
of three-dimensional vision restoration that occurs in RAS,
also seem logical. Multiple studies report direct improve-
ments in performance times and accuracy, and a decrease in
error rate for both inexperienced and experienced endo-
scopic surgeons after three-dimensional restoration in MIS.
Suitable substitutions for current loss of haptics have pos-
sibly been found in visual cues and auditory feedback. One
might view these substitutions as a type of haptic feedback.
Force sensors need to be implemented into instruments used
to report exerted forces through visual color bars or some
sort of auditory feedback when handling tissue.

In which areas of VR training and in which way can
haptic feedback be applied? The fields of application could

@ Springer

possibly be both medical training and clinical practice.
Little is known about the optimal and most realistic type of
haptic feedback to be implemented into VR simulators.
The realism of the haptic feedback will have a decisive role
in the possible success of implementation.

The key question for future research on the matter should
be: are results in CES or RAS improved by adding haptic
feedback? For now, besides reduced operative times, the
small amount of results indicating a favorable effect of
haptic feedback on surgical performance and patient safety
are merely obtained by individual case—control studies
(level of evidence, 3b—4) [17]. Furthermore, research pop-
ulations—consisting of surgeons and residents—were, in
general, small (<20 study subjects) and not multicentered.

Whether possible improvement in MIS outcome by
adding haptics is a stable trait remains unclear. Throughout
literature, no results were found, pointing out indifferent
influences of possible addition of force feedback on oper-
ative parameters, let alone negative effects. The few
opposing remarks made on haptic feedback are primarily
based on the thesis that experienced surgeons have long
been able to perform MIS without force feedback without
complication. This seems to be the main reason that results
are heterogenous, and although a favorable opinion on the
benefits of haptic feedback is common, interarticle con-
census cannot be fully obtained.

Conclusions and recommendations

Although information on haptic feedback regarding MIS and
especially MIS VR training is rare throughout the literature,
study results are indicative toward a positive consensus on
the benefits of adding haptic feedback to MIS (-trainers).
Interarticle consensus is, however, neither absolute nor firm.
Objective, clinical end parameters of significance have not
yet been established. The general level of evidence found for
study results is 3b, according to the guidelines of the Oxford
Centre of Evidence-based Medicine Levels of Evidence. As
in all fields of health care and medicine, due to technological
innovations, the current rate of haptic device developments
and clinical MIS applications is high, and studies are
expected to emerge rapidly on the subject.

The majority of studies report benefits when adding
force feedback to MIS devices and, moreover, indicate
drawbacks when haptic feedback is absent. The degree of
realism of implemented haptic feedback related to the
particular task that is being trained will have a key role in
the future. Benefits are least disputed in the area of robotic
surgery, because haptic feedback is absent in robotic sur-
gical devices. Nevertheless, the addition of haptics is
believed to reduce surgical errors and potentially increase
patient safety.
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Regarding various forms of MIS, randomized and con-
trolled trials that assess instruments with and without force
feedback need to be studied. Regarding VR trainers, ran-
domized and controlled trials that add haptics to VR under
similar conditions are needed to establish the true value of
such costly equipment in MIS training.

More objective study results based on valid end
parameters—useful for assessing clinical relevance—need
to be obtained to truly state the value of haptic feedback.
For now, the question of the true value of haptic feedback
in MIS training devices remains unanswered.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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