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ABSTRACT: Metabolism is altered by genetics, diet, disease
status, environment, and many other factors. Modeling either
one of these is often done without considering the effects of
the other covariates. Attributing differences in metabolic
profile to one of these factors needs to be done while
controlling for the metabolic influence of the rest. We describe
here a data analysis framework and novel confounder-
adjustment algorithm for multivariate analysis of metabolic
profiling data. Using simulated data, we show that similar
numbers of true associations and significantly less false
positives are found compared to other commonly used methods. Covariate-adjusted projections to latent structures (CA-
PLS) are exemplified here using a large-scale metabolic phenotyping study of two Chinese populations at different risks for
cardiovascular disease. Using CA-PLS, we find that some previously reported differences are actually associated with external
factors and discover a number of previously unreported biomarkers linked to different metabolic pathways. CA-PLS can be
applied to any multivariate data where confounding may be an issue and the confounder-adjustment procedure is translatable to
other multivariate regression techniques.

KEYWORDS: biomarker discovery, chemometrics, confounder elimination, covariate adjustment, metabolic phenotyping,
Monte Carlo cross-validation, multivariate data analysis, random matrix theory, reanalysis, sampling bias

■ INTRODUCTION

Human metabolic phenotypes, “metabotypes”,1,2 are influenced
by multiple interacting factors, such as dietary, environmental,
genetic, and microbial variation,2−6 and reflect the health status
of an individual.7 Metabotypes can be studied with
metabonomics and metabolomics,8,9 which utilize multivariate
statistical methods to find relevant changes in metabolite
profiles related to outcomes/responses. For this, urine and
plasma/serum are the most desirable biofluids, as they can be
(relatively) noninvasively obtained and they are not likely to be
volume limited in humans.10 Urine gives a homeostatic
signature of all metabolic processes in a biological system,
including genetic, diet, and gut microbial activity,11 and thus,
the variation in the urinary metabolic profile can be attributed
to many factors other than disease risk, whereas the plasma/

serum biological matrix holds information on physiological
status at the specific sampling time.7

The measurement of metabolites in biofluid samples is most
commonly performed using 1H nuclear magnetic resonance
(NMR) spectroscopy and mass spectrometry (MS), with the
latter often preceded with a liquid/gas chromatography step for
metabolite separation.12 Both platforms yield data sets/matrices
(X) with thousands to ten-thousands of variables (p) with often
a much lower number of samples (n). This wealth of
information comes at a price: there are likely spurious findings
which will need to be controlled for (type-I errors) and findings
attributable to other factors rather than the response (Y) (e.g.,
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disease state). Discovering accurate information relating to
etiology or pathogenesis depends on a number of aspects:
correct metabolite assignment using proper analytical assays,
use of appropriate statistical methods, validation of results and
ensuring confounding factors do not influence the relation
between X and Y. The latter is an important aspect in
epidemiology; however, it is not common practice in
metabonomics despite the fact that in molecular epidemiology
studies there often is a wealth of meta-data available that are
often gathered at the same time as sample collection.2

In the gene expression and proteomic literature, there are
methods that aim to separate known covariations (batch/
population structure) in data,13−15 correct for unknown
confounders,16−18 or adjust for both types.19,20 A difference
between the analysis of genomic/proteomic and metabonomic
data is that for the former data analysis is often done
univariately, whereas for metabonomics data are often analyzed
using multivariate methods as these are able to capture
metabolite-metabolite interactions part of potentially perturbed
pathways. Therefore, confounder correction methods used in
genomics/proteomics are not necessarily suitable for metabo-
nomics. Some metabonomic studies6,11,21,22 have aimed to
adjust for confounders using multiple linear regression (MLR)
by regressing Y on a matrix of the covariates (C) and a single
variable i from the data set (Xi). This adjusts the contribution
of Xi on Y because C is also included in the same model;
however, this approach is univariate for X and thus does not
capture metabolite-metabolite interactions. Other studies23−25

regress each confounder on X and then compare the
“significant” metabolites with those found from regressing Y
on X. Last, there is orthogonal projections to latent structures26

(OPLS), which is widely used in metabonomics and removes
variation orthogonal to Y from X before calculating the
regression coefficients. OPLS has been claimed to possibly
correct for confounders;27−29 however, confounders are not
necessarily orthogonal to Y; thus, this method will not correct
for all confounders. Nevertheless, the (O)PLS method is
popular in metabonomics because it can deal with large p, a
high degree of collinearity and only requires one parameter to
be estimated.30 Different methods exist that deal with
confounder adjustment in kernel matrices31,32 and those that
take an unsupervised functional data analysis approach.33

However, while inclusion in kernel matrices can be beneficial
in terms of classification by including potential nonlinearity in
the kernel transformation, it comes at a price as the variable
importance is lost for biological interpretation.
The naiv̈e approach of concatenating C and X and regressing

Y on this concatenated matrix using multivariate methods will,
most likely, not properly adjust for confounders as the variables
in X will dominate the model. Regularization approaches such
as the lasso34 and elastic net35 can be used to circumvent this
problem in forcing the majority of regression coefficients (β) to
0. However, the lasso model can contain at most n nonzero βs
and is known to perform poorly when data sets consist of
correlated variables (as with metabonomics data). Therefore,
the inclusion of a variable from X in the lasso model does not
indicate it is not associated with C. The elastic net regularizes
βs while simultaneously including groups of correlated
variables; however, attributing which variables are associated
with confounders is challenging and, in addition, it is a
computationally heavy approach.
We propose here a new data analysis framework and

algorithm to correct for known confounders using PLS (or

orthogonal signal corrected PLS), called covariate-adjusted PLS
(CA-PLS); however, in theory any multivariate regression
method can be used instead of PLS. Our method mimics how
MLR works in the univariate case, where C is used to
counterweight X and not Y,36 and still provides a level of
variable importance.

■ MATERIALS AND METHODS

INTERMAP

The INTERMAP study investigates dietary and other factors
associated with blood pressure37 (BP), the major modifiable
risk factor underlying the worldwide epidemic of cardiovascular
diseases38 (CVDs). INTERMAP surveyed a total of 4680 men
and women aged 40−59 from 17 population samples in four
countries (People’s Republic of China (PRC), Japan, United
Kingdom, and United States) at two time-points (“visits”). In
this study, data from the three Chinese population samples
were used to study the effect of potential confounders on
metabolic profiles and compared to a previous study on these
data done without any adjustment39 (Yap et al.). These three
(rural) populations are from two geographical locations, two
from the north (Pinggu county, Beijing, and Yu county, Shanxi)
and one from the south (Wuming county, Guangxi). Studies
have shown that northern and southern Chinese are at different
risks for CVD40 and the metabolic profiles of these populations
are different, with the two northern Chinese populations most
similar to each other.41 However, it is unclear whether other
factors may be causing the differences in metabolic profiles
instead of genetics and environment.
NMR Spectroscopy

Urine specimens were analyzed using a Bruker Avance-III
spectrometer, operating at 600.29 MHz (1H), equipped with a
5 mm, TCI, Z-gradient Cryo-probe. 1H NMR spectra of urine
were acquired using standard 1D pulse sequences with water
presaturation during both the relaxation delay (RD = 2 s) and
mixing time (tm = 150 ms).42 The 90° pulse length was 10 μs
and total acquisition time 2.73 s. Per sample, 64 scans were
collected into 32K data-points using a spectral width of 20 ppm.
Free induction decays (FIDs) were multiplied by an
exponential weighing function (corresponding to line broad-
ening of 0.3 Hz) prior to Fourier-transformation.
FIDs were referenced to an internal standard (trimethylsilyl-

[2H4]-propionate, TSP), baseline and phase-corrected using in-
house software. Spectral regions containing water/urea (δ6.4 to
4.5), TSP (δ0.2 to −0.2), and noise (δ0.5 to 0.2, δ-0.2 to −4.5,
δ15.5 to 9.5) were removed prior to median-fold change
normalization.43 Remaining variables were binned to 7100
variables using bin widths of 0.001 ppm to down-sample the
total number of variables (for computation) while still retaining
peak shapes. A separate study44 showed good analytical
reproducibility of the data set with 96% of split pairs correctly
identified. Metabolic outliers were defined, and excluded, as
participants whose principal component analysis scores, for
either visit, mapped outside Hotelling’s T2 95% confidence
interval (CI95).

41

Subset optimization by reference matching45 (STORM) was
used to identify metabolites using the correlation structure of
1H NMR data. Localized clustering of small spectral regions
was used for selecting appropriate reference spectra. Addition-
ally, a Bruker compound library, internal databases, and
extensive 2D NMR identification strategies46 were used for
identification of molecular species.
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CA-PLS Framework and Algorithm

We use a version of the SIMPLS algorithm to deal specifically
with wide X matrices47 (see Supporting Information). Same as
for the original PLS algorithm, this algorithm can also be used
to do orthogonal signal corrected48 (OSC) PLS, for which X is
replaced by the OSC matrix Xosc.
The framework (Figure 1, left panel) is designed to minimize

the effect of sampling/selection bias and avoid overfitting
models. We perform the calculations in a Monte Carlo cross-
validation49 (MCCV) procedure; specifically, we perform 1000
iterations for the MCCV. We randomly partition the data in a
model (M) and validation (V) set and use 1/7th of the data for
V to mimic the partitioning of Yap et al. The important aspect
of this framework is that V is completely set aside and thus not
used in scaling, parameter estimation or modeling in any way to
avoid biasing model prediction. The MCCV framework that is
used here has previously been used in a repeated-measures
design to show that dietary patterns could be predicted using
analysis of a urine sample.50

The first step of the framework is to find the optimal
parameter settings (τ) using cross-model-validation51 (CMV)
by partitioning M into multiple training and test sets for
modeling each covariate. τ is intended to be specifically vague

as the types and numbers of parameters are different for each
regression method that this framework can be extended to.
Hence, τ is unknown and is different for each regression
method, for example, the number of components (as used
here) for PLS or λ for ridge regression52 and lasso34 and λ and
α for elastic net.35 If the optimal number of components is k,
then for PLS k components are calculated whereas for OSC-
PLS a model is calculated with one predictive and k−1
orthogonal components.53 For each partitioning, the training
set is autoscaled (mean-centered, divided by standard
deviation) to match Yap et al. The test set is scaled using the
parameters from the training set to avoid introducing bias. Each
covariate is also autoscaled to ensure regression coefficients (β)
for the covariates have the same scale. τ is found by evaluating
the cross-validated error-of-prediction (Q2) (eq 1), where Ŷ is
the predicted response and Y̅ the mean response for the test
set.
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If, for binary responses, the predicted value is bigger (in
absolute sense) than its true value, we do not penalized this

Figure 1. Data analysis framework and covariate-adjustment algorithm. Left panel shows different stages of the data analysis and shows how the
introduction of bias is avoided by carefully splitting and scaling the data before modeling. Right panel (cyan box) outlines the covariate-adjustment
algorithm that is used in the data analysis framework in the left panel in the cyan-colored boxes. The green outline indicates the entire MCCV
procedure, the red dashed box the regression analysis performed for each covariate and blue dotted boxes indicate a CV loop. Here, β are regression
coefficients, RMT stands for random matrix theory (see Supporting Information for algorithm) and ◦ denotes an element-wise operation. See
Supporting Information for a glossary of mathematical operations used here.
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“error” and replace Ŷ with its true value54 (eq 2), here “sgn” is
the sign operator. The goodness-of-fit (R2) is calculated
identically, except using training instead of test data:

̂ = ∀ ̂ − =Y Y Y Y Ysgn( ) sgn( )i i i i i (2)

When τ is found, β is calculated using M. This process is
repeated for each covariate. However, not all covariates may be
accurately modeled using the data. To avoid adjusting for
covariates that cannot be modeled properly, we place some
constraints for which covariates are adjusted. We use a lower
threshold (0.10) for Q2 and another threshold (0.25) for the
robustness of cross-validation (RCV) (eq 3) to avoid adjusting
for covariates that do not generalize well:

=RCV
Q
R

2

2 (3)

We propose to use the RCV because often determining
whether a model generalizes well is done by judging, highly
subjective, whether the Q2 is positive and “high enough”. RCV
can be seen as measure of how the model generalizes with
respect to the optimal fit. A permutation scheme can be used to
find a suitable lower bound for RCV (analogous to the
permutation test for Q2-values.55 Here we simply use a hard
threshold for RCV. However, care must be taken to deal with
negative Q2-values for calculating the RCV, for instance by
setting a lower limit of 0 for the Q2 for calculating the RCV.
Low (or negative) Q2-values indicate poor model predictive
ability and in cases where R2 is high but Q2 is low this means
the model is overfitting the data. This indicates that the correct
τ has not been found.
The next step of the framework and algorithm is to adjust the

data for covariates (cyan-colored boxes in the left panel and
pseudocode in the right panel of Figure 1) that pass the
thresholds and model Y on the adjusted data matrix. M is again
split into training and test sets, these are scaled as before and
then the data is adjusted for covariates using the algorithm
shown in the right panel of Figure 1. As covariates may be
correlated, the resulting βs will also be correlated and are thus
nonorthogonal. βs of covariates must therefore be adjusted for
their autocorrelation (rB) prior to adjusting the data. In this
procedure, a Jacobian matrix is numerically computed from rB
using random matrix theory56 (RMT, see Supporting
Information). Then the number of uncorrelated components
(υ, line 1) is defined as the number of eigenvalues from the
decomposition of rB that are larger than the largest eigenvalue
from the Jacobian matrix (see Supporting Information). Once υ
is known, β is decorrelated and a new set of decorrelated βs
(D) are obtained by decomposing the covariance of β (ΣB) and
retaining eigenvectors/eigenvalues that explain at least 95% of
the total variance (subject to there being at least υ retained
components) (lines 2−4). Next, υ components that span the
space of D (where υ ≤ rank(D) ≤ c) are sought in an iterative
process and saved in columns of W (lines 7−21). W is then
normalized and transformed to span the space of β resulting in
uncorrelated regression coefficients (U) (lines 22−24). U is
used to adjust X for the βs from C (lines 25−27). Note that the
same U is used for all adjustments, so need only be calculated
once (only lines 25−27 need to be repeated for each new data
matrix to replace “X”: M, Mtr, Mte, V). The optimal number of
components for Y (“τ”) is found using the adjusted training M
matrices. Regression coefficients for Y (βY) are then found by
adjustingM using U. Using βY (and U) the validation set V that

has not been used at any stage, can now be predicted free from
bias.
This entire process is repeated in the MCCV. To find the

variable contributions across all models, we recalculate each βY
25 times by bootstrapping57 Y and M. Thus, after MCCV, two
matrices are obtained with βs, those of each model (n = 1000)
and those of the bootstrap models (n = 25 000). The mean of
model βs and variance of the bootstrap βs are calculated and
from these t-scores, and subsequently P-values, are calculated
for each variable in the multivariate model.58 P-values are
corrected for multiple testing using the False Discovery Rate59

(Q-value). We allow 5% false discoveries. Only variables whose
βs are the same sign and Q < 0.05 are considered to be
consistently and-similarly contributing (“significant”) in the
MCCV. Precompiled code to run CA-PLS is available from the
first author’s Web site.

Variable Significance

Variable significance is shown in plots as = − β
β| |S qlogi i10

i

i
,

defining Si as “significance”, βi the regression coefficient, and qi
the Q-value for variable i. A variable has to be “significant” in
both visits and have the same sign.
The Supporting Information contains information about how

we simulated data sets (Supplementary Figures 1 and 2) to
show the difference between consistently and similarly
contributing variables between (OSC)PLS and CA-(O)PLS.
Calculations were performed in MATLAB (R2014a, The
Mathworks, USA).

■ RESULTS AND DISCUSSION

Method Comparison Using Simulated Data

We compare CA-(O)PLS with PLS and OSC-PLS for the
simulated data sets (see Supporting Information) with
confounders introduced into the data sets. Here, CA-(O)PLS
adjusts either for confounder 1 (nonorthogonal to Y) or
confounder 2 (almost orthogonal to Y). Supplementary Table 1
shows how methods performed in finding consistently
contributing variables associated with the case/control status
for the data sets with an effect size of 1 (for inducing differences
between groups). It shows the percentage of false negative
(type-II error) and false positive (type-I error) findings. All
methods find between 1−3% type-II errors; however, the
differences between them are observed for the amount of type-I
errors. CA-(O)PLS (correcting for confounder 1) finds a lower
number, 0.31% (CI95 [0.26, 0.36]), of type-I errors compared
to the other methods (1.35−3.09%). As expected, OSC-PLS
and CA-(O)PLS (for confounder 2) perform similarly;
however, PLS has less, 1.35% (CI95 [1.26, 1.44]) type-I errors
than OSC-PLS/CA-(O)PLS (confounder 2) (3.09%/2.91%),
which is surprising. However, Supplementary Table 1 shows
the OSC-PLS model finds more variables significant that
correlate to case/control status, whereas PLS finds more
variables uncorrelated to case/control status significant. Similar,
but less pronounced, results were found for a data set with less
overlap (effect size of 1.645) between groups (Supplementary
Table 2).

Unadjusted Model

It has been shown that the prevalence of CVD in general, and
hypertension (HBP) specifically, is higher in the north of
PRC40 and that northern and southern Han Chinese are
genetically different.60 We find significant differences (Supple-
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mentary Table 3) between our Chinese populations for a
number of dietary, lifestyle, metabolic, and population risk
factors for CVD for which we aim to adjust. However, we first
compare the results from Yap et al., who used t tests to test
significance of each 1H NMR variable, with results obtained
using our framework and assessment of variable contributions.
Figure 2a and b show the resulting MCCV score plots of the
mean predictions. For the model of visit 1 (“model 1”), the R2

is 0.72 with the Q2 being 0.68, resulting in an RCV of 0.95. For
the model of visit 2 (“model 2”) the R2, Q2, and RCV are 0.71,
0.67, and 0.95, respectively. This highlights the overall quality
of the models. To indicate the spread of the predictions we
include the kernel density estimate (KDE) of predicted values
for each class. To obtain the KDE, we calculate for each sample
the mean and standard deviation of its prediction when it was
part of a test set in MCCV. Summing the distribution of each

sample per class then yields the KDE as shown. The local sharp
peaks of the KDE indicate large between-person variability.
To analyze sensitivity of models, we used each model to

predict the data set from the other visit, resulting in goodness-
of-external-predictions of 0.61 for model 1 (predicting visit 2)
and 0.64 for model 2 (predicting visit 1) (Supplementary
Figure 3). While both data sets do consist of the same
individuals, the similarity between spectra from same
individuals across visits is not high, indicated by an Rv-
coefficient61 of 0.31, where Rv = 1, indicates perfect similarity
and 0 indicates dissimilarity. This is another reason why we use
both data sets in determining consistently contributing variables
to avoid capturing visit-specific variability.

Adjusted Model

Next, we picked a number of significantly different or important
factors from Supplementary Table 3 (age, gender, body mass

Figure 2. Score plots of the MCCV models of predictive and first orthogonal components with kernel density estimate (KDE), R2 and Q2 shown for
the predictive axis. North Chinese individuals (Beijing and Shanxi) are shown as red circles and south Chinese (Guangxi) as cyan crosses. (a)
Unadjusted model of urine collection 1. (b) Unadjusted model of urine collection 2. (c) Covariate-adjusted model of urine collection 1. (d)
Covariate-adjusted model of urine collection 2. Age, gender, BMI, (on medication for) HBP, smoking status, physical activity, Na/K ratio, and total
intake of fats were adjusted for in the CA-(O)PLSDA models (c and d).

Figure 3. Top shows the average 1H NMR spectrum from the first visit. The bottom panel shows the variable contribution across MCCV models.
Models were adjusted for age, gender, HBP/medication, BMI, physical activity, smoking status, Na/K-ratio, and total fat intake. Labels: 1, 2-
oxoisocaproate; 2, leucine; 3, valine; 4, unknown (1.15(s), 3.49(d), 3.61(d), 3.67(m), 3.83(m)); 5, ethylglucuronide; 6, 2-hydroxyisobutyrate; 7,
unknown (1.42(d), 1.46(d), 1.51(d)); 8, unknown (1.82(m), 3.52(s)); 9, N-acetyl-S-(1Z)-propenyl-cysteine-sulfoxide; 10, glutamine; 11, acetone;
12, unknown (2.32(d), 2.34(d), 2.38(d), 2.40(d), 3.52(m)); 13, prolinebetaine; 14, sarcosine; 15, dimethylglycine; 16, unknown (1.84(m), 2.78(m),
2.95(s), 3.36(m), 3.59(m), 3.62(m)); 17, creatine; 18, N6,N6,N6-trimethyllysine; 19, dimethylsulfone; 20, O-acetylcarnitine; 21, carnitine; 22,
taurine; 23, 4-hydroxyhippurate; 24, 1-methylhistidine; 25, histidine; 26, tyrosine; 27, pseudouridine; 28, formate; 29, N-methylnicotinic acid.
Supplementary Figure 5 shows the results for the unadjusted model.
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index (BMI, kg × m−2), (on medication for) HBP, smoking
status, physical activity, Na/K-ratio, and total intake of fats) to
adjust for using our CA-(O)PLS algorithm. The choice
between HBP/medication status and individual measurements
of systolic/diastolic BP was made as both measurements of BP
are lowered by medication while there still is an underlying
condition. The CA-(O)PLS algorithm determines, as described,
which covariates are modeled accurately enough to be included
in the adjustment. After the adjustment procedure, the
geographical location was modeled as binary outcome variable
and the resulting score plots (Figure 2c,d) of the MCCV
predictions remain to show good separation; however, they are
lower compared to the unadjusted model, with Q2 values of
0.50 and 0.60 for urine collection 1 and 2, respectively. The
resulting RCVs are 0.92 and 0.93, indicating the validation
procedure is robust, again also demonstrated by predicting the
other visits, with goodness-of-external-predictions of 0.46 for
model 1 (predicting visit 2) and 0.57 for model 2 (predicting
visit 1) (Supplementary Figure 4). Interestingly, here the KDEs
are smooth distributions of the two groups, caused by the
removal of specific variation in the data related to covariates/
potential confounders. While it may seem counterintuitive to
obtain models with a (slightly) lower predictive ability after
correcting for confounders, it is a logical consequence of the
covariates correlating with the outcome. However, the

drawbacks of models with a lower predictive value (due to
correlation between the outcome variable and covariates) are
more than made up for by improved interpretability as the
important variables relate to the part of the data that is not
affected by covariates and only to the outcome. Figure 3 shows
metabolites that consistently contribute to models. Unidentified
metabolites are only included if their STORM45 pseudospec-
trum showed clear interpretable patterns (Supplementary
Figure 6).

Discriminatory Metabolites

We compare in Supplementary Table 4 the metabolites
reported previously39 and those found using the unadjusted
and confounder-adjusted procedures. Our unadjusted proce-
dure finds the same metabolites previously reported, plus a
number of new associations. A large number of these
metabolites are no longer significant after the confounder-
adjustment and thus are likely related to one or more of the
covariates.
In every iteration of the MCCV, the covariates are remodeled

and only included if they were sufficiently predictive. In theory
this depends on sampling of training/test sets; however, in
practice we find there is a high consistency in which covariates
could be accurately modeled. Gender and smoking status were
modeled accurately for all models and Na/K-ratio in 94.4%

Figure 4. Perturbations to a living system often instigate changes to multiple pathways simultaneously; we show here a condensed
multicompartmental metabolic reaction network of the homeostatic urinary signature of differences between north and south Chinese individuals for
the human supra-organism, created using MetaboNetworks. A link is shown between two metabolites if the reaction is listed in KEGG and can occur
in Homo sapiens (solid lines) or the most abundant endosymbionts (dotted lines). Metabolites not connected in the network, and those not listed in
KEGG, were connected to the closest related metabolite in the network, indicated by a dashed line. The background shading illustrates different
types of metabolism based on the closest affinity with some overlap between groups. A table with full names for the abbreviated metabolite names
can be found in Supplementary Table 5.
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(visit 1) and 100% (visit 2) of models. Age, fat intake, and
HBP/medication could not be modeled accurately, and BMI
and physical activity were only included in 4−11% of models.
To give a rough estimate of the association of metabolites no
longer significant (after covariate-adjustment) and the cova-
riates themselves, we calculated a correlation network
(Supplementary Figure 7). The correlations were adjusted for
multiple testing using a Bonferroni correction of P < 1.9 ×
10−04 for both visits.
Dietary Na/K-ratio has a large number of correlations, which

appear to have the inverse sign of the correlations of physical
activity with metabolite levels. A logical reason is that Na/K-
ratio and physical activity are inversely associated themselves.
In general, south Chinese individuals are physically more active
and consume more potassium and less sodium, and individuals
who are more active have lower Na/K-ratios (Supplementary
Table 3, Supplementary Figure 8).

Metabolic Reaction Network Analysis

Using metabolites differentially expressed between the Chinese
populations, we constructed a condensed multicompartmental
metabolic reaction network using MetaboNetworks.62 It
calculates the shortest paths (number of reactions) between
metabolites, only considering reactions that can occur in the
Homo sapiens supra-organism. We found a number of gut
microbial cometabolites, and thus included reactions that can
occur in species from the phyla firmicutes, bacteroidetes, alpha-
proteobacteria, beta-proteobacteria, gamma-proteobacteria,
delta-proteobacteria, and actinobacteria. These phyla make up
99% of phylotypes found in the human gut.63 Figure 4 shows
the resulting metabolic reaction network for the urinary
metabolic differences in Chinese populations. Reactions
between metabolites are indicated by a solid line for those
that are spontaneous or due to human enzymes and by dotted
lines for reactions that occur only in gut microbiota. The
background colors indicate different types of conventional
metabolic pathways. Figure 4 highlights the interconnectivity
between many of the metabolites found to be differentially
expressed between northern and southern Chinese.
Branched-chain amino acids (BCAAs) and derivatives

(leucine, valine, 2-oxoisocaproate) are found higher in the
north compared to the south, which may indicate a difference
in energy metabolism, potentially also reflected by the
tricarboxylic acid (TCA) cycle intermediates citrate and
succinate, and isoleucine found higher in the north without
adjustment. Aside from BCAAs, amino acids histidine, tyrosine,
and glutamine are also found higher in the north. Glutamine is
involved in TCA anaplerotic metabolism and histidine in
muscle metabolism. While tyrosine partly links into the TCA
anaplerotic metabolism via a microbial conversion to pyruvate,
it is an aromatic amino acid. Other aromatic compounds were
found to be higher in the south before covariate adjustment (4-
cresylsulfate, phenylacetylglutamine, hippurate, 4-hydroxyphe-
nylacetate, 3-hydroxymandelate). The fact that 4-cresylsulfate,
phenylacetylglutamine, and hippurate are no longer significant
after adjustment is related to gender and body weight
differences11,64 (Supplementary Figure 7). Another aromatic
compound found higher in the south is 4-hydroxyhippurate,
which has been linked to citrus fruit intake65 and healthy eating
in general.50 We also find the most common biomarker of
citrus fruit intake,65 prolinebetaine, in higher concentrations in
southern Chinese individuals. Aside from being a biomarker for
citrus fruit intake, prolinebetaine is also considered an

osmoprotectant, as are carnitine and trimethyllysine, which
are also found in higher concentrations in the south. Also, the
intracellular concentration of taurine (found higher in the
south) increases when the extra-cellular fluid is hypertonic,66

this may indicate that southern Chinese individuals (lower Na/
K-ratios) are under less osmotic stress, reflected by the
excretion of these metabolites. It should be noted however
that the excretion of carnitine and O-acetylcarnitine are also
linked to meat intake67 and that taurine is a major metabolite in
the conjugation of bile acids, which may be related to the higher
intake of fats in the southern Chinese, indicating differences in
lipid/fatty acid metabolism between the regions as well as being
indicative of cataplerosis.68 Acetone is a byproduct of
breakdown of lipids/fatty acids for energy release. It has been
noted that incomplete fatty acid oxidation and fat excess in
skeletal muscle tissue can perturb energy anaplerosis and cause
diabetes.69

Aside from taurine, two other sulfur-containing metabolites
are found, dimethylsulfone and N-acetyl-S-(1Z)-propenyl-
cysteine-sulfoxide. Both are biomarkers of onion consump-
tion46,70 with the later validated in a controlled clinical trial.46,50

Another metabolite possibly linked to dietary intake is
ethylglucuronide, which is a long-term marker of alcohol
consumption and component of rice wine.71 N-methylnicotinic
acid is a metabolite linked to many different sources, among
which coffee consumption72 and peas,46 and is a major
metabolite of niacin (vitamin B3). In the metabolic network
(Figure 4), there are multiple domains related to B-vitamins,
such as thiamin (B1), panthothenate (B5), pyridoxal (B6),
biotin (B7), folate (B9), and cobalamin (B12). These play roles
in many processes, including lipid metabolism.
Closely linked to the lipidic domain through choline

metabolism are formate, dimethylglycine, and sarcosine.
These were all found higher in the north and are part of 1-
carbon metabolism. Sarcosine is also linked to creatine and urea
formation via a microbial link. Creatine is, among many other
processes, related to muscle metabolism and, like 1-
methylhistidine, found higher in the south. This reflects
differences in muscle metabolism between populations, possibly
a long-term effect from physical activity (Supplementary Table
3). We also find 2-hydroxyisobutyrate higher in the south which
is a product of n-butyrate producing bacteria,5 the same
bacterium (F. prausnitzii) is associated with higher levels of β-
aminoisobutyrate, taurine, and dimethylamine, and lower levels
of lactate and glycine. With the exception of dimethylamine,
these metabolites are similarly expressed in the southern
Chinese in the unadjusted model, indicating a possible
difference in n-butyrate producing bacteria. Last, pseudouridine,
a marker of tRNA turnover, is higher in the south.

■ CONCLUSION
Adjusting data for confounders may lead to a loss of predictive
power; however, the number of spurious findings is reduced
(type-I errors), thereby greatly improving model interpret-
ability. The CA-(O)PLS framework leads to finding more
robust sets of biomarkers and more accurate predictions by (1)
reducing sampling bias, independent scaling and MCCV, (2)
optimizing parameter settings using CMV, (3) removing layers
of confounding information from data, and (4) evaluating
variable importance across multiple models instead of
calculating a single53 model.
We recommend testing whether each covariate can be

modeled accurately before including them. However, if
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covariates cannot be accurately modeled, they are not adjusted
for and therefore do not influence models. If this is the case for
all covariates, CA-(O)PLS defaults to (OSC−)PLS. While
many factors can be adjusted for simultaneously, this will
ultimately lead to loss of power, regardless of analysis method
(univariate/multivariate). However, including highly (anti)-
correlated covariates does not pose a problem for CA-(O)PLS
as it finds an orthonormal set of factors from the covariate
models to adjust data sets with. The benefit of CA-PLS is that it
directly adjusts the data which allows a posteriori interpretation
of metabolic signatures associated with covariates, opposed to
other methods that work on a kernel matrix32 in which this is
lost.
We showed that confounders that differ between northern

and southern Chinese individuals influence metabolite
associations. We find that some previously reported associa-
tions are primarily associated with potential confounders. The
metabolites that we found to be consistently contributing to the
models highlight important underlying processes, most notice-
ably lipid, energy and gut-microbial metabolism, potentially of
interest in determining what drives the differences in prevalence
of CVDs in the Chinese population.
The multivariate confounder-adjustment framework we

describe is easily translatable to other multivariate regression
techniques and the potential benefit is not limited to metabolic
phenotyping, but in theory it is applicable in any field, for
example, other “omics” technologies, drug discovery, ecology,
and potentially finance, where changes in collinear multivariate
data can be attributed to confounders.
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