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Abstract

The purpose of this research is to develop effective data integrity models for con-

toured anatomy in a radiotherapy workflow for both real-time and retrospective

analysis. Within this study, two classes of contour integrity models were developed:

data driven models and contiguousness models. The data driven models aim to high-

light contours which deviate from a gross set of contours from similar disease sites

and encompass the following regions of interest (ROI): bladder, femoral heads, spinal

cord, and rectum. The contiguousness models, which individually analyze the geom-

etry of contours to detect possible errors, are applied across many different ROI’s

and are divided into two metrics: Extent and Region Growing over volume. After

analysis, we found that 70% of detected bladder contours were verified as suspi-

cious. The spinal cord and rectum models verified that 73% and 80% of contours

were suspicious respectively. The contiguousness models were the most accurate

models and the Region Growing model was the most accurate submodel. 100% of

the detected noncontiguous contours were verified as suspicious, but in the cases

of spinal cord, femoral heads, bladder, and rectum, the Region Growing model

detected additional two to five suspicious contours that the Extent model failed to

detect. When conducting a blind review to detect false negatives, it was found that

all the data driven models failed to detect all suspicious contours. The Region Grow-

ing contiguousness model produced zero false negatives in all regions of interest

other than prostate. With regards to runtime, the contiguousness via extent model

took an average of 0.2 s per contour. On the other hand, the region growing

method had a longer runtime which was dependent on the number of voxels in the

contour. Both contiguousness models have potential for real-time use in clinical

radiotherapy while the data driven models are better suited for retrospective use.
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1 | INTRODUCTION

The concept of data integrity systems for mapped organ contours in

radiation therapy aims to improve both the accuracy and consistency

of data. New advances in automated segmentation technology

paired with radiotherapy dose calculations have improved the ability

of clinicians to accurately contour boundaries of organs at risk in

radiotherapy.1–6 These technologies have been applied to numerous

regions of interest (ROI) in the head, neck, thorax, and prostatic

regions.7–9 Other studies have segmented CT images using patient

and population based statistics.10 However, with any qualitative,

manually completed activity, there are margins of error, which if not

detected, can have implications on the treatment of patients and

how physicians treat future patients. Poorly or spuriously mapped

contours by physicians and residents has the potential to result in

erroneous radiation dosing of critical, noncancerous anatomy and

has the potential to skew predictive models developed by data sci-

entists to extrapolate post-treatment parameters, such as weight loss

and dysphagia.

Currently, many studies have been completed regarding integrity

checking in radiation therapy across a given set of patients.11,12

After treating patients with a consistent diagnosis, physicians tend

to assess the variation in treatment planning and delivery across the

set of patients with the goal of standardizing treatment for that

diagnosis. Similar studies analyze the integrity of radiation treatment

through a standardized set of parameters. Other studies aim to

improve the safety and integrity of treatment through the verifica-

tion of prescriptions and a variety of “in house parameters.”13 With

regard to automated treatment control, studies have analyzed the

efficacy of tools to improve the safety and integrity of intensity

modulated radiation therapy (IMRT) while finding the optimum treat-

ment plans for patients.14

On the other hand, this technology employs an active approach

to improving integrity, through the lens of a clinical database envi-

ronment. In this study, we developed two classes of contour integ-

rity checks. The first, a data driven integrity check, aims to develop

and test models which identify contours which deviate from the

norm of a set of data. The second is an internal ROI check which is

developed independently and applied to a set of contours with

potential for real time applications in radiotherapy. By employing

metrics to detect poorly contoured anatomy within the radiation

oncology clinical workflow, this technology distinguishes itself from

prior studies and technologies within the realm of radiation therapy

planning integrity. It aims to improve the quality of clinical data for

data scientists and physicians, minimizing the risk of radiation over-

dose to critical anatomy for patients.

2 | MATERIALS AND METHODS

The contour data used in this study comes from the Oncospace14

database, a learning health system comprised of clinical radiotherapy

patient data. Specifically, given the regions of interest tested in this

study, we used contour data from the Oncospace Head and Neck

and Oncospace Prostate databases. The Oncospace data used within

this study was collected across several clinics to ensure accuracy

and consistency throughout development and analysis. The number

of contours analyzed is dependent on the region of interest and was

not consistent across each region of interest. The development and

testing of algorithms as well as analysis was completed using Python

and MATLAB R2017a. In this study, we divide our models into two

classes: data driven and contiguousness. With regard to the data dri-

ven models, we used several metrics as thresholds and classifiers to

create the models.

The first metric used in the data driven models was total ROI

volume. Using Microsoft Visual Studio as a platform, we used SQL

direct queries to query patients from the Oncospace15 Prostate

Database based on specific Region of Interest Volume. We then con-

solidated the patient lists, organizing by ROI, and exported the data

into MATLAB and Python, our analysis software. Total ROI volume

aims to detect abnormally large or abnormally small organ contours.

To the analyst, an abnormally large organ contour could indicate

incorrectly contoured surface anatomy while an unusually small vol-

ume could indicate missing geometric contour slices.

Similarly, the next metric, total ROI Extent, indicates anatomy

which extends abnormally in the left-right, anterior-poster, or infe-

rior-superior directions. We define Extent as the range of voxels in a

three-dimensional grid in each direction. Total ROI Extent is calcu-

lated by converting the transition points of the binary mask of a

contour into sets of Indices which map the surface voxels of this

contour. The binary mask is encoded using a data compression tech-

nique called run length encoding,16 shown in Figure 1. Here, exten-

sive runs of data are stored as single data counts rather than its

original run. Then, we applied the following equations over each

contour to compute indices for each contour. Below are the defined

variables within the equations.

Xdim: The voxel dimension factor in the left-right direction.

Ydim: The voxel dimension factor in the anterior-posterior

direction.

Zdim: The voxel dimension factor in the inferior-superior

direction.

Mask: An array of run length encoded transition points of the

binary mask of a contour.

F I G . 1 . Shows a diagram explaining the concept of run length
encoding. Run length encoding is a lossless data compression
method which stores long runs of data into single data counts. A
common application of this methodology is in JPEG files.
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Index: A certain transition point within the “Mask” array

Z Indices ¼ Mask Indexð Þ
Xdim� Ydim

(1)

Y Indices ¼ Mask Indexð Þ � ZIndicesð Þ � Xdimð Þ � ðYdimÞ
Xdim

(2)

X Indices ¼ Mask Indexð Þ � ZIndicesð Þ � Xdimð Þ � Ydimð Þð Þ
� ð YIndicesð Þ � Xdimð ÞÞ (3)

We then apply an algorithm to ensure that voxels fill each slice

of the contour. Lastly, we subtract the maximum indices value from

the minimum in each direction within a 3D space to find the

Extent.

An abnormally large left-right or anterior-superior Extent could

indicate suspicious or poorly contoured anatomy or missing slices in

the inferior-superior direction. While total Extent will detect more

generalized abnormalities throughout the contour, sliced based

Extent will detect specific abnormalities in Extent on a slice-by-slice

basis throughout the mapped contour. For example, slice based

Extent could detect frame shifts within a spinal cord or clearly miss-

ing slices. In addition, this metric could detect contractions in the

anterior-posterior direction, indicating suspicious contours or missing

slices in the inferior-superior direction. Another prominent applica-

tion of slice based Extent is through the average slice based Extent

and the range of slice based Extent in the left-right and anterior-

superior directions over a region of interest.

The data driven models developed and tested in this study are

over the following ROIs: bladder, femoral heads, rectum, and spinal

cord. In these models, we combined the aforementioned metrics to

develop thresholds which could be applied over sets of treated

radiotherapy contours derived from CT imaging.1 These models dis-

tinguish themselves from the contiguousness models in that they are

data driven, meaning they are tested and developed on a data set to

optimize their ability to detect poorly or suspicious contoured anat-

omy. Each model is unique to a certain ROI. On the other hand, the

contiguousness models were developed to be tested across many

ROI to detect suspicious contours across the set.

2.A | Bladder contour integrity model

In radiotherapy, prostate cancer patients often times are required to

maintain full bladders for scans and treatments. This tool aims to

predict whether contoured bladder anatomy for prostate cancer

patients indicates a full or empty bladder. This predictive integrity

model utilizes the variables of volume and Extent ratios to develop

thresholds through which patient lists are sorted. Total ROI volume

allows us to gauge the size of a bladder contour with respect to

other contours within a set of patients. Total ROI extent was

calculated by converting binary mask transition points into indices

and finding the range among indices. Then, Extent ratios were

calculated by dividing the Extents as follows:

lateral
anterior�posterior ;

lateral
inferior�superior ;

anterior�posterior
inferior�superior . This model was created

using a development group of 150 patients selected randomly using

a MATLAB dataset structure function.

The next set, 350 patients, was isolated as an experimental

group. Using MATLAB for analysis, this model aims to isolate the

bottom quartile of bladder volumes as an initial condition. Those

which meet this condition are separated into a new array. Three

arrays are created for contoured bladders which are below the 10th

and above the 90th percentile for any of the three Extent ratios, as

shown in Figure 2. The contours which met these conditions were

then verified using an ROI shape verification tool which projects a

surface plot of a contour, created using its indices derived from its

mask and multiplied by a voxel dimension size. Figure 3 shows a sus-

picious bladder contour identified by the model.

2.B | Femoral head integrity model

When treating patients diagnosed with prostate cancer, femoral

heads are often contoured in a clinical workflow as Organs at Risk

of dose. The anatomy of femoral heads, composed of a head/neck

and a shaft, often cause deviation in their contours. This model was

developed to accurately distinguish between contours of the femoral

head/neck and those of the femoral shaft. Using MATLAB for analy-

sis, this model aims to detect contours which include the ball and

shaft of the femoral head. Thus, those undetected by the model

should only contour the ball of the femoral heads. Similar to the

bladder emptiness prediction model, the femoral head integrity

model was developed using a randomly selected development group

and tested using a separate experimental group. The model utilizes

an initial ROI volume threshold, isolating those volumes above the

20th percentile, as shown in Figure 4. For the contours that met this

condition, an iterative loop function with thresholds for lateral
anterior�posterior

Extent ratio and inferior-superior Extent was applied. A subarray of

contours which met this condition were then verified using the same

ROI shape verification tool used in the bladder contour integrity

model to verify their suspicious nature. Figure 5 shows an example

of a contoured femoral head, but not a femoral shaft.

2.C | Rectum and spinal cord contour integrity
model

Among ROI contours which possess variation from each slice in the

inferior-superior direction, slice based Extent calculations were used.

The unique ability of slice based Extent is that it will detect poorly

contoured anatomy which is not missing slices in any given direction

but possesses abnormally oblong or undersized on any slice in the

inferior-superior plane. This is the case in rectum contours.

Using the Python development environment and MATLAB for

development and analysis, we first isolated a development and test-

ing group for each ROI. This integrity model iterates through slices

of a radiotherapy contour along the inferior-superior axis, calculating

the Extent in both the left-right and anterior-superior directions, and

saving this data into an array. It then calculates the range of Extents

in the left-right and anterior-superior directions for each contour.
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Lastly, it creates another array by applying a function which sorts

radiotherapy contours whose slice based Extents are greater than

the 90th percentile in the left-right and anterior-superior directions.

The contours within this array were then verified as abnormal using

the ROI shape verification algorithm used in the bladder model.

2.D | Contiguousness integrity model

This model, unlike the aforementioned models, is not data driven.

Data were queried from the Oncospace Clinical Database and then

run through the Contiguousness Integrity Model software. The sam-

ple size used for each Region of Interest varied based on the

available contours in the Oncospace database. Contiguous contours

possess surface voxels throughout their geometry and have geome-

try present across each slice throughout their bodies. The Contigu-

ousness model is divided into two sub models: Contiguousness by

Extent and Contiguousness by Region Growing over Volume.

The software supporting the contiguousness by Extent metric

was derived from the concept that slice based Extent or total ROI

volume would not be able to detect subtler suspicious contours. This

model iteratively loops by slice across a region of anatomy and eval-

uates whether slices are missing in a given direction. Here, a con-

tiguous contour is one in which number of unique voxels in each

geometric direction plus one equals the Extent in that given

F I G . 2 . Shows a histogram of the
volume of bladder contours. Once contour
volumes were queried from the Oncospace
database, the data were stored in an array
and then projected into a histogram. This
aims to show the shape and spread of
bladder contour volume data.

F I G . 3 . Shows a suspicious bladder
contour detected by the bladder integrity
model. Within this contour, one can see
that it projects abnormally far in the
anterior-superior direction and seems to be
missing contoured anatomy in the inferior-
superior plane.

SHAH ET AL. | 61



direction. Noncontiguous contours would therefore be missing con-

toured slices in a given direction or possess voxels of contoured

anatomy that is projected away from the main body of the contour.

The next contiguity metric, Region Growing over Volume, vali-

dates a binary mask structure over a voxel grid. Within this metric,

contiguity is defined as having a path from one voxel to every other

voxel throughout the mask of the contour. The name “region grow-

ing” is derived from the algorithm supporting contiguity via region

growing over volume, which analyzes specific voxels within a binary

mask. This algorithm was implemented in Python, using the SciPy

library. Starting at a single voxel within a contour, this method

repeatedly searches for all adjacent voxels until none exist. Figure 6

shows an example of a contiguous region, where the green voxel

grows a neighborhood that encompasses all voxels in the structure.

By contrast, in Figure 7, a noncontiguous region the number of vis-

ited voxels does not equals the voxels in image, indicating that there

is not a contiguous path between all voxels of the structure. K-d

trees17 were used as a method for fast indexing and lookup of

neighbors. The KDTree.query_ball_point()18,19 method returns all

points within a specified radius from a point, in this case, √3, since

F I G . 4 . Shows a histogram of the
volume of left femoral head contours. This
histogram aims to show the shape and
distribution of the volume of contoured
femoral heads. Upon review, it seems to
show a skew toward the lower end of
volumes.

F I G . 5 . Shows a suspicious left femoral
head contour using MATLAB software.
One can see that only a small portion of
the femoral neck is contoured and that the
projected voxels in the inferior-superior
direction seem incomplete. This contour
was clearly detected by the volume
threshold set in this model.
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points are treated as a unit-voxel grid corresponding to the voxel

indices. Figure 8 shows pseudocode of the implementation of the

region growing algorithm.

After creating these metrics, we applied their respective algo-

rithm to patient lists across the aforementioned regions of interest.

For the region growing algorithms, we also computed runtime data

for the contours tested to assess their feasibility real time applica-

tions. Lastly, to check for false negatives, suspicious contours unde-

tected by the integrity metrics, we conducted a blind review of all of

the contours tested across the regions of interest. During this

review, we marked all suspicious contours and then compared the

results to that of the preliminary analysis.

3 | RESULTS AND DISCUSSION

After completing the analysis, all data integrity models were successful

at detecting suspicious or abnormal contours within the clinical

workflow, however, to differing levels. Based on the results summa-

rized in Tables 1–6, it is clear that the Contiguousness models are the

most exact method of detecting these contours within a clinical radio-

therapy workflow as each suspicious contour was verified as abnormal

via the MATLAB ROI shape verification tool. On the other hand, the

data driven models, while accurate, did have false positives and false

negatives. The results shown in Tables 1–6 indicate that certain con-

tours are contoured abnormally at a higher frequency than other con-

tours. More so, Table 4 summarizes the accuracy of the data driven

models, while Tables 5 and 6 summarizes the accuracy of the contigu-

ousness models. A common example is the spinal cord, which was

contoured suspiciously 82 times using a sample of 1148 patients. In

the case of the spinal cord, a treated noncontiguous contour could

result in radiation dose passing through the cord to critical, nontarget

anatomy. This issue also presents in ROIs, such as the bladder, where

the contoured anatomy is near the target volume.

Using the Bladder Contour Data integrity model indicates a high

level of variation in contoured bladder anatomy, giving way to nine

F I G . 6 . Shows a diagram which explains
the characteristics of a contiguous contour.
The diagram begins with one voxel filled
and continues to grow until no more
voxels can be filled without breaks,
implying contiguity.

F I G . 7 . Shows a diagram which explains
the characteristics of a noncontiguous
contour. Here, one voxel fills the space
and continues to grow. However, the
number of voxels visited does not equal
the number of voxels within the image.

F I G . 8 . Shows a diagram of pseudocode
explaining the region growing algorithm.
Using the ball point query method, this
code selects a voxel within the contour
and continues to grow, finding all voxels
within a given radius of the original. It
does this throughout the entire contour as
a test of contiguity.
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false positive contours. For example, a bladder contour which is full

but extends highly in the inferior-superior axis could meet the

thresholds of the Bladder Contour Integrity model, but upon review,

it is clear that the bladder is actually full. Other contours, upon

review, were simply abnormally small in volume yet clearly the blad-

der was full based on its spherical geometry. On the other hand, the

bladder model possessed rather few false negatives compared to the

other models. This is because the vast majority of empty bladders

will either be detected by the volume of extent ratio thresholds. The

majority of the detected bladders were clearly contoured as empty

based on the verified geometry of the structure. This poses a signifi-

cant consistency issue in a radiation oncology clinical workflow dur-

ing CT.

The accuracy of the femoral head prediction model can be attrib-

uted to nature of femoral head radiotherapy contours. Due to the

binary nature of these contours, using a model which categorizes

contours based on volume, inferior-superior Extent, and Extent ratios

will clearly be successful. However, the contours poorly classified by

the model can be attributed to the fact that a smaller portion of the

femoral head could be contoured with the shaft, therefore failing to

meet the volume threshold as shown in Table 4. False negative rates

were not calculated as the point of this model was to distinguish

between two types of femoral head contours. Both the femoral head

and bladder models could be implemented as preliminary integrity

checks within radiotherapy planning to warn clinicians before they

treat a suspiciously contoured plan.

With regard to the Slice Based Extent Rectum and Spinal Cord

Models, both models were successful in detecting abnormal slice

Extents throughout a contour, having 73% and 83% accuracy respec-

tively. Within the Spinal Cord model, we found less than 10% over-

lap in the contours detected by the contiguousness models and the

Sliced Based Extent model, proving that they both detect unique

cases of suspicious or abnormal contours. The false positives noted

in both models can be due to extreme deviation in slice Extent of

normal anatomy. For example, a patient with an abnormally arched

spinal cord or one diagnosed with scoliosis would fall in the Extent

threshold defined in the model. Another example would be a rectal

contour which extends significantly in multiple directions, making a

high range in slice based Extent probable. More so, as shown in

Table 4, the 73.1% of false negatives present with the spinal cord

TAB L E 1 Results of data driven integrity models.

Region of
interest

Integrity model
or metric

Contours
tested

Contours detected
as suspicious

Contours verified
as suspicious

False negative
suspicious contours

Bladder CT emptiness

verification

594 36 25 5

Right

femoral

head

Femoral head

distinction model

559 235 Detected with

Ball/Shaft;

115 Detected with

Ball only

235 Ball/Shaft Verified;

94 Ball only verified

N/A

Left

femoral

head

Femoral head

distinction model

561 274 Detected

with Ball/Shaft;

76 Detected

with Ball only

274 Ball/Shaft Verified;

65 Ball only verified

N/A

Rectum Slice based

extent model

1148 12 10 9

Spinal cord Slice based

extent model

1148 30 22 60

TAB L E 2 Contiguousness by extent results.

Region of
interest

Contours
tested

Contours
detected as
suspicious

Contours
verified as
suspicious

False negative
suspicious
contours

Bladder 594 8 8 2

Right femoral

head

559 7 7 2

Left femoral

head

561 13 13 2

Prostate 322 1 1 4

Rectum 769 14 14 5

Spinal cord 1148 80 80 2

Brainstem 1140 14 14 0

TAB L E 3 Contiguousness by region growing over volume results.

Region of
interest

Number of
contours
tested

Contours
detected as
suspicious

Contours
verified as
suspicious

False negative
suspicious
contours

Bladder 594 10 10 0

Right femoral

head

559 9 9 0

Left femoral

head

561 15 15 0

Prostate 322 1 1 4

Rectum 769 19 19 0

Spinal cord 1148 82 82 0

Brainstem 1140 14 14 0
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model can be attributed to the fact that single missing slices in the

contours will not significantly affect the values of slice based extent.

Therefore, the slice based extent model will only see more significant

discontiguities, such as those with multiple missing slices. Both of

these models are important as suspiciously contoured slices with

abnormal left-right or anterior-superior Extent possesses the same

clinical risks as those highlighted in the bladder model.

Lastly, with regards to the nondata driven contiguousness metric,

while both methods were quite accurate, it can be seen that each

method poses its own benefits and drawbacks. As shown in

Figure 9, both models detected suspicious contours. While the con-

tiguousness by Extent model was the fastest, there were instances

where it failed to detect suspicious contours which were detected

using the region growing method. This is shown in Table 5 as this

model yielded false negatives rates between 2.4% and 30% for the

majority of regions of interest tested. The contiguousness by Extent

model detects the most obvious suspicious contours, but sometimes

fails to detect more nuanced abnormalities, which the region grow-

ing method detects. For example, it only successfully detected 14 of

the 19 actually noncontiguous Rectum contours and 13 of the actu-

ally 15 noncontiguous left femoral head contours. The region grow-

ing method provides an improved robustness compared to the

Extent-measuring method, detecting between 2 and 5 additional sus-

picious bladder, rectum, femoral head, and spinal cord contours. The

Extents method relies on projections along each dimension, checking

that the structure is complete only along that dimension. However,

TAB L E 4 Accuracy of data driven metrics.

Region of interest Metric Accuracy of detected contours False positive rate False negative rate

Bladder CT emptiness verification 70% 30% 16.7%

Right femoral head Distinction model 100%; 82% N/A N/A

Left femoral head Distinction model 100%; 86% N/A N/A

Spinal cord Slice based extent model 73% 26.6% 73.1%

Rectum Slice based extent model 83% 17% 47%

F I G . 9 . Shows a collection of suspicious
contours detected by the contiguousness
metrics from across datasets within the
Oncospace database using MATLAB
software. The contours include a bladder
contour, a femoral head contour, a spinal
cord contour, and a rectum contour.

TAB L E 5 Accuracy of contiguousness by extent.

Region of interest
Accuracy of

detected contours
False

negative rate

Bladder 100% 20%

Right femoral head 100% 22%

Left femoral head 100% 13.3%

Spinal cord 100% 2.4%

Rectum 100% 26.3%

Prostate 100% 80%

Brainstem 100% 0%
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it is possible that each projection may be contiguous even if the

structure itself is not. The region growing method yielded false nega-

tives only in one region of interest, prostate. This is because very

oblong or exceedingly angled contours in the prostate region will

not be detected by the region growing algorithm. This also explains

why there is such a high false negative rate for prostate using the

Extents method. With regards to runtime, the extents method had

an average of 0.2 s, making it very feasible for real time applications

in clinical radiotherapy.

Additionally, while the region-growing model is highly accurate,

the implementation often results in a high runtime due to the expo-

nential computational complexity of the algorithm, taking between

30 s and a minute to check a single ROI contour. However, an aver-

age runtime cannot be cited for this method as the runtime is wholly

dependent on the numbers of voxels present in the contour, shown

in Figure 10. As shown in Table 6, the Region growing model suc-

cessfully verified each suspicious contour due to the robust and pre-

cise nature of its algorithmic development. On the other hand, the

compared simplicity of the contiguousness by Extent model would

allow it to have implications for use in real time in a radiotherapy

clinical workflow. While contouring patient anatomy for treatment,

physicians could utilize this model to ensure integrity of contours in

real time, thus potentially increasing the efficacy and safety of treat-

ment.

Another important strength of the region growing method is

associated with the smoothness assumption. In general, anatomi-

cal structures are smooth, meaning that between slices in a 3D

representation, voxels in neighboring slices should be close

together. In the occurrence of an irregular structure or contour,

where the rings defining the edge of each axial slice are too far

apart, the region growing over volume will not deliver a false pos-

itive as it is able to travel between slices along the overlapping

interior voxels.

Overall, the suspicious contours detected by the aforementioned

methods are present for several reasons. The main reason is due to

human error in the contour process. The contours used in analysis

were collected across several physicians and clinics to ensure that

the suspicious contours could not be attributed to a single physician.

There are no clear biases in contour data that would allow certain

contours to better fit certain integrity models.

4 | CONCLUSION

The models developed and tested in this study each have benefits.

The data driven models are effective in finding specific cases of con-

tours but, due to their lesser accuracy and more significant false neg-

ative percentages, are more suited for retrospective analytics. On

the other hand, the contiguousness models are both suited for real

time clinical use due to their zero false positive and minimal false

negative percentages. While the region growing algorithm does have

a significantly longer runtime when compared to the extents model,

it still is feasible for real time use and could be improved for a faster

runtime in future iterations.

More so, this study shows the need for contour integrity system

in clinical radiotherapy during the planning process. Potentially, such

a tool could be used in conjunction with CT and Atlas based auto-

segmentation methodologies. This will not only minimize the risk of

radiation overdose to critical anatomy in a clinical workflow but aid

physicists, clinicians, and data scientists in the creation of

F I G . 10 . Shows a plot describing the
relationship between the runtime of tested
contours and number of voxels in the
contour for the Region Growing algorithm.
This plot shows a direct relationship
between the two variables.

TAB L E 6 Accuracy of contiguousness by region growing over
volume.

Region of interest
Accuracy of

detected contours False negative rate

Bladder 100% 0%

Right femoral head 100% 0%

Left femoral head 100% 0%

Spinal cord 100% 0%

Rectum 100% 0%

Prostate 100% 80%

Brainstem 100% 0%
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post-treatment predictive models with the goal of further improving

patient care.
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