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Background: Neurodegenerative diseases (NDDs) are the leading cause of disability
worldwide while their metabolic pathogenesis is unclear. Genome-wide association
studies (GWASs) offer an unprecedented opportunity to untangle the relationship
between metabolites and NDDs.

Methods: By leveraging two-sample Mendelian randomization (MR) approaches and
relying on GWASs summary statistics, we here explore the causal association between
486 metabolites and five NDDs including Alzheimer’s Disease (AD), amyotrophic lateral
sclerosis (ALS), frontotemporal dementia (FTD), Parkinson’s disease (PD), and multiple
sclerosis (MS). We validated our MR results with extensive sensitive analyses including
MR-PRESSO and MR-Egger regression. We also performed linkage disequilibrium score
regression (LDSC) and colocalization analyses to distinguish causal metabolite-NDD
associations from genetic correlation and LD confounding of shared causal genetic
variants. Finally, a metabolic pathway analysis was further conducted to identify potential
metabolite pathways.

Results: We detected 164 metabolites which were suggestively associated with the
risk of NDDs. Particularly, 2-methoxyacetaminophen sulfate substantially affected ALS
(OR = 0.971, 95%CIs: 0.961 ∼ 0.982, FDR = 1.04E-4) and FTD (OR = 0.924, 95%CIs:
0.885 ∼ 0.964, FDR = 0.048), and X-11529 (OR = 1.604, 95%CIs: 1.250 ∼ 2.059,
FDR = 0.048) and X-13429 (OR = 2.284, 95%CIs: 1.457 ∼ 3.581, FDR = 0.048)
significantly impacted FTD. These associations were further confirmed by the weighted
median and maximum likelihood methods, with MR-PRESSO and the MR-Egger
regression removing the possibility of pleiotropy. We also observed that ALS or FTD can
alter the metabolite levels, including ALS and FTD on 2-methoxyacetaminophen sulfate.
The LDSC and colocalization analyses showed that none of the identified associations
could be driven by genetic correlation or confounding by LD with common causal loci.
Multiple metabolic pathways were found to be involved in NDDs, such as “urea cycle”
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(P = 0.036), “arginine biosynthesis” (P = 0.004) on AD and “phenylalanine, tyrosine and
tryptophan biosynthesis” (P = 0.046) on ALS.

Conclusion: our study reveals robust bidirectional causal associations between
servaral metabolites and neurodegenerative diseases, and provides a novel insight into
metabolic mechanism for pathogenesis and therapeutic strategies of these diseases.

Keywords: metabolites, neurodegenerative diseases, Mendelian randomization, metabolic pathway, amyotrophic
lateral sclerosis, frontotemporal dementia, causal association

BACKGROUND

Neurodegenerative diseases (NDDs; Blennow et al., 2010;
Parnetti, 2011), such as Alzheimer’s disease (AD), amyotrophic
lateral sclerosis (ALS), frontotemporal dementia (FTD),
Parkinson’s disease (PD), and multiple sclerosis (MS), are a
prominent group of progressive and fatal neurological diseases
currently without an effective cure, representing one of the
fastest and largest increasing categories of the global disease
burden especially because of aging populations (Roth et al., 2018;
Bakhta et al., 2019). Therefore, identifying potential biomarkers
for early diagnosis and unraveling risk factors for prevention
and treatment become critical in the clinic. Although great
advances have been made in discovering biomarkers and risk
factors for various NDDs over the past few years (Trojanowski,
2000; Barnham et al., 2004; Emerit et al., 2004; Rachakonda
et al., 2004; Amor et al., 2010; Blennow et al., 2010; Parnetti,
2011; Doty, 2017; Leng et al., 2019), the knowledge regarding
the physiological and pathological mechanism underlying these
diseases remains largely unclear.

As part of efforts to understand such mechanism, the
relationship between metabolites and NDDs has been attracted
active research attention (Wang et al., 2012; Jové et al., 2014; To
et al., 2019; Chatterjee et al., 2020; Shang et al., 2020). Metabolites
are the intermediate or end products that drive essential
biological functions of human bodies and reflect the physiological
and pathological disease phenotypes (Johnson et al., 2016; Shang
et al., 2020). There is also a growing literature indicating
that profiling metabolites in biofluids offers deep insights into
biomarkers of NDDs (Wang et al., 2012; Mendelsohn and
Larrick, 2013; Jové et al., 2014; González-Domínguez et al., 2015;
Kori et al., 2016; To et al., 2019; Chatterjee et al., 2020; Shang et al.,
2020). For example, it was demonstrated lipids and amino acids
were associated with cognitive decline and the progression of
dementia (Jiang et al., 2019); primary fatty amides in plasma were
associated with brain amyloid burden and memory (Kim et al.,
2019); blood metabolite changes in the periphery reflected the
asymptomatic, prodromal and symptomatic stages of memory
and AD (Kiddle et al., 2014; Mapstone et al., 2014). However, due

Abbreviations: NDD, neurodegenerative disease; GWAS, genome-wide
association study; MR, Mendelian randomization; AD, Alzheimer’ s Disease;
ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; PD, Parkinson’
s disease; MS, multiple sclerosis; MR-PRESSO, Mendelian Randomization
Pleiotropy RESidual Sum and Outlier; LDSC, linkage disequilibrium score
regression; LD, linkage disequilibrium; FDR, false discover rate; SNP, single
nucleotide polymorphisms; PVE, phenotypic variance explained; IVW,
inverse-variance-weighted.

to unknown confounders and reverse causality, these findings
obtained from observational studies remain problematical as to
whether metabolites are subsequent or consequent to NDDs, and
it is also unknown whether there is a definite association between
metabolites and NDDs, and whether such relationship is causal.

Recent advances in statistical genetic approaches of causal
inference, along with publicly available summary statistics
from large-scale genome-wide association studies (GWASs) of
metabolites and NDDs provide an unprecedented opportunity
to systematically evaluate their relationship through Mendelian
randomization (MR; Greenland, 2000; Thomas and Conti,
2004; Tobin et al., 2004; Wheatley and Gray, 2004; Evans
and Davey Smith, 2015; Zeng et al., 2019; Zeng and Zhou,
2019b; Yu et al., 2020a,b). In brief, MR is an instrumental-
variable based method, which performs the causal inference
with single nucleotide polymorphisms (SNPs) as instrumental
variables to assess the causal effect of an exposure of focus
(i.e., metabolite) on an outcome (i.e., ALS). The attractive
strength of MR is that it is often less susceptible to reverse
causation and confounders compared to other study designs
since the two alleles of an SNP are randomly segregated under
the Mendel’s law and such segregation can be considered to be
independent of many unmeasured or unknown confounders.
More importantly, MR can be implemented with only publicly
available summary statistics of the exposure and outcome rather
than individual-level genotypes and phenotypes, circumventing
privacy concerns stemming from data sharing (Pasaniuc and
Price, 2016). Therefore, over the past few years MR has been
widely applied to disentangle the causal relationship between
an exposure and an outcome in various application fields
(Greenland, 2000; Thomas and Conti, 2004; Tobin et al., 2004;
Wheatley and Gray, 2004; Evans and Davey Smith, 2015; Davies
et al., 2018; Zeng et al., 2019; Zeng and Zhou, 2019b; Yu et al.,
2020a,b).

Hereby making full use of the latest GWAS summary statistics
of 486 metabolites and five major NDDs, we conducted a two-
sample MR analysis to assess the causal effects of metabolites
on these diseases or vice versa. Extensive sensitivity analyses,
including linkage disequilibrium (LD) score regression (LDSC)
and colocalization analysis (Giambartolomei et al., 2014), were
also implemented to investigate whether the MR findings could
be driven by genetic similarity or confounding due to LD
with causal genetic loci. Overall, we found that there existed
a bidirectional causal association between three metabolites
and two types of NDDs (i.e., ALS and FTD). We further
demonstrated that the identified associations were robust against
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TABLE 1 | Genome-wide association study data sets of neurodegenerative diseases employed in our analysis.

Disease Sample size Case Control Number of SNPs Data source (PMID)

AD 455,258 71,880 383,378 13,144,351 Jansen (30617256)

ALS 80,610 20,806 59,804 8,563,029 AVS (29566793)

FTD 12,928 3,526 9,462 4,812,662 IFGC (24943344)

PD 1,474,097 56,306 1,417,791 15,317,976 IPDGC (31701892)

MS 68,379 32,367 36,012 7,930,010 IMSGC (30343897)

AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; PD, Parkinson’s disease; MS, multiple sclerosis; SNP, single nucleotide
polymorphism; AVS, the ALS Variant Server; IFGC, International FTD-Genomics consortium; IPDGC, International Parkinson’s Disease Genomics consortium; IMSGC,
International Multiple Sclerosis Genetics consortium.

used MR approaches and instrumental pleiotropy, and were
not likely driven by shared genetic components or confounded
by LD with common causal SNPs. We also identified multiple
significant metabolic pathways that might be involved in the
development of NDDs.

MATERIALS AND METHODS

Genome-Wide Association Study Data
Sources
We obtained summary statistics of metabolites from the
metabolomics GWAS (Shin et al., 2014), which was the most
comprehensive study performed to date on human blood
metabolites and was a meta-analysis of two cohorts including
TwinsUK and KORA F4. After quality control, a total of 486
metabolites and approximately 2.1 million SNPs up to 7,824
individuals of European ancestry were reserved for analysis (Shin
et al., 2014). These metabolites can be classified as being known
(309) or unknown (177). These unknown metabolites indicated
that their chemical identity had not yet been conclusively
established. All known metabolites can be further classified into
eight broad metabolic groups (i.e., amino acid, carbohydrate,
cofactors and vitamin, energy, lipid, nucleotide, peptide, and
xenobiotic metabolism) (Kanehisa et al., 2012). The association
of every genetic variant with individual metabolites was analyzed
using a linear additive regression with age and sex as covariates.

In addition, we yielded European-only summary statistics
of five NDDs (Table 1), including AD (Jansen et al., 2019),
ALS (Nicolas et al., 2018), FTD (Ferrari et al., 2014), PD
(Nalls et al., 2019), and MS (International Multiple Sclerosis
Genetics Consortium, 2019). The Manhattan and QQ plots of
P-values are shown in Supplementary Figures 1, 2. Although a
marked departure is observed in the QQ plots of some diseases
(i.e., λ = 1.13 for MS), the estimated λ1000 and the intercept
obtained by LDSC (Bulik-Sullivan et al., 2015) indicate that the
observed inflation is mainly due to polygenic signals rather than
confounding factors such as population stratification or cryptic
relatedness (Supplementary Table 1). Therefore, the genomic
control for test statistics is not necessary for of these NDDs.

Selection of Instrumental Variables
We generated a set of uncorrelated index SNPs serving as
instrumental variables for each of metabolites using the clumping

procedure of PLINK (version v1.90b3.38) (Purcell et al., 2007).
Specifically, we set both the primary significance level and the
secondary significance level for index SNPs to be 1.00E-5, the
LD, and the physical distance to be 0.10 and 500kb, respectively.
Genotypes of 503 European individuals from the 1000 Genomes
Project were applied as the reference panel during clumping
(The 1000 Genomes Project Consortium, 2015). The relaxed
statistical threshold of 1.00E-5 was employed here because of
the relatively small sample size of the metabolite GWAS. In
practical MR studies, a smaller significance threshold (e.g., 1.00E-
5) was generally used to explain a larger variation for power
enhancement when few SNPs were available for the exposure
at the genome-wide significance level of 5.00E-8 (Sanna et al.,
2019). In addition, to avoid horizontal pleiotropy in instrumental
variables, we further removed index SNPs that were located
within 1 Mb of disease-associated loci and that may be potentially
related to a given neurodegenerative disease if selected genetic
variants had a Bonferroni-adjusted P-value less than 0.05 for
that disease. This was a conservative manner protecting against
the pleiotropic impact of instruments to ensure valid causal
inference in MR analysis (Ahmad et al., 2015; Larsson et al.,
2017; Zeng et al., 2019; Zeng and Zhou, 2019a; Yu et al.,
2020a).

Causal Effect Estimation With
Inverse-Variance-Weighted Mendelian
Randomization Methods
For each index SNP that was utilized as instrumental variable
in turn, we first examined whether it was strongly associated
with the metabolite. To do so, we calculated the proportion
of phenotypic variance of metabolite explained (PVE) by
instruments using summary statistics using the approach
proposed in Shim et al. (2015) and computed the F statistic
to quantitatively measure the strength of instruments (Cragg
and Donald, 1993; Burgess et al., 2017). The Cochran’s Q test
was applied to examine the heterogeneity in effect sizes of
instruments to determine whether fixed or random-effects IVW
method would be utilized (Thompson and Sharp, 1999). We then
undertook the inverse-variance-weighted (IVW) MR analysis for
one metabolite at a time to estimate its causal effect on each
of the five diseases (Burgess et al., 2017; Hartwig et al., 2017;
Yavorska and Burgess, 2017). We declared an association to be
statistically significant if the false discovery rate (FDR) <0.05
(Benjamini and Hochberg, 1995).
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Sensitivity Analyses for Identified Causal
Associations
Based on the IVW MR analysis, we discovered several causal
associations between metabolites and NDDs. However, these
significant associations may reflect four explanations including:
(1) causality from metabolites to NDDs, which indicates that
the metabolites are risk factors related to the diseases; (2)
reverse causality from NDDs to metabolites, which implies
that the metabolites are biomarkers of the diseases; (3)

undetected horizontal pleiotropy, which suggests the diseases
and the metabolites may share common genetic foundation;
and (4) confounding by LD among leading causal SNPs shared
by metabolites and NDDs, which means that the observed
associations are spurious (Supplementary Figure 3). Therefore,
it is of importance to untangle the causal association from
other explanations. To this aim, for each identified association
we further implemented a series of sensitivity analyses: (i) the
weighted median-based method (Bowden et al., 2016b) and the
maximum likelihood method (Burgess et al., 2013) to evaluate

FIGURE 1 | Identified causal associations between known metabolites and the risk of five neurodegenerative diseases using the IVW MR analysis. IVW,
inverse-variance weighted; AD: Alzheimer’s disease; ALS: amyotrophic lateral sclerosis; FTD: frontotemporal dementia; PD: Parkinson’s disease; MS: multiple
sclerosis.
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the robustness of the discovered associations; (ii) the MR-Egger
regression (Bowden et al., 2016a; Burgess and Thompson, 2017)
to detect directional pleiotropic effects of instruments; (iii) the
MR-PRESSO test to assess horizontal pleiotropy and examine
potential instrumental outliers (Verbanck et al., 2018); (iv) the
reverse causality analysis with one of NDDs as the exposure
and the identified metabolite as the outcome; the instrumental
variables of these NDDs were selected via the similar PLINK
clumping procedure described above but with a genome-
wide significance level of 5E-8 (Supplementary Material); (v)
the multivariable MR analysis to examine the independent
relationship between one associated metabolite and NDDs
while adjusting for the effects of other associated metabolites
(Burgess et al., 2015); (vi) LDSC to assess the overall genetic
correlation (rg) using all available SNPs; (vii) the colocalization
analysis to investigate whether the identified association between
metabolites and NDDs was attributable to shared causal genetic
variants (Giambartolomei et al., 2014; Supplementary Material).

Metabolic Pathway Analysis
We finally conducted a metabolic pathway analysis for identified
metabolites via MetaboAnalyst (Chong et al., 2018) and exploited
the functional enrichment analysis module to search potential
metabolite pathways for metabolites that might be involved
in biological processes of the five NDDs analyzed here. Our
metabolic pathway analysis included two datasets: 99 metabolite
sets from The Small Molecule Pathway Database (SMPDB;
Frolkis et al., 2010) and 84 metabolite sets from the KEGG
database (Kanehisa et al., 2012). SMPDB is designed to support
pathway discovery in clinical metabolomics, transcriptomics,
proteomics, and systems biology, and further provides diagrams
of human metabolic and metabolite signaling pathways.

RESULTS

Causal Effects of the 486 Blood
Metabolites on Neurodegenerative
Diseases
The number of instrumental variables of metabolite varied from
4 to 585, with a median number of 29. These instrumental
variables on average explained approximately 38.4% of
phenotypic variance across all metabolites, and the minimum F
statistic among all instruments was 20.8, indicating that weak
instrumental bias is unlikely to occur and the used instruments
for these metabolites were sufficiently informative (F statistic
>10) for our MR analysis (Supplementary Table 2). Based
on these instrumental variables we implemented the IVW MR
analysis for each pair of metabolites and NDDs (Supplementary
Table 2). We identified a total of 164 suggestive associations
(136 unique metabolites) (P < 0.05), including 99 associations
for 85 known metabolites and 65 associations for 51 unknown
metabolites (Supplementary Table 3). Among these, 18, 23,
20, 20, and 18 associations of known metabolites (Figure 1)
and 15, 12, 14, 13, and 11 associations of unknown metabolites
(Supplementary Figure 4) are detected to be associated

with the risk of AD, ALS, FTD, PD, and MS, respectively.
However, after correcting multiple comparisons, we only
obtain four significant associations (FDR < 0.05; involving
three metabolites), including 2-methoxyacetaminophen sulfate
with ALS [odd ratio (OR) = 0.971, 95% confidence intervals
[CIs]: 0.961 ∼ 0.982, FDR = 1.04E-4] and FTD (OR = 0.924,
95%CIs: 0.885 ∼ 0.964, FDR = 0.048); X-11529 (OR = 1.604,
95%CIs: 1.250 ∼ 2.059, FDR = 0.048) and X-13429 (OR = 2.284,
95%CIs: 1.457 ∼ 3.581, FDR = 0.048) with FTD. Furthermore,
we used a stricter r2 threshold of <0.001 in the clumping
procedure to avoid the inflation of test statistics. As a result,
it is shown that the four associations are still significant, with
consistent effects in direction magnitude (Supplementary
Table 4). 2-methoxyacetaminophen sulfate, also known as 4-
(acetylamino)-3-methoxyphenyl hydrogen sulfate, is a member
of the acetamide class and has a role as a drug metabolite
(Mrochek et al., 1974; Bozzoni et al., 2016). Acetamides have
long been recognized to be related to levels of glutathione
and N-acetylcysteine, which are known biomarkers for ALS
(Przedborski et al., 1996) and other NDDs such as AD
(Saharan and Mandal, 2014).

It is worth noting that 2-methoxyacetaminophen sulfate also
exhibits a suggestive association with AD (OR = 0.998, 95%CIs:
0.996 ∼ 0.999, P = 0.006), implying shared metabolic mechanisms
might exist among these NDDs. Moreover, 12 metabolites are
suggestively related to at least two NDDs (P< 0.05) (Table 2). For
example, besides 2-methoxyacetaminophen sulfate, 3-methyl-2-
oxovalerate is also identified to be associated with both AD and
FTD. In addition, we find the direction of causal effect sizes
of some metabolites is inconsistent across NDDs, including 3-
methyl-2-oxovalerate on AD (OR = 1.075, 95%CIs: 1.007 ∼

1.148, P = 0.031) and FTD (OR = 0.148, 95%CIs: 0.033 ∼ 0.662,
P = 0.012), hexadecanedioate on AD (OR = 0.971, 95%CIs: 0.945
∼ 0.999, P = 0.039) and FTD (OR = 1.865, 95%CIs: 1.034 ∼ 3.362,
P = 0.038), stearate (18:0) on AD (OR = 0.932, 95%CIs: 0.872 ∼

0.997, P = 0.040) and FTD (OR = 4.780, 95%CIs: 1.193 ∼ 19.150,
P = 0.027), ADpSGEGDFXAEGGGVR on ALS (OR = 1.363,
95%CIs: 1.048 ∼ 1.773, P = 0.021) and MS (OR = 0.580, 95%CIs:
0.407 ∼ 0.828, P = 0.003), suggesting potentially different
functional roles of these metabolites implicated in NDDs. In brief,
these findings provide important knowledge for understanding
the metabolic mechanism underlying the relationship between
metabolites and NDDs.

Results of Sensitivity Analyses
To evaluate the influence of horizontal pleiotropy on our MR
estimates, we conducted sensitivity and pleiotropy analyses to
examine the robustness of the four associations discovered
above. Here we only show some important findings, with
more complete and detailed results demonstrated in the
Supplementary Material. First, it is displayed that these causal
associations are robust against other MR methods except the
MR-Egger regression (Figure 2 and Supplementary Table 5).
This might be that the MR-Egger method is substantially less
efficient than other methods since it was proposed based on
weaker modeling assumptions in causal inference. Second, the
MR-PRESSO analysis offers little evidence for the presence
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TABLE 2 | Overlapped known metabolites existing causal association with at least two neurodegenerative diseases.

Metabolites AD ALS FTD MS PD

OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P

M15676 1.08 (1.01 ∼ 1.15) 0.031 0.15 (0.03 ∼ 0.66) 0.012

M20675 0.93 (0.89 ∼ 0.97) 3.2E-4 0.71 (0.53 ∼ 0.94) 0.017

M01564 0.63 (0.41 ∼ 0.96) 0.030 0.50 (0.25 ∼ 0.99) 0.047

M31591 0.65 (0.46 ∼ 0.93) 0.017 0.86 (0.75 ∼ 0.98) 0.022

M35678 0.97 (0.95 ∼ 1.00) 0.039 1.87 (1.03 ∼ 3.36) 0.038

M01358 0.93 (0.87 ∼ 1.00) 0.040 4.78 (1.19 ∼ 19.2) 0.027 0.48 (0.24 ∼ 0.96) 0.037

M01123 0.84 (0.71 ∼ 1.00) 0.048 0.84 (0.73 ∼ 0.95) 0.008

M33801 1.36 (1.05 ∼ 1.77) 0.021 0.58 (0.41 ∼ 0.83) 0.003

M34420 1.14 (1.00 ∼ 1.29) 0.043 0.84 (0.75 ∼ 0.95) 0.004

M33422 1.10 (1.03 ∼ 1.19) 0.008 1.96 (1.21 ∼ 3.17) 0.006

M33178 0.998 (0.996 ∼ 0.999) 0.006 0.97 (0.96 ∼ 0.98) 2.3E-7 0.92 (0.89 ∼ 0.96) 2.6E-4

M20699 1.34 (1.01 ∼ 1.79) 0.043 3.14 (1.04 ∼ 9.50) 0.043

M15676, 3-methyl-2-oxovalerate; M20675, 1,5-anhydroglucitol (1,5-AG); M01564, citrate; M31591, androsterone sulfate; M35678, hexadecanedioate; M01358,
stearate (18:0); M01123, inosine; M33801, ADpSGEGDFXAEGGGVR; M34420, bradykinin, des-arg(9); M33422, gamma-glutamylphenylalanine; M33178, 2-
methoxyacetaminophen sulfate; M20699, erythritol, AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; PD, Parkinson’s disease;
MS, multiple sclerosis.

FIGURE 2 | Results of sensitivity analysis for the four significant causal associations identified between human blood metabolites and two types of
neurodegenerative diseases (e.g., ALS and FTD). ALS: amyotrophic lateral sclerosis; FTD: frontotemporal dementia.

of horizontal pleiotropy (PMR−PRESSO global > 0.05) and
instrumental outliers (P > 0.05) (Supplementary Figures 5, 6).
Third, the intercept of MR-Egger is not significantly deviated
from zero, also indicating the absence of apparent horizontal
pleiotropy (Supplementary Table 5). For the three associated
metabolites identified above, to study whether the causal effect
of one metabolite on FTD can be affected by the other two, we
performed the multivariable MR analysis and find that, except X-
11529, the direction and magnitude of the causal effects of other

two metabolites (i.e., 2-methoxyacetaminophen sulfate and X-
13429) are almost consistent with the unadjusted ones obtained
via the IVW method (Supplementary Table 6), partly suggesting
the independent role of these two metabolites in the risk of FTD.

We report another nine metabolites which have suggestive
associations with the five NDDs (P < 0.05) in Table 3. For
these associations, we also do not discover any evidence
supporting horizontal pleiotropy, such as glutamine on AD
(PMR−EggerIntercept = 0.065, and PMR−PRESSOglobal = 0.444),
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TABLE 3 | Suggestive association metabolites passing all MR analyses at the nomial significance level of 0.05.

Metabolites NDD IVW MR-Egger Weight median Likelihood

OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P

M00053 AD 0.81 (0.67 ∼ 0.97) 0.022 0.63 (0.45 ∼ 0.87) 0.010 0.72 (0.56 ∼ 0.93) 0.011 0.81 (0.67 ∼ 0.97) 0.021

M01573 AD 0.96 (0.92 ∼ 0.99) 0.006 0.91 (0.84 ∼ 0.99) 0.034 0.95 (0.91 ∼ 0.99) 0.024 0.96 (0.92 ∼ 0.99) 0.008

M00584 PD 2.69 (1.54 ∼ 4.70) 0.001 6.42 (1.19 ∼ 34.75) 0.032 3.62 (1.57 ∼ 8.39) 0.003 2.81 (1.46 ∼ 5.42) 0.002

M01564 PD 0.50 (0.25 ∼ 0.99) 0.047 0.10 (0.01 ∼ 0.85) 0.035 0.26 (0.09 ∼ 0.71) 0.009 0.49 (0.24 ∼ 0.99) 0.046

M34407 MS 1.71 (1.20 ∼ 2.45) 0.003 3.29 (1.02 ∼ 10.69) 0.047 2.53 (1.45 ∼ 4.42) 0.001 1.76 (1.11 ∼ 2.78) 0.016

M33782 ALS 1.17 (1.04 ∼ 1.31) 0.009 1.34 (1.05 ∼ 1.71) 0.023 1.21 (1.02 ∼ 1.44) 0.026 1.17 (1.02 ∼ 1.35) 0.027

M32855 FTD 2.22 (1.30 ∼ 3.78) 0.003 3.68 (1.35 ∼ 10.01) 0.014 2.72 (1.33 ∼ 5.57) 0.006 2.30 (1.34 ∼ 3.94) 0.002

M33163 FTD 9.54 (2.59 ∼ 35.09) 0.001 38.43 (1.71 ∼ 861.74) 0.024 11.68 (1.84 ∼ 74.03) 0.009 10.59 (2.76 ∼ 40.63) 0.001

M33192 PD 1.45 (1.16 ∼ 1.80) 0.001 1.74 (1.00 ∼ 3.02) 0.050 1.55 (1.16 ∼ 2.08) 0.003 1.46 (1.16 ∼ 1.83) 0.001

M00053, glutamine; M01573, guanosine; M00584, mannose; M01564, citrate; M34407, isovalerylcarnitine; M33782, X-10346; M32855, X-11538; M33163, X-11818;
M33192, X-11847, AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; PD, Parkinson’s disease; MS, multiple sclerosis.

guanosine on AD (PMR−Eggerintercept = 0.244,
and PMR−PRESSOglobal = 0.739), mannose on PD
(PMR−Eggerintercept = 0.260, and PMR−PRESSOglobal = 0.162), citrate
on PD (PMR−Eggerintercept = 0.115, and PMR−PRESSOglobal = 0.408)
and isovalerylcarnitine on MS (PMR−Eggerintercept = 0.222, and
PMR−PRESSOglobal = 0.410).

Bidirectional Mendelian Randomization
Examining Reverse Association From
Amyotrophic Lateral
Sclerosis/Frontotemporal Dementia to
Metabolites
For the four significant associations between metabolites and
ALS/FTD identified above, we further carried out a MR analysis
using instrumental variables of ALS/FTD to estimate their reverse
causal effects on metabolites (Supplementary Material). We
observe that ALS/FTD also can alter the level of metabolites
at the nominal significance level of 0.05 (Supplementary
Table 7), such as ALS on 2-methoxyacetaminophen sulfate
(OR = 0.838, 95%CIs: 0.722 ∼ 0.972, P = 0.020), FTD on
2-methoxyacetaminophen sulfate (OR = 1.050, 95%CIs: 1.007
∼ 1.095, P = 0.021), and FTD on X-11529 (OR = 0.976,
95%CIs: 0.961 ∼ 0.991, P = 0.002), implying that the emergence
of possible bidirectional causal relationships between these
metabolites and ALS/FTD.

In this reverse MR analysis, similar results are also generated
by other MR tests (PLikelihood = 0.022 and PMR−PRESSO = 0.038 for
ALS on 2-methoxyacetaminophen sulfate; PWeight−median = 0.030,
PLikelihood = 0.021 and PMR−PRESSO = 3.44E-05 for FTD on
2-methoxyacetaminophen sulfate; PWeight−median = 0.009,
PLikelihood = 0.002 and PMR−PRESSO = 0.001 for FTD on X-11529).
Moreover, there is no evidence of horizontal pleiotropy for
any association (PMR−Egger intercept = 0.975 and PMR−PRESSO

global = 0.558 for ALS on 2-methoxyacetaminophen sulfate;
PMR−Egger intercept = 0.416 and PMR−PRESSO global = 0.999
for FTD on 2-methoxyacetaminophen sulfate; PMR−Egger

intercept = 0.347 and PMR−PRESSO global = 0.918 for FTD
on X-11529) (Supplementary Table 7 and Supplementary
Figures 7, 8).

Causal Association Among Identified
Metabolites
In order to acquire a much deeper insight into the association
between the three metabolites and ALS/FTD, we performed
an additional MR analysis to investigate the presence of
causal relationship among these metabolites. Of interest, we
ultimately observe several interaction associations between them
(Supplementary Table 8), such as 2-methoxyacetaminophen
sulfate on X-11529 (β = 0.012, 95%CIs: 0.002 ∼ 0.021, P = 0.012),
X-11529 on X-13429 (β = 0.500, 95%CIs: 0.463 ∼ 0.537,
P = 1.44E-153), suggesting that metabolites may interact to affect
NDDs (Figure 3).

Genetic Correlation and Colocalization
Analyses
To examine the alternative explanation of common genetic
component, we undertook the LDSC and colocalization analyses
to investigate whether the genetic associations underlying
metabolites and ALS/FTD were likely due to shared causal
genetic variants (Supplementary Figure 3). In terms of
LDSC (Supplementary Table 9), we do not observe the
existence of substantial genetic correlations (rg = −0.107 and
P = 0.370 between 2-methoxyacetaminophen sulfate and ALS;
rg = 0.116 and P = 0.589 between 2-methoxyacetaminophen
sulfate and FTD; rg = −0.151 and P = 0.771 between X-
11529 and FTD; and rg = −0.224 and P = 0.675 between
X-13429 and FTD). However, we cannot fully rule out the
possibility of low statistical power due to small sample sizes
of metabolites. Furthermore, upon performing colocalization
analysis (Supplementary Table 10), we do not find any
evidence of colocalization for the four associations (the posterior
probability that both metabolite and NDDs are associated with
common causal genetic variants < 80%), suggesting that none of
these MR findings could be driven by genetic confounding by LD
with causal SNPs.

Metabolic Pathway Analysis
We were also interested in elucidating plausible metabolic
pathways for the five NDDs. Therefore, we further carried out
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FIGURE 3 | Association pathways between three metabolites and ALS/FTD with MR analysis. M33178: 2-methoxyacetaminophen sulfate; M32846: X-11529;
M35187: X-13429; ALS: amyotrophic lateral sclerosis; FTD: frontotemporal dementia. The solid arrow stands for the presence of the association, while the dot line
represents the absence of the association.

the metabolic pathway analysis using all metabolites discovered
through the IVW approach (P < 0.05), and identified seven
significant metabolic pathways for these diseases except PD
(Table 4). Among them, three pathways are separately related to
ALS, FTD and MS, and four are associated with AD, including
“urea cycle” (P = 0.036), “arginine biosynthesis” (P = 0.004),
“purine metabolism” (P = 0.009), and “D-glutamine and
D-glutamate metabolism” (P = 0.042). There exists a common
metabolic pathway (i.e., phenylalanine, tyrosine and tryptophan
biosynthesis) shared by ALS (P = 0.046) and MS (P = 0.023).

DISCUSSION

Leveraging genetic variants as proxies, in the present work we
assessed the causal relationship between many metabolites and
five NDDs using various statistical methods (Greenland, 2000;
Thomas and Conti, 2004; Tobin et al., 2004; Wheatley and
Gray, 2004; Evans and Davey Smith, 2015; Davies et al., 2018;
Zeng et al., 2019; Zeng and Zhou, 2019b; Yu et al., 2020a,b).
Totally, we discovered 164 suggestive associations, among which
four were statistically significant for three metabolites, including
2-methoxyacetaminophen sulfate (known metabolite) affecting
ALS and FTD, as well as X-11529 and X-13429 (unknown
metabolites) affecting FTD. Genetic studies have revealed that
ALS and FTD share a high extent of common genetic origin

(Wood, 2011). If 2-methoxyacetaminophen sulfate is considered
a promising metabolite that has an effect on both of the
two diseases, then, 2-methoxyacetaminophen sulfate can be
treated as a therapeutic biomarker of diseases. Due to limited
understanding of the role of this metabolite in the specific
pathophysiological mechanism of ALS and FTD, this would
be a suggestive finding. We further demonstrated that there
also existed a reverse association between these metabolites and
ALS/FTD, implying a bidirectional influence on each other.
Extensive sensitivity analyses showed that these associations
were robust against used MR approaches and instrumental
pleiotropy, and were not likely driven by shared genetic
components or confounded by LD with common causal SNPs.
In addition, we found these identified metabolites interacted
to influence each other, implying that there might exist a
complicated network among metabolites which impact NDDs
in both direct and indirect manners. It needs to highlight that
a complete investigation of such role of metabolites in NDDs
is beyond the scope of this work as it requires additional
methodological development, which we leave for future study.
Furthermore, seven significant metabolic pathways involved in
the five NDDs were also detected. Our metabolic pathway
analysis showed that “phenylalanine, tyrosine and tryptophan
biosynthesis” was associated with both ALS and MS. It should
be noted that the onset age of MS is mainly 20–40 years
old (Klineova and Lublin, 2018), which is relatively younger
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TABLE 4 | Significant metabolic pathways involved in the five neurodegenerative diseases.

Traits Metabolites pathway Involved metabolites P-value Database

AD Urea cycle Urea, L-Glutamine 0.0364 SMPDB

AD Arginine biosynthesis Urea, L-Glutamine 0.0040 KEGG

AD Purine metabolism Guanosine, L-Glutamine 0.0093 KEGG

AD D-Glutamine and D-glutamate metabolism L-Glutamine 0.0421 KEGG

ALS Phenylalanine, tyrosine and tryptophan biosynthesis L-Phenylalanine 0.0459 KEGG

FTD Carnitine synthesis L-Lysine, Oxoglutaric acid 0.0441 SMPDB

MS Phenylalanine, tyrosine and tryptophan biosynthesis L-Tyrosine 0.0232 KEGG

AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; MS, multiple sclerosis; KEGG, Kyoto encyclopedia of genes and genomes;
SMPDB, small molecule pathway database.

than the average onset age of ALS. Whether phenylalanine
has a mediation effect between ALS and MS needs to be
further studied. In prior literature, tryptophan and competing
neutral amino acid levels were found to be diminished in
the plasma of patients with neurodegenerative diseases, the
greatest decrease being of tryptophan (Monaco et al., 1979;
Zhang et al., 2020). Evidence was also shown that higher serum
phenylalanine concentrations related to immune activation are
detectable in a subgroup of AD patients (Wissmann et al.,
2013). The paired conversion of phenylalanine may affect not
only the production of tyrosine but also the biosynthesis of the
neurotransmitters dopamine, norepinephrine and epinephrine
(Fernstrom and Fernstrom, 2007).

In conclusion, our findings provide an insightful perspective
into the understanding of the relationship between metabolites
and NDDs, and have important implications for pathology, drug
development and clinical treatment. For example, given few
effective drugs are available for these diseases (Al-Chalabi and
Hardiman, 2013), these identified metabolites may be prioritized
as candidate therapeutic targets for NDDs (Cummings et al.,
2014; Lu et al., 2016), especially 2-methoxyacetaminophen
sulfate for ALS or FTD. On the other hand, in terms of the
findings in the reverse causality analysis, metabolites such as
2-methoxyacetaminophen sulfate can also serve as predictive
biomarkers for the development of NDDs. Our study also found
that some NDDs might share common metabolic mechanism,
suggesting that multiple similar etiological pathways may give
rise to different clinical manifestations (e.g., hexadecanedioate on
AD and FTD) (Couratier et al., 2017; Ferrari et al., 2017; Broce
et al., 2018; Karch et al., 2018; Abramzon et al., 2020). Overall, our
study presents robust associations between multiple metabolites
and NDDs, indicating the avenue for follow-up studies to
improve the diagnostics, prevention and treatment of NDDs.

There are several strengths to our study. First, because it
depends only on publicly available summary statistics rather
than individual-level datasets, in the current work we can
undertake a comprehensive MR causal inference evaluating the
relationship between a large number of metabolites and NDDs in
an unprecedented manner. Second, methodologically, in contrast
to previous observational studies, our MR analysis implemented
instrumental variable-based causal inference to assess the
association between metabolites and NDDs, while minimizing
the possibility of bias due to unknown confounding. Third,

to provide robust MR assessment for identified associations, a
wide range of sensitivity analyses were performed to distinguish
causal effects from horizontal pleiotropy, reverse causation,
and genetic confounding. However, this study also has some
limitations. First, MR studies are generally recommended to be
implemented using GWASs with large sample size; however, in
our work the metabolite GWAS had a relatively small sample
size, which may undermine the validity of our MR findings.
Second, our study identified bidirectional causal relationships
between metabolites (such as 2-methoxyacetaminophen sulfate)
and NDDs (such as ALS); however, the small effect size would
limit its potential utility as important biomarkers or therapeutic
targets in practice. Third, we used a multivariate MR analysis
to investigate whether metabolites interacted with each other to
influence the causal effect of disease, but this method may be
not unsuitable for unknown pleiotropy (Burgess et al., 2015).
Fourth, metabolites levels are known to differ among cell and
tissue types (Holmes et al., 2008; Wang et al., 2012; Shin et al.,
2014); however, in this study we can only evaluate the influence
of metabolites measured in blood on NDDs but unable to assess
the relevance of metabolites levels in more biologically relevant
tissues such as brain.

CONCLUSION

In summary, our study reveals robust bidirectional causal
associations between servaral metabolites and neurodegenerative
diseases, and provides a novel insight into metabolic mechanism
for pathogenesis and therapeutic strategies of these diseases.
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