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Abstract: Resin/reinforcement wetting is a key parameter in the manufacturing of carbon nanotube
(CNT)-based composite materials. Determining the contact angle between combinations of liquid
resin and reinforcement surfaces is a common method for quantifying wettability. As experimental
measurement of contact angle can be difficult when screening multiple high-performance resins
with CNT materials such as CNT bundles or yarns, computational approaches are necessary to
facilitate CNT composite material design. A molecular dynamics simulation method is developed
to predict the contact angle of high-performance polymer resins on CNT surfaces dominated by
aromatic carbon, aliphatic carbon, or a mixture thereof (amorphous carbon). Several resin systems
are simulated and compared. The results indicate that the monomer chain length, chemical groups
on the monomer, and simulation temperature have a significant impact on the predicted contact
angle values on the CNT surface. Difunctional epoxy and cyanate ester resins show the overall
highest levels of wettability, regardless of the aromatic/aliphatic nature of the CNT material surface.
Tetrafunctional epoxy demonstrates excellent wettability on aliphatic-dominated surfaces at elevated
temperatures. Bismaleimide and benzoxazine resins show intermediate levels of wetting, while
typical molecular weights of polyether ether ketone demonstrate poor wetting on the CNT surfaces.

Keywords: surface tension; computational simulation; resin selection; processability

1. Introduction

Polymer matrix composite (PMC) materials are widely used as structural materials
in aerospace and aeronautical vehicles. A large number of high-performance polymers
have been developed for use as the matrix in PMCs with various carbon reinforcements
such as carbon fiber, carbon nanotubes (CNTs), and graphene nano-sheets. Recently, CNTs
have shown exceptional mechanical properties and are being considered as a reinforcement
material for the next generation of ultralight high-strength composite materials [1,2]. Many
decades of experimental-based research have addressed the compatibility of various poly-
mer resins with the surface of carbon-based reinforcements [3,4]. Additionally, previous
Molecular Dynamics (MD)-based computational studies have addressed the interaction of
various polymer materials with carbon-based reinforcement materials [4–10]. However,
a comprehensive understanding of such compatibility is lacking for the next generation
of high-performance carbon-reinforced composite materials, which can simultaneously
include reinforcement with aromatic and aliphatic carbon phases [11–13].

Wettability of resin onto the reinforcement surface is a key parameter in the manufac-
turing of PMCs. Determining the contact angle between specific combinations of liquid
resin droplets and reinforcement surfaces is a common method to quantify wettability.
However, the experimental measurement of contact angle can be difficult or cost prohibitive
when screening multiple high-performance resins with CNT-based materials such as CNT
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bundles or yarns. Furthermore, the interpretation of experimental wetting results for some
CNT materials is complicated by the presence of regions of amorphous carbon (mixture
of aromatic and aliphatic carbon) on the aromatic CNT surface. Efficient computational
prediction of contact angle could significantly facilitate the resin selection process for the
design and development of new CNT-based PMCs.

Molecular Dynamics (MD) simulation has been previously used to study the wet-
ting properties of water and polymer resin systems on surfaces such as graphite and
metals [14–22]. These studies offer a good starting point for understanding how MD can
be used to efficiently determine the contact angle and provide physical insight into the
wetting process. However, a comprehensive study of wetting of different high-performance
resins on CNT surfaces using MD simulation has not been performed. Therefore, a com-
prehensive MD-based study is needed to efficiently determine the relative wettability of
different high-performance resins on CNT surfaces with the potential presence of regions
of amorphous carbon.

The objective of this study is to use MD simulation to predict the relative levels of
wettability of various high-performance resins onto CNT surfaces. All-atom simulations
are used to determine the contact angle with aromatic and aliphatic carbon surfaces for
a range of temperatures to provide guidelines for resin selection and process design.
In the following sections, the details of the materials and the modeling procedures are
outlined. The results of the simulations are subsequently presented for a comprehensive
understanding of resin wettability with CNT surfaces. The results indicate that resin and
temperature selection can have a significant impact on resin wettability.

2. Materials and Methods
2.1. Materials

The wetting behavior of eight polymer resin systems was simulated in this study:

• Bismaleimide (BMI): This is a two-part system consisting of 4,4′-bismaleimidodiphen-
ylmethane (BMPM) and O, O’-diallyl bisphenol A (DABPA), shown in Figure 1. The
stochiometric ratio of the two monomers is 1:1, after Huntsman Matrimid 5292.

• Benzoxazine: The Bisphenol-A Benzoxazine monomer is shown in Figure 2. This
system is modeled after Huntsman Araldite MT 35610.

• Difunctional epoxy: This is a two-part system consisting of diglycidyl ether bisphenol
F (DGEBF) and diethyltoluenediamine (DETDA) monomers, as shown in Figure 3.
The stochiometric molar ratio of resin to hardener is 2:1. This system is modeled after
EPON 862/EPIKURE W.

• Tetrafunctional epoxy: This is a two-part system consisting of tetraglycidyl methylene
dianiline (TGMDA) and diaminodiphenyl sulfone (DDS) monomers, as shown in
Figure 4. The stochiometric ratio of resin to hardener is 1:1. This system is modeled
after Solvay CYCOM 977-3.

• Fluorinated cyanate ester: The hexafluorobisphenol A cyanate ester monomer is
shown in Figure 5. This system is modeled after AroCy F-10.

• Non-Fluorinated cyanate ester: The phenol novolac cyanate ester monomer is shown
in Figure 6. This system is modeled after Primaset PT 30.

• PEEK monomer: The polyether ether ketone monomer is shown in Figure 7.
• PEEK dimer: The polyether ether ketone dimer is shown in Figure 8.
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The selection of these monomers involves several contrasts that provide insight into
the wetting behavior of polymer resins with CNT surfaces. The list of monomers includes
a thermoplastic (PEEK) and six thermosets. For the PEEK thermoplastic, the monomer and
dimer versions were modeled. The purpose of this comparison is to understand the role of
molecular weight in wetting. The two cyanate ester systems were chosen to determine the
role of fluorine on the wetting behavior. The two epoxy systems were chosen to establish
the role of the epoxide group density on the wetting. The inclusion of one-part thermosets
(cyanate esters, benzoxazine) and two-part thermosets (epoxies and BMI) provide insight
into the effect of monomer mixtures on the wetting behavior. Finally, it is important to note
that all of these resins represent aerospace-grade systems that can be used for a wide range
of CNT-based composite applications.

Two carbon-based surfaces were simulated in this study:

• Aromatic surface with pure sp2 carbon bonding;
• Aliphatic carbon surface with sp3 carbon bonding near the surface and hydrogen

terminations at the surface.

A wide range of amorphous carbon structures exist, which contain various levels
of three principal carbon forms: sp2 carbon (graphite), sp3 carbon (diamond), and hy-
drocarbons [23]. As it is not practical to conduct MD simulations on a large number of
different amorphous carbon surfaces, the two simulated carbon surfaces were chosen
to provide bounds to understand the wetting response of the resins for both aromatic
surfaces and amorphous carbon surfaces. That is, the relative wetting responses of the
resins on the aromatic and aliphatic carbon surfaces provides insight into the expected
relative wetting responses of the resins on amorphous carbon. It is important to note that
the diamond structure of carbon is a bulk structure, and the surface carbon atoms must be
bonded to terminal groups to maintain their valency. Hydrogen atoms have been chosen
as the terminal groups in this study because hydrocarbons are another principal form of
amorphous carbon.

2.2. Molecular Modeling

The Large scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) software
package was used to perform the MD simulations in this study. The Interface Force Field
(IFF) developed by Heinz et al. [24] was utilized. IFF has been parameterized by a surface
model database to cover critical surface chemistry, which makes it well-suited for the
purpose described herein. Heinz et al. [25] showed that IFF is capable of assigning partial
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charges on molecules accurately, which is particularly important when simulating material
interfaces. IFF has been proven to predict the interfacial properties between polymer matrix
and carbon-based reinforcement materials efficiently [8,10].

2.2.1. Carbon Surfaces

Previous studies have shown that pseudo-2D simulations for wetting are efficient and
capable of generating accurate results [14,15,21]. Surblys et al. [14] predicted the wetting
properties of a water–alcohol mixture on a platinum solid surface and demonstrated that a
pseudo-2D simulation is optimal to identify the contact angle values. In this study, a similar
approach was used to perform contact angle simulations for monomers on flat carbon
surfaces. For the aromatic surface, two layers of graphene were modeled in a simulation
box of size of ~400 Å× 21 Å× 210 Å (Figure 9). The two layers of graphene were modelled
to represent large radii double-walled CNT. The simulation box was periodic in the x- and
y-directions. The positions of the carbon atoms on the graphene planes were obtained by
generating an array of atoms in a graphene lattice structure in LAMMPS. A lattice constant
of 2.46 Å was used with the primitive lattice vectors given by Gray et al. [26]. Virtual pi
electrons were modeled using dummy atoms to capture the effect of the pi electrons on
aromatic carbon [8,27]. A detailed discussion about these virtual pi electrons can be found
elsewhere [28]. The aromatic carbon surface model consisted of 19,400 atoms including the
dummy atoms.

Table 1. Number of atoms in droplet models.

Resin Number of Atoms in Droplet Model

Bismaleimide 15,488
Benzoxazine 15,210

Difunctional epoxy 15,444
Tetrafunctional epoxy 15,210

Fluorinated cyanate ester 15,400
Non-fluorinated cyanate ester 14,960

PEEK monomer 14,960
PEEK dimer 14,700
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A diamond lattice structure was used to create the aliphatic carbon surface model
(Figure 10). The thickness of the model was two diamond crystal unit cells. The atomic
positions for the diamond lattice structure were obtained with LAMMPS. Hydrogen atoms
were added at the top and bottom surfaces of the diamond to balance the valency of the
carbon atoms. An energy minimization was performed to relax hydrogen atoms into their
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equilibrium positions. The final model of the aliphatic surface consisted of 16,416 atoms
with a simulation box size of ~406 Å × 20 Å × 210 Å.
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2.2.2. Wetting Simulations

The MD wetting simulations consisted of two steps: monomer droplet formation and
monomer–surface contact simulation. The modeling steps are schematically represented
in Figure 11. The MD framework was verified to determine the simulation parameters
by simulating wetting for polystyrene oligomers on an aromatic carbon surface. This is
discussed in the Supplementary Materials (SI). The wetting simulations were performed
over a range of elevated temperatures that included the typical processing temperatures of
the simulated resins. Five replicate models of each monomer system were constructed at
each temperature to establish the statistical variation in the predictions.
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For the first step (Step I, Figure 11), the resin monomers were constructed, replicated,
and placed in an MD simulation box of 20 Å length in the y-direction to form a droplet.
Table 1 shows the number of atoms in the monomer droplet models for each resin system.
The simulation box size in the x- and z-directions was modified based on the resin system
being modelled. The simulation box boundaries were non-periodic and reflective in the x-
and z-directions, and periodic in the y-direction. The droplet formation simulations were
performed in the NVT ensemble at various simulation temperatures in the range 87–207 ◦C
for 1 ns with a timestep size of 1 fs.

In the second step of the simulation process (Step II, Figure 11), the resin droplet
behavior in the vicinity of the surface was simulated. The resin droplets were placed in
the MD simulation boxes containing the aromatic and aliphatic surfaces. The simulation
box boundaries were periodic in the x-, y-, and z-directions for this step. The initial
distance between the surface and the droplets was 7 Å to allow for non-bonded interactions.
Coulombic pairwise interactions and long-range van der Waals interactions were included
in these simulations, as given by the Lennard–Jones potential [29]

Eij = ∑
i,j

εij

 2

(
σij

rij

)9

− 3

(
σij

rij

)6
 r < rc (1)

where rij is the distance between atoms i and j, σij is the equilibrium distance between
atoms i and j, εij is the well depth parameter which is calculated as the geometric mean
of individual atom parameters for atoms i and j, and rc is the specified cutoff distance.
Columbic interactions were calculated using [30]

E =
Cqiqj

ε0rij
r < rc (2)

where rij is the distance between atoms i and j; C is the energy unit conversion constant;
qi and qj represents the atomic charges of atoms i and j, respectively; ε0 is the dielectric
constant; and rc is the specified cutoff distance.

These simulations were performed for 2 ns and are henceforth referred as the ‘contact
simulations.’ The contact simulations were performed for a simulation time of 2 ns in
the NVT ensemble at a simulation temperature selected from the temperature range of
87–207 ◦C with a time step size of 1 fs. Figure 12 shows simulation snapshots of a repre-
sentative contact simulation for the difunctional epoxy system on the aromatic surface at
147 ◦C. The spread of the monomer droplet on the surface can be easily observed over the
2 ns simulation time.

2.2.3. Evaluation of Contact Angle Value

The contact angle was predicted for each resin system, surface type, and temperature.
The method used here to determine the contact angle value is similar to the method
developed by Sumith et al. [31]. An array of two-dimensional 1 Å × 1 Å windows were
created in the x–z plane of the simulation box, and the average mass density of each
window was determined over the final 500 ps of the contact simulations. Using a PYTHON
script, this raw density data was processed and rewritten in the form of an array that
is readable by RStudio. The resulting mass density map was used to identify the top
layer of the monomer droplet. RStudio was used to create a contour-line map from the
discrete density points by calculating iso-density lines through the density map. The largest
contour line was selected to represent the liquid–vapor interface. Figure 13 shows the
density map for the difunctional epoxy system on an aromatic surface at 147 ◦C at the
last timestep of the contact simulation. On the solid surface, low-density monomer vapor
molecules were observed near the point of contact as shown in Figure 13. To accurately
measure the contact angle value, these mass density values were eliminated by assigning
a threshold value in terms of the z-coordinate. This step effectively filtered the density
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map data below the threshold line at z = 10 Å as shown in Figure 14. The liquid–vapor
interface was subjected to a circular fit (red curve, Figure 14). The slope of the tangent (blue
line, Figure 14) at the point of intersection between the circular arc and the surface was
determined and the corresponding contact angle was calculated. To eliminate the effect
of statistical variations in droplet shape the average of the five contact angle values with
standard error are presented. Calculated contact angle values are provided in the SI.
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2.2.4. Calculation of Interaction Energy

The interaction energies (IE) between the droplet and the surface were determined in
LAMMPS using the “compute group/group” command to gain physical insight on the
contact angle values for the aromatic and aliphatic surfaces. In LAMMPS, IE is calculated by

IEAB = E(A, B)− (EA + EB) (3)

where IEAB is the interaction energy between atoms in group A and group B; EA is the
total energy of atoms in group A; EB is the total energy of atoms in group B; and E(A, B) is
the total energy of entire system including atoms in groups A and B.

To calculate the IE between the monomers and surface, monomer droplet atoms and
surface atoms were assigned to two different groups in LAMMPS. Calculated IE values
were averaged over the final 200 ps of the contact simulation. In addition, the atoms of
each functional group present in the monomer were assigned to a respective subgroup.
IE values between these subgroups and the surface were calculated using Equation (3),
where A was assigned as the group of surface atoms and B was assigned as the atoms in a
specific functional group in the system. The calculated IE values represent the individual
contributions of the surface interaction of specific monomer functional groups towards
the total IE values. Higher negative magnitudes of IE indicate higher levels of interaction
between the monomers/group and carbon surface.

3. Results and Discussions

Figure 15 shows the contact angle of the BMI system for both surfaces and the entire
range of simulated temperatures. The contact angle generally decreases as the temperature
increases, and the contact angle is higher for the aliphatic surface for the entire temperature
range. As amorphous carbon is a combination of aromatic and aliphatic carbon groups, the
wettability of BMI with amorphous carbon is likely somewhere in-between the aromatic
and aliphatic curves.

It is helpful to interpret the predicted wetting behavior as a competition between
adhesion and cohesion. That is, the monomers are attracted to both the carbon surface
and to each other. It is the relative strength of these two interactions that dictates how
the resin wets onto the carbon surface. Specifically, if the monomer’s interaction with the
surface (adhesion) is in some way diminished, then monomer–monomer cohesion becomes
dominant and will cause the droplet to form a tighter sphere, increasing the contact angle.
If the adhesion is in some way enhanced, then the monomer–monomer cohesion plays
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a more minor role and the droplet will no longer hold together in a tight sphere, thus
decreasing the contact angle.
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The decrease in contact angle with increasing temperature shown in Figure 15 can be
explained in terms of the monomer flexibility and mobility. Higher temperatures increase
monomer flexibility, which allows for access to more conformations that can potentially
increase the adhesion of the monomer with the carbon surfaces. Furthermore, higher
temperatures increase the thermal motion of the monomers, thus increasing monomer
mobility and enabling droplet shape changes. Under laboratory conditions, this effect
manifests itself in lower observed resin viscosities at higher temperatures.

Figure 16 shows the total IE between the BMI monomers and both carbon surfaces,
and the contribution towards the IE by functional group at 207 ◦C. The data in the figure
indicate that the average IE for the five replicate models between the BMI monomers and
the aromatic surface is 118.91 kcal/mole higher than that for the aliphatic surface. Close
examination of Figure 16 shows that this difference in total IE values is mostly due to
the higher interaction of the aliphatic C groups with the aromatic surface. To provide
physical insight into this observation, it was determined that the positively charged H
atoms (+0.053 C) on the aliphatic surface repel the H atoms in the aliphatic C groups and
H atoms in the phenyl rings in the monomers, thereby creating resistance for the droplet to
spread on the surface. Furthermore, the negatively charged dummy atoms on the aromatic
surface (−0.1 C) attract the H atoms in the monomers, thus improving the wetting of BMI
on the aromatic C surface.
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Figure 17 shows the contact angles for the two epoxy systems for both carbon surfaces
as a function of temperature. Similar to the BMI system, both epoxy systems demonstrate
an improvement in wetting for increasing temperatures. Whereas the BMI system showed
better wetting on aromatic surfaces for the entire temperature range, the di-functional
epoxy demonstrates no clear statistical difference in the wetting on the two surfaces, and
the tetrafunctional epoxy shows improved wetting on the aliphatic surface for temperatures
above about 150 ◦C. Regardless of the surface, the di-functional epoxy clearly has better
wetting than the tetra-functional epoxy for the entire temperature range, which means this
trend is expected to hold for amorphous carbon surfaces as well. This is likely because the
tetra-functional resin has four epoxide groups per monomer while the di-functional epoxy
has only two. This reduces the monomer flexibility of the tetra-functional epoxy system.
The resulting steric hinderance reduces the ability of the tetra-functional system to wet
onto either surface.

To investigate improved wettability of tetrafunctional epoxy on the aliphatic surface
at elevated temperatures, the IE of each functional group with the surface was determined.
Figure 18 shows the IE for the indicated functional groups in the tetrafunctional epoxy
system at 207 ◦C. From Figure 18 it is clear that the interaction of tertiary amines, phenyl
groups, and the sulfonyl group is stronger with the aliphatic surface. Even though the
epoxide and methylene group interactions are stronger with the aromatic surface, their
contributions are not enough for the tetrafunctional epoxy to have stronger interaction
with the aromatic surface. The increased overall interaction of the tetrafunctional epoxy
with the aliphatic surface at high temperatures is likely due to the increased flexibility and
mobility of the monomers at higher temperatures coupled with the strong attraction of
the tertiary amine nitrogen atoms (charge of −0.422 C) with the hydrogen atoms on the
aliphatic surface (charge of 0.053 C) relative to the virtual electrons on the aromatic surface
(charge of −0.1 C). The IE analysis for difunctional epoxy is provided in the SI.
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Figure 19 shows the contact angle of the two cyanate ester systems over the full
temperature range for both carbon surfaces. As with the BMI and epoxy systems, the
contact angle consistently decreases with increases in temperature. For the aromatic
surface, the non-fluorinated cyanate ester demonstrates better wettability at temperatures
below about 130 ◦C.
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The fluorinated cyanate ester monomers include trifluoromethyl groups that may pro-
vide a steric hinderance that restricts mobility, thus providing resistance to the spread of the
monomer droplet over the aromatic carbon surface in this temperature range. The contact
angles for the two systems on the aromatic surface are nearly the same for temperatures
above about 130 ◦C. For the aliphatic surface, the curve fit line of the non-fluorinated sys-
tem consistently shows a lower contact angle than that of the fluorinated system, however,
examination of the overlap of the error bars indicates that there is no statistical difference
in the contact angle of the two systems. Furthermore, considering the overlap of the error
bars, there is no consistent difference in the contact angles of either system when comparing
the two carbon surfaces. The detailed IE contribution per functional group analysis for
both cyanate esters is provided in the SI.

Figure 20 shows the contact angle of the PEEK monomer and dimer. As with the other
polymer systems, PEEK shows a decrease in contact angle with an increase in temperature.
For the full temperature range, the PEEK monomer clearly has a lower contact angle
than the PEEK dimer. This indicates that the contact angle values are highly chain-length
dependent. This is likely a direct cause of the increased steric hindrance associated with
the longer chain lengths of the PEEK dimer. Neither the PEEK monomer nor dimer show
a significant effect on the wettability with respect to the carbon surface type. Therefore,
it is expected that both PEEK systems will demonstrate similar trends with wetting on
amorphous carbon surfaces. The IE analysis for both PEEK systems is provided in the SI.
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Figure 21 shows the contact angle of the benzoxazine monomers over the full tem-
perature range on both carbon surfaces. As with the other monomers, the contact angle
decreases with increasing temperatures. The contact angle values between the two surfaces
shows a difference of 13 ◦C at 127 ◦C. For higher temperatures, the overlap of the error
bars indicates that there is no statistical difference in the contact angle on the two surfaces.
IE analysis for benzoxazine is provided in the SI.

Figure 22 shows the contact angle values of the polymers on the aromatic surface
as a function of temperature. In general, the PEEK monomer, difunctional epoxy, and
both cyanate ester systems show the best overall wettability over the temperature range.
The tetrafunctional epoxy, BMI, and benzoxazine systems demonstrate an intermediate
wettability, while the PEEK dimer clearly shows lower relative wettability. These trends are
caused by a balance between monomer size, flexibility, and interaction with the aromatic
surface. That is, larger, less flexible monomers have more steric hindrance and cannot
conform easily to the aromatic surface. There is a thermodynamic drive for aromatic
groups in the monomers to align themselves with the aromatic carbon surface because of
the pi–pi interaction [32–35] (as simulated using the virtual pi electrons described above),
which can increase the overall monomer/surface interaction and thus lower the contact
angle. However, the steric hindrance from inflexible regions of the monomers can inhibit
this alignment. Specifically, the PEEK monomer, difunctional epoxy, and cyanate ester
systems all have relatively small and flexible monomers that contain aromatic groups
located in flexible portions of the monomer chain. For the tetrafunctional epoxy, BMI,
benzoxazine, and PEEK dimer systems, the monomers are slightly larger and/or less
flexible, which prevents them from fully conforming to the aromatic surface and thus
lowers their wettability.



Polymers 2021, 13, 2162 15 of 20
Polymers 2021, 13, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 21. Plot of contact angle vs. temperature for benzoxazine. The lines are curve fits to the data, and the error bars 
represent the standard error of replicate predictions. 

Figure 22 shows the contact angle values of the polymers on the aromatic surface as 
a function of temperature. In general, the PEEK monomer, difunctional epoxy, and both 
cyanate ester systems show the best overall wettability over the temperature range. The 
tetrafunctional epoxy, BMI, and benzoxazine systems demonstrate an intermediate wet-
tability, while the PEEK dimer clearly shows lower relative wettability. These trends are 
caused by a balance between monomer size, flexibility, and interaction with the aromatic 
surface. That is, larger, less flexible monomers have more steric hindrance and cannot 
conform easily to the aromatic surface. There is a thermodynamic drive for aromatic 
groups in the monomers to align themselves with the aromatic carbon surface because of 
the pi–pi interaction [32–35] (as simulated using the virtual pi electrons described above), 
which can increase the overall monomer/surface interaction and thus lower the contact 
angle. However, the steric hindrance from inflexible regions of the monomers can inhibit 
this alignment. Specifically, the PEEK monomer, difunctional epoxy, and cyanate ester 
systems all have relatively small and flexible monomers that contain aromatic groups lo-
cated in flexible portions of the monomer chain. For the tetrafunctional epoxy, BMI, ben-
zoxazine, and PEEK dimer systems, the monomers are slightly larger and/or less flexible, 
which prevents them from fully conforming to the aromatic surface and thus lowers their 
wettability. 

Figure 21. Plot of contact angle vs. temperature for benzoxazine. The lines are curve fits to the data,
and the error bars represent the standard error of replicate predictions.

Polymers 2021, 13, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 22. Plot of contact angle vs. temperature of monomers on the aromatic surface. The lines are curve fits to the data, 
and the error bars represent the standard error of replicate predictions. 

Other important information can be determined from the data in Figure 22. Regard-
ing the influence of the trifluoromethyl groups on wetting onto aromatic surfaces, there is 
a negligible difference in the contact angle between the fluorinated and non-fluorinated 
cyanate esters relative to the magnitudes of contact angles of the other resins. Addition-
ally, while the PEEK monomer shows excellent wettability, the contact angle of the PEEK 
dimer is significantly higher than the other resins. This demonstrates that the size of ther-
moplastic chains has a significant impact on wettability. Therefore, as is already well-
known in the composites processing community, lower molecular weights of thermo-
plastic polymers result in improved processability. In practice, composite processing does 
not generally occur with PEEK in monomeric form. Therefore, the most significant result 
of Figure 22 is the excellent wettability of the cyanate esters and difunctional epoxy onto 
the aromatic surface.  

Figure 23 shows the contact angle of the monomers on the aliphatic surface as a func-
tion of temperature. Below 150°C, the PEEK monomer, difunctional epoxy, and cyanate 
esters clearly show the lowest contact angles, with the tetrafunctional epoxy, BMI, ben-
zoxazine demonstrating intermediate amounts of wetting, and the PEEK dimer with the 
relatively lowest wetting. This trend continues above 150°C with the exception of the tet-
rafunctional epoxy, which demonstrates a significant increase in wetting, on par with the 
difunctional epoxy, cyanate esters, and PEEK monomer. These overall trends in the mon-
omers likely result from steric hindrance associated with larger and less flexible mono-
mers and the non-bonded attraction with the aliphatic surface and specific chemical 
groups in the monomer, as described above.  

Figure 22. Plot of contact angle vs. temperature of monomers on the aromatic surface. The lines are
curve fits to the data, and the error bars represent the standard error of replicate predictions.

Other important information can be determined from the data in Figure 22. Regarding
the influence of the trifluoromethyl groups on wetting onto aromatic surfaces, there is
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a negligible difference in the contact angle between the fluorinated and non-fluorinated
cyanate esters relative to the magnitudes of contact angles of the other resins. Additionally,
while the PEEK monomer shows excellent wettability, the contact angle of the PEEK
dimer is significantly higher than the other resins. This demonstrates that the size of
thermoplastic chains has a significant impact on wettability. Therefore, as is already well-
known in the composites processing community, lower molecular weights of thermoplastic
polymers result in improved processability. In practice, composite processing does not
generally occur with PEEK in monomeric form. Therefore, the most significant result of
Figure 22 is the excellent wettability of the cyanate esters and difunctional epoxy onto the
aromatic surface.

Figure 23 shows the contact angle of the monomers on the aliphatic surface as a
function of temperature. Below 150 ◦C, the PEEK monomer, difunctional epoxy, and
cyanate esters clearly show the lowest contact angles, with the tetrafunctional epoxy, BMI,
benzoxazine demonstrating intermediate amounts of wetting, and the PEEK dimer with
the relatively lowest wetting. This trend continues above 150 ◦C with the exception of
the tetrafunctional epoxy, which demonstrates a significant increase in wetting, on par
with the difunctional epoxy, cyanate esters, and PEEK monomer. These overall trends in
the monomers likely result from steric hindrance associated with larger and less flexible
monomers and the non-bonded attraction with the aliphatic surface and specific chemical
groups in the monomer, as described above.
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Other important conclusions can be discerned from Figure 23. Similar to the aromatic
surface results, the influence of the trifluoromethyl groups in the cyanate ester systems on
contact angle is not significant. Additionally, the influence of thermoplastic chain size on
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the contact angle is significant given the wettability demonstrated by the PEEK monomer
and dimer, as was observed with the aromatic surface results. As PEEK monomers are not
generally used for composite processing, the most significant results shown in Figure 23
are the excellent wettability of the difunctional epoxy and cyanate ester systems over the
entire temperature range, and the excellent wettability of the tetrafunctional epoxy onto
the aliphatic surface at temperatures above 150 ◦C.

Figure 24 shows the trend lines for all of the thermoset systems on both the aromatic
and aliphatic surfaces. Although the comparisons for each individual resin on both sur-
faces are discussed above, this figure highlights the relative differences in the wetting on
the two surfaces with respect to the entire set of thermosetting resins. Specifically, the
figure indicates that the different responses on the two surfaces for the tetrafunctional
epoxy at higher temperatures, the benzoxazine at lower temperatures, and the BMI over
the entire temperature range are far greater than difference in responses for the other
thermosetting resins.
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Figure 24 is also helpful for estimating the relative performance of the thermoset
systems on amorphous carbon surfaces. If the amorphous carbon surface wetting trendline
is assumed to be somewhere between the amorphous and aliphatic trendlines, then it
is clear that, at relatively low temperatures, the difunctional epoxy and cyanate ester
systems will exhibit the highest levels of wetting on amorphous carbon surfaces. At high
temperatures (above 150 ◦C), the difunctional epoxy exhibits the overall highest wetting
on amorphous carbon, with the cyanate esters and tetrafunctional epoxy close behind. The
BMI and benzoxazine are expected to show lower levels of wetting on amorphous carbon
surfaces at these temperatures.
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4. Conclusions

An MD framework was developed to predict the contact angle values of polymer
resins on CNT surfaces dominated by aromatic carbon, aliphatic carbon, or a mixture
thereof (amorphous carbon). The monomer chain length, temperature, and the functional
groups in the monomers have a significant impact on the contact angle values on the CNT
surface. An overall trend of decreasing contact angle (improvements in wetting) with
increasing temperature was observed for all the resins studied.

Considering the results from this study, the difunctional epoxy demonstrates the
best wettability of the thermoset resins considered herein, regardless of the CNT material
surface structure. However, for applications that require relatively high temperatures, the
difunctional epoxy may be unsuitable due to its lower glass transition temperature relative
to the tetrafunctional epoxy [36,37] and the cyanate ester resins become the best option
in terms of wettability on any CNT material surface. For higher processing temperatures,
the tetrafunctional epoxy is also a good candidate for resin selection, particularly for CNT
materials that have amorphous carbon on the surface. The results of this study also indicate
that PEEK in its monomer form has excellent wettability on CNT surfaces, but PEEK in the
dimer form has wetting capabilities below those of the thermosets studied. As composites
are not typically processed with monomeric PEEK, higher molecular weights of PEEK are
not recommended for optimal wetting in CNT composite fabrication.
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and aliphatic surface, Figure S5: Interaction energy distribution by functional group in the non-
fluorinated cyanate ester system with the aromatic and aliphatic surface, Figure S6: Interaction energy
distribution by functional group in the peek monomer system with the aromatic and aliphatic surface,
Figure S7: Interaction energy distribution by functional group in the peek monomer system with the
aromatic and aliphatic surface, Figure S8: Interaction energy distribution by functional group in the
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