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Leptospirosis is a zoonotic disease of worldwide distribution, affecting both humans and
animals. The development of an effective vaccine against leptospirosis has long been
pursued but without success. Humans are contaminated after direct contact with the
urine of infected animals or indirectly by contaminated water or soil. The vaccines available
consist of inactivated whole-bacterial cells, and the active immunoprotective antigen is the
lipopolysaccharide moiety, which is also the basis for serovar classification. However,
these vaccines are short-lasting, and protection is only against serovars contained in the
preparation. The search for prevalent antigens, present in pathogenic species of
Leptospira, represents the most cost-effective strategy for prevention of leptospirosis.
Thus, the identification of these antigens is a priority. In this study, we examined the
immunoprotective effect of eight leptospiral recombinant proteins using hamster as the
challenge model. Animals received subcutaneously two doses of vaccine containing
50 mg of each recombinant protein adsorbed on alum adjuvant. Two weeks after the
booster, animals were challenged with virulent leptospires and monitored for 21 days. All
proteins were able to induce a specific immune response, although significant protective
effects on survival rate were observed only for the proteins Lsa14, rLIC13259, and
rLIC11711. Of these, only rLIC13259 and rLIC11711 were found to be highly prospective
in promoting renal clearance. The sterilizing potential of both proteins will be further
investigated to elucidate the immunoprotective mechanisms involved in leptospirosis
control. These are the first proteins involved with human complement components with
the capacity to protect against virulent challenge and to eliminate the bacteria from
the host.
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INTRODUCTION

Pathogenic Leptospira are the etiological agent of leptospirosis.
The disease is globally distributed, and it affects humans and
animals. In developing tropical countries, leptospirosis is
associated with poor sanitation conditions, while in developed
countries, the disease is related to sport and recreational activities
(1–3). Rats, especially the brown rats (Rattus rattus or Rattus
norvergicus), are the main reservoir of leptospires. These animals
are asymptomatic carriers, carrying and shedding the bacteria
through their urine, contaminating water and soil (4–6).
Humans and animals are contaminated directly through the
urine of rats or indirectly via contaminated environments.
Humans are accidental and terminal hosts of the disease. The
symptoms of leptospirosis are non-specific, ranging from mild
flu-like to severe kidney, liver, and lung diseases (7). This
diversity of symptoms found in individuals infected with
Leptospira promotes an increase in the number of
misdiagnosed cases, leading to underestimated case numbers
(7, 8). A systematic review reported that leptospirosis is
responsible for more than 1 million cases per year and
approximately 60 thousand deaths (5). The prevention of
leptospirosis is crucial for both preventing an increase in
disease rate and disrupting the transmission cycle.

Prophylactic measures, such as vaccines, are the best approach
to fight infectious diseases. Veterinary vaccines against
leptospirosis are available; these are killed or inactivated whole-
cell vaccines, which rely on lipopolysaccharide (LPS) content.
These vaccines are short-lasting, require re-vaccination after 1
year, and protect only against serovars contained in the
preparation. To date, more than 300 serovars are described for
pathogenic Leptospira. Most existing vaccines contain 3 to 10
predominant serovars of the region, lacking the coverage for
potential endemic serovars (8, 9). A cost-effective and long-term
protective vaccine against leptospirosis has been pursued by
several investigators around the world. It is anticipated that
conserved antigen-based vaccines are an attractive alternative to
overcome the limitations of current vaccines.

Surface-exposed molecules of pathogens are considered
interesting targets for vaccine development due to their cellular
location and possible role in host-pathogen interactions. In the
last years, several recombinant vaccines containing outer
membrane proteins, conserved among pathogenic leptospire
species, which act as potential virulent factors, have been
evaluated in animal challenge models (10–14). These vaccines
have demonstrated a diverse range of protection, dependent on
the adjuvant, administration route, and animal model used (15).
Leptospiral immunoglobulin-like proteins, known as LigA and
LigB, remain the most studied vaccine candidates among
leptopiral antigens. However, conflicting results have been
reported, and some have demonstrated that these vaccines do
not prevent renal colonization (10, 15–18). Thus, the search for
new vaccine antigens that are serovar-independent and have the
ability to inhibit leptospire dissemination is still necessary.
Certainly, the identification of these antigens will contribute to
the understanding of the immune mechanism involved in
protection against leptospirosis.
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In the present study, we evaluated the vaccine potential of
eight recombinant proteins, previously characterized as
conserved immunogenic proteins, localized at the cell surface
and able to interact with several host components. The Lsa25.6
and Lsa16 proteins interacted with laminin, plasminogen,
generated plasmin, and fibrinogen, but only Lsa25.6 inhibited
fibrin clotting (19). Lsa16 was also able to interact with the
mammalian cell receptor E-cadherin. Lsa19, Lsa14, and Lsa24.9
showed concentration-dependent binding with laminin and
plasminogen. Moreover, they were able to generate plasmin in
the presence of a plasminogen activator, and immunogenic
epitopes are believed to be involved in the interaction (20, 21).
Interestingly, LipL46, an overexpressed protein of virulent
Leptospira, showed the capacity to interact only with
plasminogen (22). In contrast to LipL46, the recombinant
protein rLIC11711 showed binding to a broad range of
molecules. It was able to interact with laminin, E-cadherin and
collagen IV, and bound plasminogen from normal human
serum, interacting with fibrinogen, fibronectin, and
components of the complement system (23). The rLIC13259
protein was also characterized as a wide-range adhesin,
interacting with laminin, plasminogen, and terminal
complement components, mediating the binding of purified or
normal serum-derived vitronectin, C7, C8, and C9 (24). These
features suggests that Lsa25.6, Lsa16, LipL46, Lsa14, Lsa19,
Lsa24.9, rLIC13259, and rLIC11711 leptospiral recombinant
proteins may have multifunctional roles in Leptospira and thus
prompted us to investigate their role to induce a protective
immune response in a hamster model of leptospirosis.
MATERIAL AND METHODS

Bacterial Strains
The virulent Leptospira interrogans serovar Kennewicki strain
Pomona Fromm (LPF) was cultured at 28°C under aerobic
conditions in liquid Ellinghausen-McCullough-Johnson-Harris
(EMJH) medium (Difco, BD, Franklin Lakes, NJ, USA)
containing 10% (vol/vol) rabbit serum. Virulent leptospiral
cultures are routinely maintained by infection of golden Syrian
hamsters and subsequent bacterial isolation from kidney.
Escherichia coli BL21 DE3 Star pLysS, BL21 DE3, and BL21-SI
cells were used as recombinant protein expression hosts.

Recombinant Proteins Expression and
Purification
Expression and purification of Lsa25.6, Lsa16, LipL46, Lsa14,
Lsa19, Lsa24.9, rLIC11711, and rLIC13259 proteins are detailed
in the following reports: Pereira et al. (19), Santos et al. 2018 (22),
Figueredo et al. (20), Rossini et al. (21), Kochi et al. (23), and
Cavenague et al. (24). Briefly, expression of recombinant proteins
Lsa25.6 and Lsa16 was performed in E. coli BL21 (DE3) Star
pLysS expression strains with 0.1 mM isopropyl-b-1-D
thiogalactopyranoside (IPTG) for 3 h. Recombinant proteins
were purified from the insoluble fraction and they were
refolded on-column by gradually removing urea until reaching
October 2020 | Volume 11 | Article 568694
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a concentration of 0 M (19). The LipL46 recombinant protein
was expressed in E. coli BL21-SI cells with 500 mM NaCl for 3 h.
LipL46 was purified from the soluble fraction of E. coli lysates
(22). Expression of the recombinant proteins Lsa14 and Lsa19
was performed in E. coli BL21 (DE3) Star pLysS with 0.1 mM
IPTG and E. coli BL21-SI with 500 mMNaCl, respectively. Lsa14
was purified from the insoluble fraction, while Lsa19 was purified
from the soluble fraction. Lsa14 was refolded in a column by
gradually removing urea (20). Lsa24.9 was expressed as inclusion
bodies in E. coli BL21 (DE3) Star pLysS with 1mM IPTG for 3 h.
Urea removal was performed by dilution prior to protein
purification (21). After adding 1 mM IPTG, rLIC11711 and
rLIC13259 proteins were expressed in the soluble fraction in E.
coli BL21 (DE3) Star pLysS and E. coli BL21 (DE3) strains,
respectively. Purification was performed using E. coli lysate
supernatants (23, 24). All proteins were purified using a Ni+2-
chelating chromatography column, and protein concentration
was determined using bovine serum albumin as the standard.

Animal Immunization and Challenge Assays
Male hamsters (6–8 weeks old) were immunized subcutaneously
with a 500-ml dose containing 50 mg of each recombinant protein
mixed with 12.5% Alhydrogel [2% Al(OH)3] as adjuvant. One
booster injection was given after 2 weeks with the same
preparation of recombinant protein. In the negative control
group referred to as control, hamsters were injected with
phosphate-buffered saline (PBS) plus 12.5% Alhydrogel. A
group consisting of animals immunized with a dose of 109

heat-killed whole-leptospire referred to as bacterin was
included as positive control for survival. Bacterin used in this
experiment was prepared in-house as described in Silva et al.
(17). Briefly, Leptospira interrogans serovar Kennewicki strain
Pomona Fromm were harvested by centrifugation and washed
pellets were heat-inactivated 56°C for 20 min. Inactivated cells
were resuspended in PBS, aliquoted, and stored at −20°C. Two
weeks after last immunization, animals were challenged
intraperitoneally with an inoculum of 104 virulent leptospires
(25). Hamsters received water and food ad libitum and were
monitored daily for 21 days for clinical signs of leptospirosis.
Hamsters surviving after this time were euthanized following
guidelines for the euthanasia of animals. Firstly, administration
of acepromazine (5 mg/kg) was used as sedative. After 20 min,
hamsters received an injection intraperitoneal of ketamine (200
mg/kg) and xylazine (10 mg/kg) for full anesthesia effect and
euthanasia was performed by isoflurane inhalation into specific
chamber. Both animal kidneys were removed aseptically,
macerated, and inoculated in liquid EMJH medium in a
dilution 10−2. Bacteria growth was monitored by using dark-
field microscopy for up to 1 month. After this time, cultures were
designated as positive or negative for the presence or absence of
leptospires, respectively. Animals that did not survive the
challenge were not included in calculation because their
kidneys were not removed to perform culture, but it is
expected that they have died out of leptospirosis. Hamsters in
each group were bled from the retro-orbital plexus after
administration 10 ml of topical anesthetic proxymetacaine
Frontiers in Immunology | www.frontiersin.org 3
hydrochloride 5mg/ml (Anestalcon). Blood collection was
performed 1 day before each immunization/challenge and
collected serum was kept at −20°C until use. Two independent
experiments were performed, each one containing six animals
per group. Fisher's exact test was used to compare survival curves
between experimental groups, and p<0.05 was considered
statistically significant.

Evaluation of the Humoral Immune
Response
Sera of immunized animals were pooled from three animals and
analyzed in triplicate by ELISA to determine the production of
total IgG antibody and its subclasses IgG1 and IgG2/IgG3. ELISA
plates were coated with 250 ng of each recombinant protein, and
wells were blocked with PBS-T containing 10% non-fat dry milk
and incubated with different dilutions of hamster sera, ranging
from 1:200 to 1:12,800. Plates were washed and incubated with
either HRP-conjugated anti-hamster total IgG (1:5,000, Sigma),
anti-hamster IgG1, or anti-hamster IgG2/IgG3 (1:5,000,
Southern Biotechnology). The wells were washed three times,
and a solution 1 mg/ml o-phenylenediamine in citrate phosphate
buffer (pH 5.0) plus 1 ml/ml H2O2 was added (100 ml per well).
The reaction was allowed to continue for 10 min and was
interrupted by the addition of 50 ml of 2 M H2SO4 to the
reaction mixture. Readings were taken at 492 nm with a
microplate reader (Multiskan EX; Thermo Fisher Scientific,
Helsinki, Finland). The graphs were plotted with average
absorbance values found at 200 times serum dilution.

Ethics Statement
The Ethics Committee for Animal Research of Instituto
Butantan approved the use of the animals involved in these
studies under protocol number 3549261016. The Committee on
Animal Research adopts the guidelines of the Brazilian College of
Animal Experimentation.
RESULTS

Representative Scheme of Predicted
Coding Sequences, Expression, and
Purification of Recombinant Proteins
Predicted coding sequences (CDS) LIC13059, LIC10879,
LIC11885, LIC11122, LIC12287, LIC11711, LIC10920, and
LIC13259 were identified by analyzing the genome sequences
of L. interrogans serovar Copenhageni (26). The genes LIC13059
(Lsa25.6), LIC10879 (Lsa16), LIC11885 (LipL46), LIC11122
(Lsa19), LIC12287 (Lsa14), LIC11711 (rLIC11711), LIC10920
(Lsa24.9), and LIC13259 (rLIC13259) were cloned as described
in Pereira et al. (19), Santos et al. (22), Figueredo et al. (20),
Rossini et al. (21), Kochi et al. (23), and Cavenague et al. (24)
without signal peptide sequence. A representative scheme of the
protein sequences containing their conserved domains and the
ligands that were found to interact with the recombinant
proteins are shown in Figure 1A. Plasmids containing each
October 2020 | Volume 11 | Article 568694
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the diagram represents the linear sequence of the proteins and its respective conserved
d is representative, all genes were cloned without this portion. Right panel: the diagram
characterized in vitro. (B) Sodium dodecyl sulfate polyacrylamide gel electrophoresis
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FIGURE 1 | Scheme of predicted coding sequences and purification analysis of each recombinant protein. (A) Left panel:
domains and/or features, predicted by amino acids sequence analysis. The presence signal peptide sequence shown in re
represents the extracellular matrix and plasma molecules that bound to the respective recombinant proteins, experimentally
(SDS-PAGE) analysis of purified recombinant proteins and immunoblotting probed with anti-his tag antibody. Lane 1: mole
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gene were used to transform E. coli expression strains and
recombinant proteins were expressed with a 6-his tag and
purified by immobilized-metal affinity chromatography as
described before. An aliquot of each purified protein was
analyzed by sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) and immunoblotting by using
his-tag monoclonal antibody (Figure 1B). All proteins showed
expected sizes of 25.6, 16, 46, 14, 19, 24.9, 22.8, and 17 kDa,
respectively. Lsa24.9 has shown an estimated molecular mass of
24.9 kDa, but on SDS-PAGE it has migrated near the 30 kDa
protein standard. Each recombinant protein was dialyzed against
PBS prior to injection into animals.
Frontiers in Immunology | www.frontiersin.org 5
Evaluation of Humoral Immune Response
Induced in Animals Immunized With
Recombinant Proteins
Hamsters subcutaneously immunized with the Lsa25.6, Lsa16,
LipL46, Lsa14, Lsa19, rLIC11711, Lsa24.9, and rLIC13259
proteins adsorbed on alum adjuvant were bled from the retro-
orbital plexus 14° day after each immunization; serum samples
were obtained, pooled from three animals, and analyzed in
triplicate by ELISA to evaluate IgG total production specific for
each antigen. The results obtained for each protein are shown in
Figure 2 and refer to two independent immunization assays.
Measured IgG levels to each protein were higher for the
FIGURE 2 | Total IgG production after animal immunization. Hamsters were immunized subcutaneously with emulsions of recombinant protein plus Alhydrogel,
twice at 2 weeks intervals. Serum samples were obtained after 2 weeks of each immunization and IgG levels evaluated by ELISA. For experimental control, animals
were immunized with phosphate-buffered saline (PBS) in Alhydrogel (control) and with heat-killed whole-leptospires (bacterin). Unpaired t-test was used to determine
statistically significant difference between proteins and PBS. All of them showed significance < 0.05.
October 2020 | Volume 11 | Article 568694
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respective individually vaccinated groups, with higher levels after
the second immunization for all the antigens except Lsa19. As
observed, bacterin-immunized animals and PBS did not induce
IgG levels against each protein. In contrast, bacterin-immunized
animals induced IgG level high against killed whole cell antigen,
since the first dose given (data not shown). To further evaluate
the antibody subclasses elicited by the recombinant proteins,
IgG1 and IgG2/3 isotypes were measured. The results show that
Lsa25.6, Lsa16, LipL46, Lsa19, rLIC11711, and rLIC13259
induced a mixed response, with both IgG1 and IgG2/3
subclasses being detected, with the latter showing a higher
signal. Lsa14 and Lsa24.9 induced exclusively IgG2/3
antibodies (Figure 3). The mechanism underlying the absence
of IgG1 after immunization with these antigens is not yet clear,
Frontiers in Immunology | www.frontiersin.org 6
but it seems that the presence of IgG subclasses is dependent on
several factors, including the structure of the antigen, dose,
administration route, and host genetic background (27–30).

Immunoprotective Profile in Immunized
Hamsters After Challenge With Virulent
Leptospira
To determine whether humoral response elicited by recombinant
proteins was able to protect animals from infection by
pathogenic leptospires, animal challenge assay was performed
in two independent experiments. The data obtained are shown
individually for each protein in Figure 4. The graphs were
plotted with the data from the first and second experiments
and the average data. In the first experiment, all proteins, but
FIGURE 3 | Evaluation of IgG isotypes produced after immunization with each recombinant protein. ELISA plates were coated with each recombinant protein and
incubated with increasing concentrations of hamsters’ sera, obtained after immunizations with the respective recombinant proteins. The detection of IgG isotypes
was obtained by incubation with HRP-conjugated anti-hamster IgG1 or anti-hamster IgG2/IgG3 (1:5,000) and readings were taken at 492 nm. One-way ANOVA was
performed to analyze the difference between IgG1 or IgG2/3 and protein groups. For both cases significance was <0.05.
October 2020 | Volume 11 | Article 568694
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FIGURE 4 | Survival curves of immunized hamsters after challenge with Leptospira interrogans. Virulent leptospires (104) were inoculated intraperitoneally in
hamsters, previously immunized with recombinant proteins, and monitored daily for 21 days, inspecting the clinical signs of leptospirosis. Animal groups immunized
with PBS (control) and bacterin were used as negative and positive controls, respectively. The graphs illustrate the survival curves obtained for Lsa25.6, Lsa16,
LipL46, and Lsa14 (A) and Lsa19, rLIC11711, Lsa24.9, and rLIC13259 (B) in two independent experiments (left and middle) and the average result (right).

Teixeira et al. Immune Response and Leptospiral Recombinant Proteins
Lsa24.9, conferred partial protection against challenge when
compared to the control. The same percentage of survivors was
obtained in the second experiment, except for Lsa24.9. When the
average of the two experiments was analyzed, we identified 25 to
42% partial protection since survivors were found in the control
group. Variability of results was due to the non-isogenic nature
of the hamster model, and it has been observed throughout the
literature (10). Currently, we are trying to establish endpoint
criteria to avoid this variability. In relation to the ability of
leptospires to colonize the renal tubules in these immunized
animals, we observed that although there were survivors in the
control the majority of them harbored leptospires in their
kidneys, in contrast to animals immunized with Lsa19,
rLIC13259, and rLIC11711 antigens, which showed the
capacity to promote bacterial clearance. Figure 5 shows a
marked difference between survivors of the control group and
survivors immunized with these three proteins. While 71% of the
Frontiers in Immunology | www.frontiersin.org 8
control had a positive culture, 50, 33, and 25% of animals
respectively immunized with Lsa19, rLIC13259, and rLIC11711
recombinant proteins showed a positive culture (Table 1).
Although no complete sterilizing immunity was seen in the
immunized animals with the recombinant proteins, the
understanding of the immune mechanisms involved in that
reduction will contribute to the development of effective
vaccines. Since all of the antigens tested in this work elicited
similarly high levels of IgG1 and IgG2/3 as these three candidate
antigens, it is clear that high immunogenicity alone is not
sufficient for protection, since the immune response needs to
be elicited against specific key antigens. Taken together, these
results indicate that recombinant proteins LIC13259 and
LIC11711 could induce renal clearance in immunized animals.
This potential could be explored by combining these
recombinant proteins with other leptospiral antigens or by
producing new chimeric antigens.
FIGURE 5 | Protective effect elicited in hamster by recombinant proteins assessing the presence or absence of leptospires in animal kidneys after the challenge.
Kidneys were removed from euthanized hamsters in 21 days-post challenges with Leptospira interrogans and the resulting macerate was incubated in liquid
Ellinghausen-McCullough-Johnson-Harris (EMJH) medium and monitored for 30 days. The presence or absence of leptospires in cultures was determined as positive
and negative culture, respectively. The graph represents the percentages obtained of two experiments.
TABLE 1 | Features of survivors immunized with recombinant proteins followed by challenge with Leptospira interrogans.

Groups 1° experiment 2° experiment Average of experiments

Survivors/ % Survivors Positive % positive Survivors/ % Survivors Positive % positive Average % Culture %
Total Culture Culture Total Culture Culture

Control 4/6 66 2/4 50 3/6 50 3/3 100 7/12 58 5/7 71
Bacterin 6/6 100 0/6 0 6/6 100 0/6 0 12/12 100 0/12 0
Lsa25.6 5/6 83 2/5 40 5/6 83 5/5 100 10/12 83 7/10 70
Lsa16 5/6 83 1/5 20 6/6 100 6/6 100 11/12 91 7/11 63
LipL46 5/6 83 3/5 60 6/6 100 4/6 66 11/12 91 7/11 63
Lsa14 6/6 100 4/6 66 5/5# 100 3/5 60 11/11 100 * 7/11 63
Lsa19 5/6 83 3/5 60 5/6 83 2/5 40 10/12 83 5/10 50
Lsa24.9 4/6 66 2/4 50 6/6 100 4/6 66 10/12 83 6/10 60
rLIC13259 6/6 100 0/6 0 6/6 100 4/6 66 12/12 100 * 4/12 33
rLIC11711 6/6 100 2/6 33 6/6 100 1/6 16 12/12 100 * 3/12 25
October
 2020 | Volu
me 11 |
 Article 5686
*Fisher’s exact test value is 0.0373.
#One animal died at the beginning of the experiment.
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DISCUSSION

The development of effective vaccines against Leptospira so far is
a challenging endeavor. Several studies have been conducted
using recombinant proteins as vaccine candidates, but to date, no
ideal candidate has been identified. Data obtained with Lig
proteins have demonstrated promising results, with high
percentage of survival (31). However, the ability of these
vaccines to promote sterilizing immunity has not been
achieved. Moreover, LigA protein is not conserved among
pathogenic Leptospira spp., which reinforces the search for
new conserved vaccine antigens. In this study, we evaluated the
immunoprotective profile displayed by 8 conserved outer
membrane proteins of Leptospira, namely in their recombinant
form: Lsa25.6, Lsa16, LipL46, Lsa14, Lsa19, Lsa24.9, rLIC13259,
and rLIC11711. These recombinant proteins, previously
described as potential leptospiral adhesins involved in host-
pathogen interactions, were evaluated for their capacity to
induce an immune response able to promote survival in
hamsters challenged with virulent Leptospira. Also, the ability
of these proteins promote prevention of leptospires in hamsters`
kidneys was inferred by presence or absence of bacteria
in cultures.

Vaccines based on virulence factors have been considered to
be the best strategy to control pathogenic disease, since the
antibodies produced are able to neutralize the target antigen and
therefore help in the destruction and removal of the pathogen
(32). BibA, a highly conserved antigen, present in bacterial cell
and involved in Streptococcus virulence is considered a strong
vaccine candidate due to its ability to induce opsonizing
antibodies (33). Interestingly, not all antibodies require the
classical complement pathway to eliminate pathogens. It has
been demonstrated that antibodies against OspB of Borrelia
burgdorferi have bactericidal activity in a complement-
independent manner (34, 35), showing the existence of a
strategies diversity to remove pathogens from host.

In this study, IgG antibodies were detected in response to all
evaluated proteins. However, the IgG levels produced for each
protein were not associated with hamster survival rate. Similar
results have been observed with other leptospiral antigens when
used in a challenge model (10, 15). Intriguingly, Hartwig et al.
(2013) (36) demonstrated an increased rate of survivors even
when no antibodies were detected, suggesting a cellular
mechanism. Unfortunately, the lack of immunological reagents
to study immune response in a hamster model has hampered our
efforts to elucidate the immune mechanism involved in
protection against leptospirosis. Therefore, we tried to
understand the immune response profile generated by these
proteins by evaluating the IgG subclasses, since different
subclasses have different effector functions. The regulation of
IgG subclass switching by T-helper cells was based on mouse
studies, in which Th1 cells were assumed to be associated with
the generation of IgG2a (37). Thus, IgG1 and IgG2a isotypes
have been used as markers of Th2 and Th1 response in mouse
model, respectively. In the leishmaniasis mouse model, a higher
IgG2a/IgG1 ratio was associated with protective immune
Frontiers in Immunology | www.frontiersin.org 9
response (38). IgG subclass switching in hamsters is still
unclear. Originally, the IgG class in hamsters was divided only
into IgG1 and IgG2 subclasses (39). A third subclass, IgG3, has
been defined in some hamster strains (40). Accordingly, as
observed in mice, Verma and collaborators (41) demonstrated
that hamsters challenged with amastigotes of Leishmania
donovani promoted an upregulation of Th1 cytokine
expression and a higher IgG2/IgG3 level, suggesting that the
increase in IgG2/IgG3 in hamsters is associated with Th1
immune response. Unfortunately, it was not possible for us to
determine a clear association between the survival rate and
amount of IgG subclasses produced, since most of the antigens
induced both IgG1 and IgG2/3 antibodies. Both IgG subclasses
were also found in response to a LigB subunit vaccine, and an
increase in protection was observed (13). Curiously, in the same
experiment, animals immunized with bacterin, normally used as
positive control, induced only IgG2/3 antibodies. A higher level
of IgG2/3 antibodies has also been observed in control animals
immunized with bacterin (25), in agreement to our results (data
not shown). This could suggest the existence of more than one
mechanism of action capable of controlling leptospire infection.

In fact, antibodies can have several biological effects against
pathogens, such as neutralization, phagocytosis, antibody-
dependent cellular cytotoxicity, and complement-mediated
lysis (42). In our study, both proteins rLIC11711 and
rLIC13259, which showed a greater ability to promote
prevention against leptospiral infection, were identified
previously as human complement-binding proteins. That
ability was specific for both proteins since LigAc, LenA, LcpA,
and Lsa23, characterized as factor H-binding proteins, were not
able to promote such effect when assayed in an animal model
(14). Moreover, previous in vitro experiments performed with
rLIC11711 and rLIC13259 have suggested that both proteins
could promote Leptospira resistance to human serum, suggesting
their active participation in the host-virulence mechanism (23,
24). Our attempt to determine experimentally if antibodies
produced against both proteins developed an opsonizing role,
as observed with BibA protein, was unsuccessful due to
methodological problems (data not shown). However, we
suppose that the antibodies elicited against rLIC11711 and
rLIC13259 proteins could be acting in a way to make
leptospires vulnerable to the host-immune attack.

The major challenge in the leptospirosis field is the
development of vaccines having the capacity to confer broad-
spectrum protection against all pathogenic serovars, prevent
renal colonization, and induce long-lasting immune protection.
Although, our studies have presented survival problems in the
control group, Lsa14, rLIC13259, and rLIC11711 showed
differences statistically significant after challenge with L.
interrogans serovar Kennewicki. However, only the rLIC13259
and rLIC11711 proteins showed a greater ability to control
leptospires from hamster kidneys. We believe that the
interaction of these two proteins with the host complement
system may play a role in bacterial clearance. This could shed
light on the immune mechanisms involved in leptospirosis
protection. Still, more questions than answers remain, and
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more thorough studies are still needed to elucidate the host
immune response that led to bacterial clearance, including cell-
mediated immune analysis. In conclusion, this is the first study to
show a correlation between proteins involved in host complement
system interactions and a greater ability to promote sterilizing
immune protection in a hamster model of leptospirosis.
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