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IRSp53 (also known as BAIAP2) is an abundant excitatory postsynaptic scaffolding
protein implicated in autism spectrum disorders (ASD), schizophrenia, and attention-
deficit/hyperactivity disorder (ADHD). IRSp53 is expressed in different cell types across
different brain regions, although it remains unclear how IRSp53 deletion in different
cell types affects brain functions and behaviors in mice. Here, we deleted IRSp53 in
excitatory and inhibitory neurons in mice and compared resulting phenotypes in males
and females. IRSp53 deletion in excitatory neurons driven by Emx1 leads to strong social
deficits and hyperactivity without affecting anxiety-like behavior, whereas IRSp53 deletion
in inhibitory neurons driven by Viaat has minimal impacts on these behaviors in male
mice. In female mice, excitatory neuronal IRSp53 deletion induces hyperactivity but
moderate social deficits. Excitatory neuronal IRSp53 deletion in male mice induces an
increased ratio of evoked excitatory and inhibitory synaptic transmission (E/I ratio) in
layer V pyramidal neurons in the prelimbic region of the medial prefrontal cortex (mPFC),
whereas the same mutation does not alter the E/I ratio in female neurons. These results
suggest that IRSp53 deletion in excitatory and inhibitory neurons and in male and female
mice has distinct impacts on behaviors and synaptic transmission.

Keywords: autism, synapse, IRSp53, mPFC, social interaction, hyperactivity

INTRODUCTION

IRSp53 (encoded by Baiap2) is a multi-domain scaffolding or adaptor protein that is abundantly
present in the postsynaptic density of excitatory synapses (Sheng and Kim, 2011; Kang et al.,
2016). IRSp53 directly interacts with PSD-95 and Shank, excitatory postsynaptic scaffolding
proteins known to regulate synapse assembly and function and implicated in various brain
disorders, including autism spectrum disorders (ASD; Sheng and Sala, 2001; Sheng and
Hoogenraad, 2007; Jiang and Ehlers, 2013; Sala et al., 2015; Monteiro and Feng, 2017).
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Functionally, IRSp53 regulates dendritic spines and synaptic
function through its ability to coordinate Rac and Cdc42 small
GTPase-dependent modulation of actin filaments (Kang
et al., 2016), the main cytoskeleton of dendritic spines
(Sala and Segal, 2014).

Global deletion of IRSp53 in mice decreases dendritic
spine density in the cortex and induces abnormal behaviors,
including social-interaction deficits, hyperactivity, and cognitive
impairments (Sawallisch et al., 2009; Chung et al., 2015),
in line with the reported implication of IRSp53/BAIAP2 in
ASD (Celestino-Soper et al., 2011; Levy et al., 2011; Toma
et al., 2011), schizophrenia (Fromer et al., 2014; Purcell et al.,
2014), and attention-deficit/hyperactivity disorder (ADHD;
Ribasés et al., 2009; Liu et al., 2013). In addition, global
IRSp53 deletion in mice abnormally increases the function of
N-methyl-D-aspartate receptors (NMDARs) in the
hippocampus, and the NMDAR antagonist memantine
improves social deficits in IRSp53-mutant mice (Kim et al.,
2009; Chung et al., 2015; Bobsin and Kreienkamp, 2016),
supporting the growing importance of NMDAR dysfunction
in ASD (Lee et al., 2015). A previous study has shown that
IRSp53 is expressed in various cell types, including excitatory
neurons in the neocortex and GABAergic neurons in the
striatum and cerebellum (Burette et al., 2014). However,
the impacts of cell type-specific IRSp53 expression on brain
functions and behaviors, including social interaction, remain
essentially unknown.

Here, we restricted Irsp53 knockout (KO) in dorsal
telencephalic glutamatergic neurons using Emx1-Cre mice
and GABAergic neurons using Viaat-Cre mice, and found that
glutamatergic Irsp53 KO led to social deficits and hyperactivity
associated with increased ratio of evoked excitatory and
inhibitory synaptic transmission (E/I ratio) in the medial
prefrontal cortex (mPFC) of male mice. In female mice,
glutamatergic Irsp53 KO led to moderate social deficits that are
associated with an unaltered cortical E/I ratio.

MATERIALS AND METHODS

Animals
Mice were bred and maintained according to the Requirements
of Animal Research at KAIST. All procedures were
approved and followed by the Committee of Animal
Research at KAIST (KA201). We used male mice for
behavioral, electrophysiological, and other (biochemical,
FISH, and tdTomato expression in Emx1- and Viaat-Cre
mice) experiments; female mice were also used for
behavioral tests [three-chamber and open-field test (OFT)]
and electrophysiology.

Mice were fed ad libitum, and 2–4 mice were housed
together in a cage under a 12-h light-dark cycle. There were
no differences in the body weights of age-matched mouse
groups. Mice were identified by polymerase chain reaction
(PCR) genotyping using the following PCR primers: IRSp53 flox
AGGAGGTGTTTCTGCTCTGG/AATAGCAGTCTGGGGTC
TGG; Cre CGTACTGACGGTGGGAGAAT/TGCATGATCT
CCGGTATTGA.

Behavioral Assays
All behavioral assays were performed using age-matched
C57BL6/J mice (8–16 weeks) generated by Cre/+;
Irsp53flox/+ × Irsp53flox/flox mating. All behavioral assays
were performed during light-off periods. The light condition for
all behavioral assays was∼120 lux. There were at least 1 day-long
rest periods between tests. The behavioral assays were performed
in the order of the open field test, elevated plus-maze (EPM) test,
and three-chamber social interaction test. Behavioral assays were
recorded as video files (.avi format) and analyzed by Ethovision
XT 10 (Noldus, The Netherlands).

Three-Chamber Social Interaction Test
The three-chambered social-interaction test was performed as
described previously (Moy et al., 2004; Silverman et al., 2010).
The apparatus had the following dimensions; W 60 × H 40 × D
20 cm for the whole apparatus, and W 20 × H 20 × D
20 cm for each chamber. The side chambers contained an
aluminum grid with a curved face to confine the mouse/object.
The assay consisted of three sessions. During the first 10-min
session, a subject mouse was allowed to freely explore all three
chambers for habituation. Then the mouse was confined briefly
in the center chamber, while a novel object and a WT stranger
mouse, stranger 1, were placed in the side chambers behind the
aluminum grid in a random manner to minimize the influences
of side bias. The subject mouse was then allowed to freely explore
all three chambers for 10 min. Before the last session, the subject
mouse was again gently guided to the center chamber while
the object was replaced with another WT mouse, stranger 2.
The subject mouse was again allowed to freely explore all three
chambers for 10 min.

In a modified three-chamber social interaction test performed
for five consecutive days to measure social novelty in mice
(Bariselli et al., 2018), we used the same apparatus and social
interaction scheme. This test used an empty aluminum grid
without an object, unlike the conventional three-chamber social
interaction test. A subject mouse was exposed to the first stranger
for the first 4 days to maximize habituation to the stranger, and
the stranger was placed in alternate chambers to suppress the
effect of side bias. One day 5, the first stranger was replaced with
the second stranger to measure social-novelty recognition.

All stranger mice were age-matched males and were
habituated to the side chambers in advance during the previous
day for 30 min. The positions of the object and stranger mouse
were alternated between tests to minimize the influences of
side preference.

Open-Field Test
Mice were placed in the center region of an open-field box
(40 × 40 × 40 cm). Open-field locomotor activities were
measured for 60 min.

Elevated Plus-Maze Test
An elevated-plus maze was made of gray acryl with four arms,
each 30-cm long and 5-cm wide (Walf and Frye, 2007). The
height of the maze was elevated 75 cm above the ground. The
light condition of closed arms was ∼0 lux. A test mouse was
placed in the center of the maze at the junction of the four arms
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in the beginning and was allowed to freely explore the maze for
10 min.

Whole-Cell Recordings
Coronal slices (mPFC) were prepared using a vibratome
(VT1200S, Leica, Germany) in ice-cold dissection buffer (in
mM: 212 sucrose, 25 NaHCO3, 5 KCl, 1.25 NaH2PO4,
10 D-glucose, 2 sodium pyruvate, 1.2 sodium ascorbate,
3.5 MgCl2, 0.5 CaCl2 bubbled with 95% O2/5% CO2).
The slices were recovered at 32 ◦C in normal artificial
cerebrospinal fluid (ACSF; in mM: 125 NaCl, 25 NaHCO3,
2.5 KCl, 1.25 NaH2PO4, 10 D-glucose, 1.3 MgCl2, 2.5 CaCl2)
and thereafter maintain at room temperature. Cells were
visualized using infrared differential interference contrast video
microscopy (Olympus, BX50XI). Whole-cell current-clamp
recordings were made by using a MultiClamp 700B amplifier
(Molecular Devices).

For voltage-clamp recordings, recording pipettes (3–5 M�)
were filled with a solution containing (in mM) 120 CsMeSO4,
15 CsCl, 10 TEA-Cl, 8 NaCl, 10 HEPES, 0.25 EGTA, 5 QX-
314, 4 MgATP, and 0.3 NaGTP, pH 7.25–7.35 (280–300 mOsm;
Rothwell et al., 2014). Signals were filtered at 2 kHz and
digitized at 10 kHz. Miniature excitatory postsynaptic currents
(mEPSCs) were recorded in the presence of AP5 (50 µM)
and tetrodotoxin (1 µM) at the holding potential of −70 mV.
Miniature inhibitory postsynaptic currents (mIPSCs) were
recorded at the holding potential of 0 mV, as described
previously (Liang et al., 2015). For voltage-clamp recordings
with electrical stimulation (NMDA/AMPA ratio, paired-pulse
ratio, and excitatory/inhibitory ratio), a stimulus pipette was
located 100 µm toward the pia from the patched cell.
Stimulus electrode was soaked in the abovementioned bath
solution, and 1/15 Hz stimulation was used to obtain baseline
responses (20/8/20 for NMDA/AMPA ratio, paired-pulse
ratio, and excitatory/inhibitory ratio, respectively). Stimulus
intensity was modified in different experiments (NMDA/AMPA
ratio, <10 pA at 50 ms after stimulation; paired-pulse ratio,
60 pA < EPSC1 < 200 pA).

For current-clamp recordings, recording pipettes (3–5 M�)
were filled with a solution containing (in mM) 120 Kgluconate,
20 HEPES, 0.4 EGTA, 2.8 NaCl, 5 TEA-Cl, 2.5 MgATP,
and 0.25 NaGTP, pH 7.25–7.35 (280–300 mOsm). Picrotoxin
(100 µM) and NBQX (10 µM) were present throughout
the experiments to block inhibitory and excitatory synaptic
transmissions, respectively. If the series resistance changed
by more than 20%, data were not included in the analysis.
Membrane potentials were not corrected for junction potentials
(estimated to be 10 mV). To obtain sustained firings, a series
of current (1 s duration, 50 pA steps for mPFC) was injected.
To measure action potential thresholds, a series of current
steps (2 ms duration at 2.5 Hz, 0–2,500 pA range, +10 pA
step increments) were injected into patched neurons until an
action potential was generated. To measure the input resistance,
hyperpolarizing current steps (1 s duration, 0 to −100 pA,
−25 pA step increments) were injected into patched neurons. All
voltage measures were taken after neurons had reached a stable
response (Chen et al., 2013).

Immunoblotting and Immunofluorescence
For immunoblotting experiments, a fresh brain was
homogenized with ice-cold lysis buffer containing 320 mM
sucrose, 10 mM HEPES pH 7.4, 5 mM EDTA, and
protease inhibitors. For immunofluorescence experiments,
isoflurane-anesthetized mice were transcardially perfused
with 4% paraformaldehyde in phosphate-buffered saline
(PFA/PBS), followed by brain removal and incubation in 4%
PFA/PBS for 24 h for fixation. Fixed brains were sectioned
(100 µm) using a vibratome (VT1200S, Leica, Germany)
and subjected to immunofluorescence staining for IRSp53.
The following antibodies were purchased commercially:
BAIAP2/IRSp53 antibody (1:1,000, Atlas, rabbit, HPA023310),
and α-tubulin antibody (1:10,000, Sigma, mouse, T9026). For
immunoblotting, secondary antibodies for BAIAP2/IRSp53 and
β-tubulin antibodies were donkey anti-rabbit antibody with
800 nm detection (LiCor, 1:10,000) and donkey anti-mouse
antibody with HRP (Jackson, 1:10,000), respectively.

Fluorescent in situ Hybridization
Frozen sections (14 µm thick) were cut coronally through the
hippocampal formation. The sections were thaw-mounted onto
Superfrost Plus Microscope Slides (Thermo Fisher Scientific,
Waltham, MA, USA; 12-550-15). The sections were fixed
in 4% formaldehyde for 10 min, dehydrated in increasing
concentrations of ethanol for 5 min, and finally air-dried.
Tissues were then pretreated for protease digestion for 10 min
at room temperature. For RNA detection, incubations with
different amplifier solutions were performed in a HybEZ
hybridization oven (ACDBio, Newark, CA, USA) at 40◦C. The
probes used in this study were three synthetic oligonucleotides
complementary to the nucleotide (nt) sequence 2–1,268 of
Mm-Baiap2-C1, nt 464–1,415 of Mm-Slc17a7/Vglut1-C2, nt
1986–2,998 of Mm-Slc17a6/Vglut2-C3, nt 62–3,113 of Mm-
Gad1-C3, nt 552–1,506 of Mm-Gad2-C2 (ACDBio, Newark, CA,
USA). The labeled probes were conjugated to Atto 550 (C1),
Alexa Fluor 488 (C2), and Atto 647 (C3). The sections were
hybridized at 40◦C with labeled probe mixtures (C1 + C2 + C3)
per slide for 2 h. Then the non-specifically hybridized probes
were removed by washing the sections, three times each in 1×
wash buffer at room temperature for 2 min. Amplification steps
involved sequential incubations with Amplifier 1-FL for 30 min,
Amplifier 2-FL for 15 min, Amplifier 3-FL for 30 min, and
Amplifier 4 Alt B-FL at 40◦C for 15 min. Each amplifier solution
was removed by washing three times with 1× wash buffer for
2 min at room temperature. Fluorescent images were acquired
using TCS SP8 Dichroic/CS (Leica), and the ImageJ program
(NIH) was used to analyze the images.

Statistics
Statistical data analysis was performed using Prism 6
(GraphPad). Data normality was determined using the
Shapiro-Wilk normality test. Data with normal distribution
were analyzed using Student’s t-test and analysis of variance
(ANOVA), followed by post hoc tests. Data failing the normality
test were analyzed using the Mann–Whitney test. ROUTmethod
was used to exclude outliers with a Q coefficient of 1%. Exact
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FIGURE 1 | Irsp53 mRNAs are primarily detected in glutamatergic but minimally in GABAergic neurons in the cortex. (A–F) Coronal sections of WT mice (8 weeks)
were subjected to fluorescence in situ hybridization. Note that Irsp53/Baiap2 mRNAs are detected in Vglut1/2-positive glutamatergic neurons but minimally in
Gad1/2-positive GABAergic neurons in the motor and somatosensory cortex. DAPI was used for nuclear staining. Red dashed line boxes were enlarged to show the
levels of neuronal colabelings, and white dashed line boxes with subdivisions across cortical depth were used to quantify the colabelings. L1, cortical layer 1; CC,
corpus callosum. Scale bar, 100 µm (A,D) and 25 µm (C,F).
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FIGURE 2 | Irsp53 deletion in glutamatergic but not GABAergic neurons induces social deficits and hyperactivity. (A) Schematic for conditional Irsp53/Baiap2
knockout (KO). (B) Polymerase chain reaction (PCR) genotyping of Irsp53fl/fl mice and conditional Irsp53-KO mice (Emx1-Cre;Irsp53fl/fl or Viaat-Cre;Irsp53fl/fl mice)
using primer sets directed for the Irsp53/Baiap2 allele and Cre recombinase. The two bands in the WT/flox lane represent PCR products from Irsp53 alleles
with and without the Frt + LoxP sites. (C) Levels of IRSp53 proteins in global IRSp53-KO (gKO) mice, Emx1-Cre;Irsp53fl/fl mice (Emx1 cKO), and Viaat-Cre;Irsp53fl/fl

mice (Viaat cKO). Whole-brain lysates from mice at P56 were used for immunoblotting. (D–G) Suppressed social interaction in Emx1-Cre;Irsp53fl/fl but not
(Continued)
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FIGURE 2 | Continued
Viaat-Cre;Irsp53fl/fl mice (2 months; males) in the three-chamber social
interaction test (3CT), as shown by time spent sniffing social/object target, as
compared with control Irsp53fl/fl mice. S, social target (stranger mouse);
O, object target. Note that total time spent sniffing and distance moved in the
3CT apparatus are normal in the mutant mice. n = 11 mice (Irsp53fl/fl or f/f),
14 mice (Emx1-cKO), and 18 mice (Viaat-cKO), ***P < 0.001; ns, not
significant, two-way analysis of variance (ANOVA) with Bonferroni’s test. 3CT,
interaction factor/F (2,94) = 5.317, chamber F (1,94) = 67.54, genotype
F (2,94) = 0.7795; total time spent sniffing, F (2,40) = 0.1732; total distance
moved, F (2,40) = 1.824. (H) Lack of social novelty recognition in
Emx1-Cre;Irsp53fl/fl, Viaat-Cre;Irsp53fl/fl, and control (Irsp53fl/fl) mice
(2 months; males) in the three-chamber test. S1, old stranger; S2, new
stranger. n = 11 mice (Irsp53fl/fl or f/f), 14 mice (Emx1-cKO), and 18 mice
(Viaat-cKO), ns, not significant, two-way ANOVA with Bonferroni’s test,
interaction F (2,80) = 0.8983, chamber F (1,80) = 3.370, genotype F (2,80) = 1.632.
(I,J) Normal social novelty recognition in Emx1-Cre;Irsp53fl/fl mice (2 months;
males) in the 5-day three-chamber test, as shown by the difference in sniffing
time for an old stranger (S1) and a new stranger (S2) on day 4 and 5,
respectively. Note that control (Irsp53fl/fl) mice show normal levels of
habituation to S1, as shown by the time sniffing S1 across days 1–4 that
becomes insignificant on days 2–4. n = 8 mice (Irsp53fl/fl or f/f), eight mice
(Emx1-cKO), *P < 0.05, **P < 0.01, ***P < 0.001; ns, not significant,
two-way ANOVA with Bonferroni’s test and repeated-measures AVOVA with
Bonferroni’s test. Five-day three-chamber test, day 1–5, interaction
F (4,28) = 1.769, time F (4,28) = 3.103, genotype F (1,7) = 29.86; day 4–5,
interaction F (1,7) = 0.9518, time F (1,7) = 8.614, genotype F (1,7) = 11.62.
(K) Increased locomotor activity in Emx1-Cre;Irsp53fl/fl but not in
Viaat-Cre;Irsp53fl/fl mice (2 months; males) in the open-field test (OFT).
n = 15 mice (f/f), 14 mice (Emx1-cKO), and 18 mice (Viaat-cKO),
***P < 0.001; ns, not significant, one-way ANOVA with Bonferroni’s test,
F (2,44) = 12.60. (L) Normal anxiety-like behavior in Emx1-Cre;Irsp53fl/fl and
Viaat-Cre;Irsp53fl/fl mice (2 months; males) in the elevated plus-maze (EPM)
test, as shown by time spent in open/closed arms. O, open arm; C, closed
arm. n = 15 mice (f/f), 14 mice (Emx1-cKO), and 18 mice (Viaat-cKO),
***P < 0.001, two-way ANOVA with Bonferroni’s test, interaction
F (2,88) = 3.848, arm F (1,88) = 485.2, genotype F (2,88) = 1.518.

numbers of mice used and the statistical details are shown in
Supplementary Table S1.

RESULTS

Irsp53 mRNA Expression in Glutamatergic
and GABAergic Neurons in the Cortex
To explore specific brain cell types that contribute to social
deficits and hyperactivity observed in global Irsp53-KO mice
(Chung et al., 2015), we first determined IRSp53 expression in
glutamatergic and GABAergic neurons by in situ fluorescence
hybridization. Irsp53 mRNA was readily detected in Vglut1/2-
positive glutamatergic neurons in the cortex, but it was
minimally detectable in Gad1/2-positive GABAergic neurons
(Figures 1A–F). Quantitative analysis indicated that colabelings
of Irsp53 and Vglut1/2 mRNAs were not different across
the depth of cortical layers, whereas colabelings of Irsp53
and Gad1/2 mRNAs, although sparse (∼13% of the Irsp53-
Vglut1/2 colabelings in number), were stronger in middle layers.
These results are consistent with the reported expression
of IRSp53 protein primarily in glutamatergic but not
GABAergic neurons in the cortex and hippocampus, although
IRSp53 protein is also detectable in striatal and cerebellar
GABAergic neurons (Burette et al., 2014).

Irsp53 Deletion in Dorsal Telencephalic
Glutamatergic but Not GABAergic Neurons
Induces Social Deficits and Hyperactivity
For conditional Irsp53 KO in glutamatergic or GABAergic
neurons, we generated a novel mouse line in which exons
4–6 of Irsp53 are floxed (Irsp53fl/fl mice) and crossed them
with Emx1-Cre (Jax005628; dorsal telencephalic glutamatergic;
Gorski et al., 2002) and Viaat-Cre (Jax017535; Chao et al., 2010)
mice, respectively (Figure 2A). The resulting conditional Irsp53-
KO mouse lines, Emx1-Cre; Irsp53fl/fl and Viaat-Cre; Irsp53fl/fl,
were verified by PCR genotyping and immunoblot analysis
(Figures 2B,C). IRSp53 protein levels in Emx1-Cre; Irsp53fl/fl and
Viaat-Cre; Irsp53fl/fl whole brains were∼29± 4% and∼64± 4%
of WT values, respectively. Appropriate expression of Cre in the
mouse lines used in this study was confirmed by crossing with
a reporter mouse line (Ai9 tdTomato line; JAX 007909; Madisen
et al., 2010; Supplementary Figure S1).

In behavioral experiments performed using male mice, Emx1-
Cre;Irsp53fl/fl mice displayed impaired social interaction in the
three-chamber test compared with control (Irsp53fl/fl) mice
without Cre expression (Figures 2D,E). These changes did not
accompany altered total social interaction or locomotor activity
in the three-chamber apparatus (Figures 2F,G).

Changes in social novelty recognition during the three-
chamber test could not be determined because control Irsp53fl/fl
mice did not prefer to explore a novel stranger (Figure 2H).
However, an additional test for social novelty recognition termed
5-day three-chamber test, where a subject mouse was exposed
to the first stranger mouse for four consecutive days for full
habituation followed by exposure to the second stranger mouse
on day 5 (Bariselli et al., 2018), Emx1-Cre;Irsp53fl/fl mice
displayed normal social novelty recognition that is comparable
to that of control (Irsp53fl/fl) mice (Figures 2I,J).

Emx1-Cre;Irsp53fl/fl mice displayed hyperactivity in the OFT
but normal anxiety-like behavior in the EPM test (Figures 2K,L).
Viaat-Cre;Irsp53fl/fl mice showed no detectable changes in
social interaction, locomotor activity, or anxiety-like behavior
(Figures 2D,E,L). Control (Irsp53fl/fl) mice showed normal
social interaction and locomotor activity, compared with WT
mice (without Irsp53fl/fl and Cre alleles; Supplementary Figures
2A,B). In addition, mice expressing Cre alone (Emx1-Cre and
Viaat-Cre) showed normal social interaction, locomotion,
or anxiety-like behavior (Supplementary Figures 2C–E).
Therefore, Irsp53 KO in dorsal telencephalic glutamatergic,
but not GABAergic, neurons leads to social deficits and
hyperactivity in mice, similar to those in global Irsp53-KO mice
(Chung et al., 2015).

Emx1-Cre; Irsp53fl/fl and Viaat-Cre;
Irsp53fl/fl Mice Show Distinct Changes in
Synaptic Transmission and Intrinsic
Excitability in mPFC Pyramidal Neurons
To explore mechanisms underlying the social deficits and
hyperactivity in Emx1-Cre; Irsp53fl/fl mice, we analyzed synaptic
and neuronal properties in the mPFC, a brain region that
displayed decreased excitatory synapse density in global Irsp53-
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FIGURE 3 | Emx1-Cre;Irsp53fl/fl and Viaat-Cre;Irsp53fl/fl mice show distinct changes in synaptic transmission and intrinsic excitability in medial prefrontal cortex
(mPFC) pyramidal neurons. (A) Miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) in layer V pyramidal
neurons in the prelimbic region of the mPFC in Emx1-Cre;Irsp53fl/fl and Viaat-Cre;Irsp53fl/fl mice (3 months; male). Note that the frequency of mEPSCs is significantly
decreased in Emx1-Cre;Irsp53fl/fl mice. n = 13 neurons from three mice for f/f-mEPSC, 14, 3 for Emx1-mEPSC, 15, 3 for Viaat-mEPSC, 13, 3 for f/f-mIPSC, 15,
3 for Emx1-mIPSC, and 15, 3 for Viaat-mIPSC, *P < 0.05, ns, not significant, one-way ANOVA with Bonferroni’s test. mEPSC frequency, F (2,39) = 4.119; mEPSC
amplitude, F (2,39) = 0.342; mIPSC frequency, F (2,40) = 2.012; mIPSC amplitude, F (2,40) = 0.7806. (B) Intrinsic excitability in layer V pyramidal neurons in the prelimbic

(Continued)
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FIGURE 3 | Continued
region of the mPFC in Emx1-Cre;Irsp53fl/fl and Viaat-Cre;Irsp53fl/fl mice
(3 weeks; male). Note that intrinsic excitability is increased both in
Emx1-Cre;Irsp53fl/fl and Viaat-Cre;Irsp53fl/fl mice. n = 13, 3 for f/f-firing
frequency, 14, 3 for Emx1-firing frequency, 18, 3 for Viaat-firing frequency, 13,
3 for f/f-AP threshold, 14, 3 for Emx1-AP threshold, 18, 3 for Viaat-AP
threshold, 13, 3 for f/f-input resistance, 14, 3 for Emx1-input resistance, 18,
3 for Viaat-input resistance, *P < 0.05, ***P < 0.001; ns, not significant,
one-way ANOVA with Bonferroni’s test for AP threshold, two-way ANOVA
with Bonferroni’s test for firing frequency and input resistance. Sustained
firing, interaction F (18,420) = 3.165, current F (9,420) = 61.89, genotype
F (2,420) = 56.73; action potential threshold, F (2,42) = 16.14; input resistance,
interaction F (6,168) = 0.5088, current F (3,168) = 60.88, genotype
F (2,168) = 11.33. (C) Normal ratio of evoked N-methyl-D-aspartate receptors
(NMDAR)-EPSCs and AMPA receptor (AMPAR)-EPSCs in Emx1-Cre;Irsp53fl/fl

layer V pyramidal neurons in the prelimbic region of the mPFC (2 months;
male). n = 9 neurons for three mice for f/f, 11, 3 for Emx1, ns, not significant,
Student’s t-test, t = 0.2447, df = 18. (D) Increased ratio of evoked EPSCs
and IPSCs in Emx1-Cre;Irsp53fl/fl layer V pyramidal neurons in the prelimbic
region of the mPFC (2 months; male). n = 8 neurons for three mice for f/f, 8,
3 for Emx1, ***P < 0.001, Student’s t-test, t = 5.019, df = 14. (E) Normal
paired-pulse ratio in Emx1-Cre;Irsp53fl/fl layer V pyramidal neurons in the
prelimbic region of the mPFC (2 months; male). n = 10 neurons for three mice
for f/f, 9, 3 for Emx1, ns, not significant, two-way ANOVA with Bonferroni’s
test, interaction F (5,85) = 0.6379, time F (5,85) = 4.100, genotype
F (1,17) = 0.7348.

KO mice (Chung et al., 2015). The frequency but not amplitude
of mEPSCs in the Emx1-Cre; Irsp53fl/fl mPFC (layer V pyramidal
neurons in the prelimbic area) was decreased, whereas mIPSCs
were normal (Figure 3A), in line with the reported decrease
in excitatory synaptic transmission and dendritic spine density
in mPFC pyramidal neurons from Irsp53-null mice (Chung
et al., 2015). In addition, these neurons showed moderately
increased intrinsic excitability, as shown by action potential
threshold and input resistance (Figure 3B), likely to compensate
for the decreased excitatory synaptic input. In Viaat-Cre;
Irsp53fl/fl mice, however, mEPSCs or mIPSCs were normal
in layer V mPFC neurons (Figure 3A). Intriguingly, the
intrinsic excitability was strongly increased, as shown by current-
firing curve, action potential threshold, and input resistance
(Figure 3B).

When evoked synaptic transmission was measured, the ratio
of NMDAR-mediated EPSCs and AMPA receptor (AMPAR)-
mediated EPSCs was not altered in Emx1-Cre; Irsp53fl/fl layer V
pyramidal neurons (Figure 3C). These results collectively suggest
that Irsp53 deletion in glutamatergic neurons leads to reduced
spontaneous excitatory but not inhibitory synaptic transmission,
increased ratio of evoked EPSCs/IPSCs, and increased neuronal
excitability without affecting evoked NMDAR-EPSC/AMPAR-
EPSC ratio in layer V mPFC neurons.

Male and Female Emx1-Cre; Irsp53fl/fl

Mice Show Distinct Changes in Synaptic
Transmission and Behaviors
The abovementioned behavioral and electrophysiological results
were obtained from male Emx1-Cre; Irsp53fl/fl mice. Given
that male-female differences could affect these phenotypes, we
measured social interaction and locomotor activity in Emx1-
Cre;Irsp53fl/fl mice. Intriguingly, female Emx1-Cre;Irsp53fl/fl

mice showed normal three-chamber social interaction in the
three-chamber test, although there was a decreasing tendency, as
compared with control (Irsp53fl/fl) mice (Figure 4A), indicative
of male-female difference in social interaction. In contrast,
female Emx1-Cre;Irsp53fl/fl mice showed strong hyperactivity in
the OFT (Figure 4B), similar to male Emx1-Cre;Irsp53fl/fl mice.

When excitatory synaptic transmission was measured in
layer V pyramidal neurons in the prelimbic area of the mPFC
from female Emx1-Cre;Irsp53fl/fl mice, there was a decrease
in the amplitude, but not frequency, of mEPSCs in female
mutant neurons, compared withWTneurons (Figure 4C), which
contrasts with the decreased frequency but not amplitude of
mEPSCs in male mutant neurons (Figure 3A). In addition,
there were no genotype differences in the ratio of evoked
EPSCs/IPSCs or the paired-pulse ratio in layer V pyramidal
neurons (Figures 4D,E). These results collectively suggest that
Irsp53 deletion induces distinct changes in behaviors and
excitatory synaptic transmission in the mPFC.

DISCUSSION

We attempted here to restrict Irsp53 deletion to Emx1-positive
glutamatergic and Viaat-positive GABAergic neurons to
investigate the impact of IRSp53 KO in the respective neurons
on mouse behaviors and synaptic/neuronal properties. Irsp53
KO in Emx1-positive dorsal telencephalic glutamatergic neurons
leads to both social interaction deficits and hyperactivity, two
key behavioral phenotypes observed in global Irsp53-KO mice
(Chung et al., 2015), whereas Irsp53 KO in Viaat-positive
GABAergic neurons does not affect social interaction or
hyperactivity. Therefore, Irsp53 expression in glutamatergic
neurons in the cortex, where Emx1 is strongly expressed, seems
to be important for normal social interaction and locomotor
activity. This is in line with the well-known importance of
the PFC in the regulation of social cognition and interaction,
previously reported in studies with human subjects as well asWT
and mutant mice carrying ASD- and schizophrenia-related gene
mutations (Ernst et al., 1997; Mundy, 2003; Pierce et al., 2004;
Carper and Courchesne, 2005; Amodio and Frith, 2006; Gilbert
et al., 2008; Rinaldi et al., 2008; Shalom, 2009; Courchesne
et al., 2011; Yizhar et al., 2011; Testa-Silva et al., 2012; Liang
et al., 2015; Barak and Feng, 2016; Ko, 2017; Selimbeyoglu et al.,
2017; Cao et al., 2018; Pirone et al., 2018; Wang et al., 2018,
2019; Guo et al., 2019; Lazaro et al., 2019; Phillips et al., 2019;
Yoo et al., 2019).

Irsp53 KO restricted to Emx1-positive glutamate neurons
induces decreased mEPSC frequency, decreased NMDA/AMPA
ratio, and increased E/I ratio in layer V pyramidal neurons
in the prelimbic region of the mPFC. These changes are
associated with moderately increased neuronal excitability.
Whether these changes alter the output function of the mutant
layer V pyramidal neurons under basal or social conditions
would require additional analyses. However, the mPFC is
known to receive afferent projections from various brain
regions (Riga et al., 2014; Root et al., 2015; Murugan et al.,
2017; Park and Moghaddam, 2017; Knowland and Lim, 2018).
In particular, the prelimbic region of the mPFC receives
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FIGURE 4 | Female Emx1-Cre;Irsp53fl/fl mice show distinct changes in synaptic transmission and behaviors. (A) Normal social interaction in female
Emx1-Cre;Irsp53fl/fl mice in the three-chamber test (2 months; females). n = 10 mice (Irsp53fl/fl or f/f), 10 mice (Emx1-cKO), *P < 0.05, ***P < 0.001, two-way
ANOVA with Bonferroni’s test, interaction F (1,36) = 4.035, chamber F (1,36) = 31.58, genotype F (1,36) = 0.0003937. (B) Hyperactivity in female Emx1-Cre;Irsp53fl/fl mice
in the OFT (2 months; females). n = 10 mice (Irsp53fl/fl or f/f), 10 mice (Emx1-cKO), **P < 0.01, Student’s t-test, t = 3.434, df = 18. (C) Decreased amplitude but
normal frequency of mEPSCs in layer V pyramidal neurons in the prelimbic region of the mPFC in Emx1-Cre;Irsp53fl/fl (3 months; females). n = 14 neurons from three
mice for f/f-mEPSC, 10, 3 for Emx1-mEPSC in mPFC, **P < 0.01; ns, not significant, Mann–Whitney test for frequency, Student’s t-test for amplitude. mEPSC
frequency, Mann-U 62; mEPSC amplitude, t = 3.278, df = 24. (D) Normal ratio of evoked EPSCs and IPSCs in layer V pyramidal neurons in the prelimbic region of
the mPFC in female Emx1-Cre;Irsp53fl/fl mice (2–3 months; females). n = 9 neurons for three mice for f/f, 9, 3 for Emx1, ns, not significant, Student’s t-test, t = 1.675,
df = 16. (E) Normal paired-pulse ratio in layer V pyramidal neurons in the prelimbic region of the mPFC in female Emx1-Cre;Irsp53fl/fl (2–3 months; females).
n = 6 neurons for three mice for f/f, 6, 3 for Emx1, ns, not significant, two-way ANOVA with Bonferroni’s test, interaction F (5,90) = 0.8666, time F (5,90) = 0.9748,
genotype F (1,18) = 0.6927.

strong afferent projections from limbic regions of the cortex
as well as other subcortical areas, including basal forebrain,
thalamus, amygdala, hypothalamus, and midbrain (Hoover
and Vertes, 2007). In addition, layer V pyramidal neurons
in the prelimbic area project to various subcortical regions,
including lateral hypothalamus, striatum, and basolateral

amygdala (Sesack et al., 1989; Gabbott et al., 2005). Therefore,
the altered spontaneous and evoked synaptic transmission and
intrinsic excitability of the mutant layer V pyramidal neurons
might change their output functions and contribute to social
deficits and hyperactivity observed in Emx1-Cre;Irsp53fl/fl
mice.
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Emx1-Cre;Irsp53fl/fl males show strong social deficits whereas
females show only modestly suppressed social interaction,
while they both show comparable hyperactivity. This suggests
that the hyperactivity is not the key confounding factor
contributing to the social deficits. Notably, spontaneous
excitatory synaptic transmission is distinctly changed in
layer V pyramidal neurons in the prelimbic area in male
and female Emx1-Cre;Irsp53fl/fl mice; decreased mEPSC
frequency in male neurons and decreased mEPSC amplitude
(not frequency) in female neurons. This difference, although
intriguing, is less likely to induce a qualitative difference
in the output function of these neurons. Importantly,
however, the E/I ratio of evoked synaptic transmission was
increased in male, but female, layer V pyramidal neurons.
Although further details remain to be determined, these
results are in line with the reported association of altered
E/I ratio in cortical neurons with social deficits (Yizhar
et al., 2011; Nelson and Valakh, 2015; Lee et al., 2017;
Selimbeyoglu et al., 2017). In addition, these results add
to the emerging notion that non-sex-differential factors
such as synaptic transmission and neuronal properties
(relative to sex-differential factors such as hormone and
X-Y chromosomes) may contribute to the male-female
phenotypic differences in animal models of autism (Werling
and Geschwind, 2013; Barak and Feng, 2016; Lo et al., 2016;
Werling et al., 2016; Jung et al., 2018). Last, our data indicate
that GABAergic neuronal deletion of IRSp53 in male mice
minimally affects social and locomotor activities. However,
this does not exclude the possibility that female mice with the
same mutation show some positive electrophysiological and
behavioral phenotypes.

In conclusion, our data suggest that Irsp53 KOs restricted to
glutamatergic neurons and GABAergic neurons and in male and

female mice lead to distinct behavioral deficits and changes in
synaptic and neuronal properties in the mPFC.
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