
RESEARCH ARTICLE

Optimal diameter reduction ratio of acinar

airways in human lungs

Keunhwan ParkID
1,2☯, Yeonsu JungID

3☯, Taeho SonID
1, Young-Jae Cho4, Noo Li Jeon3,

Wonjung Kim5*, Ho-Young KimID
3*

1 Institute of Advanced Machines and Design, Seoul National University, Seoul, Korea, 2 Department of

Physics, Technical University of Denmark, Lyngby, Denmark, 3 Department of Mechanical and Aerospace

Engineering, Seoul National University, Seoul, Korea, 4 Division of Pulmonary and Critical Care Medicine,

Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea,

5 Department of Mechanical Engineering, Sogang University, Seoul, Korea

☯ These authors contributed equally to this work.

* wonjungkim@sogang.ac.kr (WK); hyk@snu.ac.kr (HYK)

Abstract

In the airway network of a human lung, the airway diameter gradually decreases through

multiple branching. The diameter reduction ratio of the conducting airways that transport

gases without gas exchange is 0.79, but this reduction ratio changes to 0.94 in acinar air-

ways beyond transitional bronchioles. While the reduction in the conducting airways was

previously rationalized on the basis of Murray’s law, our understanding of the design princi-

ple behind the acinar airways has been far from clear. Here we elucidate that the change in

gas transfer mode is responsible for the transition in the diameter reduction ratio. The oxy-

gen transfer rate per unit surface area is maximized at the observed geometry of acinar air-

ways, which suggests the minimum cost for the construction and maintenance of the acinar

airways. The results revitalize and extend the framework of Murray’s law over an entire

human lung.

Introduction

Fluid transport systems in the form of branching networks have evolved in multicellular

organisms to deliver bulk metabolic matter to matter exchange sites [1–7]. In a branching net-

work, a mother branch is divided into numerous terminal daughters. The aggregate cross-sec-

tional area of the vessels of a single generation generally increases with branch generations,

and the flow velocity thus decreases. A low flow speed is advantageous for allowing more time

for mass transfer at the terminal branches [1]. For instance, the diameter of vascular vessels in

the human body decreases from ~1 cm at the aortae to ~10 μm at the capillaries, whereas the

aggregate cross-sectional area increases from ~1 cm2 to ~103 cm2 [1, 8]. However, expanding

the cross-sectional area of the daughter vessels can be costly because of the construction and

maintenance of redundant channels. Murray’s law explains how the costs of running the vas-

cular system can be minimized by controlling the diameter reduction ratio [9, 10]. The same

framework has been utilized for rationalizing the observed diameter reduction ratio in the
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xylem in plants, for which the constructing cost of conduits is the primary factor limiting the

expansion of the cross-sectional area of the xylem vessels [11].

The airway system in a human lung exhibits a similar branching architecture. A single tra-

chea bifurcates into ~223 terminal branches. In this bronchial network, the expansion of the

aggregate cross-sectional area of the daughter channels is limited by the airway volume, in

such a way that the air transport to the alveoli is maximized for a given amount of inhalation

air [12, 13]. Nevertheless, this rationale explains the airway branching only in conducting air-

ways where no gas exchange occurs, as shown in Fig 1.

It has been supposed that the change in gas transfer mode from advection to diffusion is

responsible for the transition in the reduction ratio of bronchial airways [10, 14, 15]. Explicit

analytical or computational studies, often combined with fractal modeling, focused on the

velocity field in airways [16], permeability in acinus [17], breathing irregularity [18], and

asymmetric branching [19–22]. The principle of the cost minimization for diffusive mass

transfer was developed, which successfully provided the rationale for the spiracle pore net-

works of insects [23, 24]. However, this model cannot be directly applied to acinar airways

because the observed diameter reduction ratio of acinar airways (k = 0.94) is much larger than

that of Murray’s law for diffusion (k = 0.71).

Here we present a model for the hitherto unexplained diameter reduction ratio in the acinar

airways, k = 0.94. With a simplified airway geometry that is amenable to mathematical analysis,

our model captures an essential physical picture responsible for the observed diameter reduc-

tion ratio.

Results

We begin with an analysis of the oxygen transfer in human lung airways. During a 2 s period

of inhalation, a negative pressure in the pleural cavity induces the expansion of alveoli, and the

Fig 1. Anatomic schematic of the airways of human lungs. (A) Schematic illustration of conducting airways (blue box) and acinar airways (red box). The hierarchical

airway network consists of dichotomous trees with 23 generations. The transferred air diffuses to capillaries enclosed in the alveoli, most of which are attached to the late

generations of the airways. The airway lengths of the 16th-23rd generations are 1.33, 1.12, 0.93, 0.83, 0.7, 0.7, 0.7, and 0.7 mm in the order [12], and an average diameter

of alveoli is 200 μm [34]. (B) Reduction in normalized airway diameter along with airway generation. The diameter reduction ratio is 0.79 in the conducting airways,

whereas it shifts to 0.94 in the acinar airways. Note that Murray’s law for diffusion in insects, k = 0.71, cannot explain the acinar airways reduction ratio (red dashed

line). Data were taken from Finlay [8] and Weibel [14].

https://doi.org/10.1371/journal.pone.0204191.g001
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total volume increase reaches approximately 500 ml [25]. As a result of the increase in the

cross-sectional area of the airways, the average speed of the air flow decreases from about 0.5

m/s in the trachea to 1 μm/s in the alveoli. The dominant oxygen transfer mechanism can be

examined using the Peclet number, Pe = ul/D, the ratio of the advective to the diffusive mass

transfer rates, where l is the length of a single airway branch (l ~ 1 mm), u is the speed of the

air flow, and D is the oxygen diffusion coefficient in air (D ~ 0.2 cm2/s). Using the data of the

cross-sectional area of airways for each generation [8, 14], one can find that Pe< 1 after transi-

tional bronchioles, which suggests a shift in the dominant oxygen transfer mechanism from

advection to diffusion [10, 15].

We develop a mathematical model of the oxygen transport in the acinar airways. Since the

oxygen transfer through the channels via diffusion depends on their cross-sectional area, a

trumpet model can be used [26]. We construct a geometric model of the acinar airways as a

stepwise channel with a unit depth by arranging all the channels side by side in such a way as

to retain an equivalent aggregate cross-sectional area for each generation, as shown in Fig 2.

The stepwise channel is further simplified as a diverging duct enclosed by two curved bound-

aries. Assuming that the transition of diameter reduction ratio occurs near the 16th branch,

we can express the cross-sectional area as A(x) = A16ex/a with a = l/ln(2k2), where x is the dis-

tance from the 16th branch, A16 is the total cross-sectional area of the acinar airways at the

16th generation, and k is the diameter reduction ratio.

Alveoli mediate oxygen transfer from the airways to the capillaries. Alveoli begin to appear

from the transitional bronchioles, but most alveoli are attached to distal airways. Fig 3 shows

the cumulated alveolar surface area with respect to airway generation [14, 17]. Assuming that

the airway length in each generation is 1 mm, we formulate the cumulated alveolar surface

area as a continuous function Aa(x) using spline interpolation, and the local alveolar surface

area per unit length is given by Aa
0(x) = dAa/dx. One can calculate the local oxygen transfer

rate through alveoli per length as q0ðxÞ ¼ bDwðφðxÞ � φcÞA
0
aðxÞ=h, where β is the solubility of

oxygen in water [17], Dw is the diffusivity of oxygen in air, φ(x) is the partial pressure of oxygen

in the acinar airways, φc is the oxygen partial pressure in the blood capillary, and h is the thick-

ness of the alveolar membrane.

We examine the oxygen conservation in an infinitesimal control volume, as shown in Fig 2.

Because sidewalls of a single airway prevent diffusion to neighboring airways, we only consider

Fig 2. Schematic illustration of a trumpet model for acinar airways. The acinar airways consist of eight generations of airways and alveoli. The acinar airways can be

assumed as a bundle of rectangular channels with the identical cross-sectional area in the same generation. The sidewalls of the rectangular channels do not affect the

vertical diffusion, so it can be assumed to be a single trumpet channel that expands like an exponential function involving the reduction ratio k and single channel length

l.

https://doi.org/10.1371/journal.pone.0204191.g002
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longitudinal diffusion along the x-axis,

@φ
@t
¼ D

@2φ
@x2
þ

1

a
@φ
@x

� �

� bDw
φ � φc

h

� � A0aðxÞ
A16ex=a

� �

ð1Þ

where t is the time after inhalation begins. Solving Eq (1) requires an initial condition and two

boundary conditions. We assume that the oxygen partial pressure in the acinar airways is the

same as that of the blood capillary when inhalation begins because an exhalation time of ~ 2 s

is greater than the diffusion time scale L2/(4D) ~ 0.8 s, where L ~ 8 mm is the diffusion length

from the 16th to 23rd airways. Thus, the initial condition is written as φ(x, 0) = φc. Once inha-

lation begins, fresh air is supplied from the conducting airways. Accordingly, we assume that

the oxygen partial pressure at the inlet of the 16th airway branch remains the same as that in

the fresh air during the inhalation. This leads us to write a boundary condition as φ(0,t) = φa,

where φa is the oxygen partial pressure in the fresh air. The other boundary condition comes

from the 23rd generation where oxygen transfer is allowed only through the alveolar mem-

brane, so that
@φ
@x

� �

x¼L
¼ 0.

By numerically solving Eq (1), we obtain the profile of oxygen partial pressure in acinar air-

ways during the inhalation (see Materials and methods). Fig 4A shows the dimensionless oxy-

gen partial pressure φ̂ ¼ ðφ � φcÞ=ðφa � φcÞ as a function of x̂ ¼ x=L for k = 0.9, which

approaches the steady state profile within ~0.1 s. Hence, we neglect the unsteady effects in esti-

mating the oxygen transfer during the whole inhalation process. Fig 4B and 4C show the pro-

files of the partial pressure and normalized oxygen transfer rate q̂ to the blood capillaries,

Fig 3. Cumulated alveolar surface area. The circles denote the data obtained from [12], and the line is a spline

interpolant Aa(x).

https://doi.org/10.1371/journal.pone.0204191.g003
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respectively, for various diameter reduction ratios (k = 0.7, 0.9 and, 1.1). Here q̂ is defined as

q̂ðx̂Þ ¼
½φðx̂Þ � φcÞ�Â

0
aðx̂Þ

R 1

0
½φðx̂Þ � φc�Â

0ðx̂Þdx̂
; ð2Þ

with Â 0a ¼ ðdAa=dx̂Þ=Aaðx̂ ¼ 1Þ so that the total area below a curve q̂ is equal to unity.

Acinar airways comprise a thin layer of epithelial cells covering airways and alveoli. There-

fore, building an additional airway demands costs for construction and maintenance of the

epithelial cell layer, which are proportional to the total surface area of the acinar airways. This

reminds us of the fact that the expansion of the cross-sectional area in plant xylem vessels is

limited by the carbon investment for the construction of the vessels [6]. We thus suggest that

the total surface area of the acinar airways is the primary limiting factor.

Fig 5A displays the total oxygen transfer rate through the entire alveoli divided by the sur-

face area of the acinar airways and alveoli versus the diameter reduction ratio. We see that

although the total oxygen transfer rate increases with the diameter reduction ratio k, the sharp

increase of the surface area with k results in the maximum Q/A at k = 0.94 (see Fig 5B). We

thus infer that a ratio of 0.94 is the optimal reduction ratio to minimize the cost of the acinar

airways for oxygen transfer. This theoretical value is indeed consistent with the biological data

shown in Fig 1B. On the basis of the model, it can be deduced that the transition of the diame-

ter reduction ratios between the conducting (k = 0.79) and acinar (k = 0.94) airways saves

approximately 10% of the epithelial cell layers compared with the case without this transition.

Consequently, our model suggests that this transition occurs for reducing energy and materials

consumption in the acinar airways.

Discussion

The oxygen transfer to blood in acinar airways depends on the permeability of the alveolar

membrane βDw/h, so that membrane permeability can change the optimal diameter reduction

ratio. One can infer that the higher the permeability of the membrane, the less the surface

required for a given amount of oxygen transfer. Hence, the more permeable alveoli would

reduce the transfer through distal airways, referred to as ‘screening effects’ [17, 27], and reduce

Fig 4. Profiles of oxygen partial pressure and oxygen transfer rate. (A) Temporal change in the distribution of the oxygen partial pressure for k = 0.9. (B) Profiles of

the oxygen partial pressure for various diameter reduction ratios (k = 0.7, 0.9, and 1.1). (C) The dependence of the oxygen transfer to the blood capillaries on the airway

depth. Note that the area below the curves is equal to unity by the definition of q̂^.

https://doi.org/10.1371/journal.pone.0204191.g004
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the effectiveness of distal airways. In Fig 6, we present the dependence of the oxygen transfer

rate per surface area on the diameter reduction ratio for various permeability of the alveolar

membrane. Indeed, the optimal diameter reduction ratio decreases with the membrane per-

meability, resulting in a smaller area of the terminal airways for higher permeability.

Originally developed for blood vessels, Murray’s law describes branching structure for min-

imizing energy cost for convective transport and metabolism of blood [9, 10]. This design

principle of branching structure has been used as a framework to understand various natural

network systems under the assumption that natural branching networks have evolved in such

a way as to minimize the cost for transferring a given quantity of matter [6, 7]. Murray’s law

for conducting airways of lung explains the minimization of energy consumption for oxygen

transport for a given volume of air inhalation [8, 10, 17]. Murray’s law for plant xylem eluci-

dates the minimization of the primary energetic cost caused by sap flow and vessel construc-

tion [11]. Interestingly, despite various forms of energetic costs, Murray’s law for these

networks commonly consider convection transport energy and vessel volume. Murray’s law

for diffusion on the other hand can be formulated mathematically by replacing the energy cost

for convective transport with the energy cost for diffusive transport, leading to an optimal

diameter reduction ratio of 0.71 [23, 24].

However, the biological data of acinar airways in human lungs cannot be explained

by either of the aforementioned models. We here raise in this report the question of trans-

ition of diameter reduction effects on lung optimization. Specifically, we consider the amount

of diffusive transport of oxygen per surface area of airways. This implies that the dominant

cost for the construction and maintenance of acinar airways comes from epithelial cell

Fig 5. Optimal diameter reduction ratio for maximizing the oxygen transfer rate per airway surface area. (A) Oxygen transfer rate per surface area of acinar airways

and alveoli versus diameter reduction ratio. The oxygen transfer rate per surface area peaks at a diameter reduction ratio of 0.94, for which the energy cost for

transporting a given amount of oxygen is minimized, provided that the energy investment is proportional to the surface area of acinar airways. (B) The dependence of

oxygen transfer rate and surface area of acinar airways on the diameter reduction ratio. The values are normalized by their maximum values, respectively.

https://doi.org/10.1371/journal.pone.0204191.g005
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layers of airways and alveoli, which should be measured by the surface area rather than the

volume.

Although advection is typically cost effective on the organismal scale, diffusion is a rapid,

reliable, and cheap way to transfer matter on the cell scale [1, 28]. In mammals relying on air

breathing, the characteristic diameter of the terminal branches of the airways is on the order of

100 μm, regardless of the body size [14, 29, 30]. Thus, gas transport via diffusion would be

more effective near the terminal branches. Accordingly, the transition of the oxygen transfer

mode is also expected in the lung airways of other species, which may cause the transition of

the diameter reduction ratios. Indeed, some anatomical data on the lung airways of other spe-

cies, including rats, rabbits, and canines, show a transition in the diameter reduction ratio as

in human lung airways [29, 30], suggesting an interesting aspect worth pursuing in the future.

This optimal strategy of acinar airways can guide design and construction of artificial networks

where one needs to maximize fluid transport to a given area [31–33].

Materials and methods

We explain the process to solve Eq (1), the oxygen diffusion equation in the dichotomous hier-

archical branch networks, subject to the boundary conditions:

φð0; tÞ ¼ φa and
@φ
@x

�
�
�
x¼L
¼ 0: ð3Þ

Using the following dimensionless variables

x̂ ¼
x
L
; t̂ ¼

Dt
L2
; φ̂ ¼

φ � φc

φa � φc

; a1 ¼
L
a
; and a2ðx̂Þ ¼

bDwL
Dh

1

A16eðL=lÞx̂
Â 0aðx̂Þ;

Fig 6. Dependence of optimal diameter reduction ratio on the alveolar membrane permeability. (A) Oxygen transfer rate per surface area versus diameter reduction

ratio for various permeability. (B) The optimal diameter reduction ratios for various permeability.

https://doi.org/10.1371/journal.pone.0204191.g006
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we find dimensionless forms of Eqs (1) and (3):

@φ̂
@ t̂
¼
@2φ̂
@x̂2
þ a1

@φ̂
@x̂
� a2ðx̂Þφ̂ ð4Þ

φ̂ðx̂; 0Þ ¼ 0; φ̂ð0; t̂Þ ¼ 1 and
@φ̂
@x̂
jx̂¼1 ¼ 0 ð5Þ

Eq (4) with the initial and boundary conditions was solved numerically with parameters given

in Table 1. Spatial derivatives in Eq (4) was discretized on uniformly spaced spatial grids

(N = 100) using the second-order central difference scheme to obtain a system of ordinary dif-

ferential equations (ODE) corresponding to a type of initial value problem. The resulting sys-

tem of ODE is solved by a multistep method.
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