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Abstract: A hybrid film consisting of zinc oxide nanoparticles (ZnO NPs) and carbon nanotubes
(CNTs) is formed on a glass substrate using a simple and swift spin coating process for the use
in ultraviolet photodetectors (UV PDs). The incorporation of various types of CNTs into ZnO
NPs (ZnO@CNT) enhances the performance of UV PDs with respect to sensitivity, photoresponse,
and long-term operation stability when compared with pristine ZnO NP films. In particular, the
introduction of single-walled CNTs (SWNTs) exhibits a superior performance when compared
with the multiwalled CNTs (MWNTs) because SWNTs can not only facilitate the stability of free
electrons generated by the O2 desorption on ZnO under UV irradiation owing to the built-in potential
between ZnO and SWNT heterojunctions, but also allow facile and efficient transport pathways for
electrons through SWNTs with high aspect ratio and low defect density. Furthermore, among the
various SWNTs (arc-discharged (A-SWNT), Hipco (H-SWNT), and CoMoCat (C-SWNT) SWNTs),
we demonstrate the ZnO@A-SWNT hybrid film exhibits the best performance because of higher
conductivity and aspect ratio in A-SWNTs when compared with those of other types of SWNTs. At the
optimized conditions for the ZnO@A-SWNT film (ratio of A-SWNTs and ZnO NPs and electrode
distance), ZnO@A-SWNT displays a sensitivity of 4.9 × 103 % with an on/off current ratio of ~104

at the bias of 2 V under the UV wavelength of 365 nm (0.47 mW/cm2). In addition, the stability
in long-term operation and photoresponse time are significantly improved by the introduction of
A-SWNTs into the ZnO NP film when compared with the bare ZnO NPs film.

Keywords: zinc oxide nanoparticle; carbon nanotube; ultraviolet photodetector; hybrid film;
heterojunction

1. Introduction

Ultraviolet (UV) photodetectors (PDs) have drawn much attention because of their wide range
of applications such as UV monitoring in the environment, flame sensing, missile launch detection,
biological sensing, and space communications [1–3]. Although silicon photodiodes have been
commonly used as excellent UV detection devices, they generally exhibit some inherent limitations:
(i) they require appropriate filters to block the photons in the visible and infrared ranges, (ii) they need
to be cooled down to avoid changes in the dark current, and (iii) they are susceptible to degradation
under exposure to UV light with energies that are much higher than those of the semiconductor
bandgap [4–8].
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ZnO-based PDs are promising candidates as alternatives for silicon-based PDs because n-type ZnO
semiconductors allow an intrinsic visible-blindness (associated with a direct large band gap of 3.3 eV)
and room-temperature operation. In addition, they have the advantages of simple synthetic methods,
excellent chemical stability, and environmental friendliness [9–14]. Consequently, many researchers
have developed ZnO-based ultraviolet photodetectors (UV PDs) with different ZnO nanostructures,
such as nanoparticles (NPs) [15,16], nanorods [17], and nanowires [18,19], through various synthetic
processes. Most of early studies on ZnO-based PDs have mainly focused on controlling various ZnO
nanostructures to increase the surface-to-volume ratio that allows rich oxygen molecules adsorbed on
to the ZnO surface and higher carrier concentrations that eventually enhance the sensitivity of UV
PDs [20–26]. The photocurrent generation mechanism is regulated by this O2-mediated free-electron
generation when ZnO is used standalone as an active material in UV PD devices regardless of the
morphology of and synthetic process for ZnO. In this mechanism, the electronegative O2 molecules
adsorbed on ZnO surface can be desorbed upon UV light because of the charge neutralization by the
generated holes, resulting in the free electrons on ZnO. During this process, free-electrons can flow
under external potential bias, which is revealed as photocurrent. However, these types of devices
generally suffer from a poor sensitivity (low on–off ratio) and photoresponse behavior (a long rise and
decay time) that is associated with the instability of free electrons which can recombine with holes
that have not been completely paired with electronegative O2 and slow O2 adsorption/desorption
processes, respectively [27].

In the recent years, the introduction of a p-type semiconductor to n-type ZnO has been proposed to
overcome this problem, because the formation of a p-n heterojunction can avoid the slow O2-mediated
photocurrent generation and directly use both electron and hole as photocarriers. Along this line,
Cai et al. reported that the ZnO/poly(N-vinylcarbazole) bilayer film prepared using sequential spin
coating exhibited a faster photoresponse to UV light than pristine ZnO [28]. A similar concept was
demonstrated by Mridha et al. in which they employed polyaniline as a p-type organic semiconductor
to active ZnO to form a heterojunction that exhibited an enhanced the photoresponse behavior than in
the case of bare ZnO [29]. In addition to the organic p-type materials, the introduction of inorganic
graphdiyne and perovskite CsPbBr3 has also been demonstrated to improve the performance of
ZnO-based UV PDs [30]. On the other hand, some other interesting effects like scattering phenomena
upon decorating diatom frustules on ZnO NPs [31,32].

Carbon nanotubes (CNTs) are 1-dimensional carbon allotropes that have a high aspect ratio and
electric conductivity [33]. CNTs can be categorized into single-walled carbon nanotubes (SWNTs) and
multiwalled carbon nanotubes (MWNTs) depending on the number of graphene cylinders: a single
nanotube for SWNTs and several concentric nanotubes for MWNTs. In general, SWNTs possess the
combined behavior of semiconductors and metals, whereas MWNTs exhibit a sorely metallic behavior
because they are zero-gap metals. Furthermore, the SWNTs can also be divided further depending on
their chirality and synthetic methods. Largely, there are three types of SWNTs based on the synthetic
ways: arc-discharged SWNTs (A-SWNTs), high-pressure carbon monoxide SWNTs (HipCO SWNTs or
H-SWNTs), and cobalt–molybdenum catalyst SWNTs (CoMoCat SWNTs or C-SWNTs). These SWNTs
have different mechanical, electrical, and optical properties [34–39]. Therefore, the introduction of
different types of CNTs to ZnO provides an excellent opportunity to explore systematic studies on
the enhancement of ZnO-based UV PDs. In this context, Li et al. demonstrated the p-SWNT/n-ZnO
vertical heterostructures for the high-performance UV PDs, but they did not investigate the effect of
different types of SWNTs on the ZnO-based UV PDs [39]. In addition, although the combination of
SWNT and ZnO has been also demonstrated by Ates et al. for the application of UV PDs, the SWNTs
in this work were not utilized in the active layer but as transparent electrodes for ZnO nanowires [19].
Despite the previous approaches using both SWNTs and ZnO, none of these works has focused on
the systematic study of the effect of different types of SWNTs introduction on the performance of
ZnO-based UV PDs. Therefore, the fabrication of ZnO@CNT hybrid films with different types of
CNTs will provide the good opportunity to study the role of different CNTs on the ZnO-based UV
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PDs which can be used to enhance the performance of UV PDs. As aforementioned, semiconducting
p-type SWNTs are expected to create a built-in electric field near the interfaces (that is, the formation
of p-n heterojunctions) with n-type ZnO which may stabilize the free electrons and offer effective
transport pathways for the photocarriers simultaneously. In contrast, MWNTs cannot contribute to the
stabilization of free-electrons on ZnO because of the metallic property, although they can also function
as a guide for the photocarrier movement.

Herein, we report the preparation of a high-performance ZnO NP@CNT hybrid film for UV PDs
using a simple spin coating process. The photoelectrical properties of the ZnO NP@CNT hybrid film
are systematically investigated with different types of CNTs (MWNTs, A-SWNTs, H-SWNTs, and
C-SWNTs) and their concentration in the composite. We demonstrate that ZnO@A-SWNT exhibits
the best performance in terms of sensitivity, photoresponses (the fastest rise and decay times), and
reproducibility in long-term operation when compared with those of other ZnO@CNT hybrid films
and pristine ZnO NP films. The sensitivities (on–off ratio) of ZnO@A-SWNT (ratio of 10:1) are 950 and
310 for the UV wavelengths of 254 nm and 365 nm, respectively, at the light intensity of 1.25 mW/cm2.
The respective rise, decay, and recovery times are 11.3, 6.0, and 2.7 s, which are much faster than those
of the pristine ZnO NPs film (14.4, 33.6, and 11.8 s). The enhanced performance by ZnO@A-SWNT is
attributed to the combination of improved stability of free electrons by the p-n heterojunction formation
(hole depletion and enriched electrons between ZnO and semiconducting SWNT) and improved electric
transport through a highly conductive A-SWNT matrix with low defect density, which effectively
guides the photocarrier movement.

2. Materials and Methods

2.1. Materials

Zinc acetate dihydrate (Zn(CH3COO)2·2H2O, product #:1001738977: ZA), methanol (99.9 wt.%),
butanol (99.8 wt.%), and C-SWNT (SG56, product #:704148) were purchased from Sigma Aldrich (St.
Louis, MO, USA). A-SWNT (AST-100F, 5–10 µm in length, 1.3–1.5 nm diameter) was provided by
Hanwha Nanotech (Daejeon, Korea). H-SWNT (HR27-122, 0.1–1 µm in length, 0.8–1.0 nm diameter)
was bought from Nanointegris (Quebec, QC, Canada). MWNTs (30–50 µm in length, 15–40 nm in
diameter) were supplied by Hanwha Nanotech. Co. Ltd. (Daejeon, Korea). Potassium hydroxide
(KOH, 95%, product #: P1446) was produced by Samchun (Seoul, Korea). A glass substrate (15 mm ×
15 mm) was manufactured from RnD Korea (Seoul, Korea).

2.2. Synthesis of ZnO NPs

ZnO NPs were synthesized by the condensation and hydrolysis of ZA using KOH in methanol.
For this experiment, two different solutions were separately prepared: the first solution with 13.4 mmol
ZA dissolved in 125 ml methanol at 60 ◦C, and the second solution with 23 mmol KOH dissolved in
65 mL methanol at 25 ◦C, respectively. Then, the KOH solution was injected into the ZA solution at
60 ◦C at a constant volumetric flow rate (6.5 mL/min) with vigorous stirring. After 2 h of reaction,
the solution was changed from being transparent to whitish and turbid, indicating the formation of
ZnO NPs in the solution (pH was 8–9). After completing the reaction, ZnO NPs were washed by
repeating the centrifugation process (4000 rpm for 20 min), decanting the supernatant, and dispersing
in methanol at least 3 times. ZnO NPs obtained was ~500 mg. As the final step, ZnO NPs were
dispersed in the co-solvent of butanol and methanol (1:1, v/v) at a concentration of 10 mg/ml. The pH
of this suspension was measured to be 6, indicating that the final ZnO NP suspension was at nearly
neutral pH [40].

2.3. Preparation of a UV Sensor Based on ZnO NPs/CNT Hybrid Films

ZnO NP/CNT solutions were prepared by dispersing four different types of CNTs in the ZnO
NP suspension: (i) A-SWNT, (ii) H-SWNT, (iii) C-SWNT, and (iv) MWNTs. Table 1 provides the
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detailed information for individual types of CNTs. To investigate the effect of the ZnO/CNT ratio,
the concentration of CNTs added to the ZnO suspension (2 mL at a concentration of 10 mg/mL) was
varied as 0.5, 0.7, 1.0, 2.0, and 5.0 mg (resulting in the weight ratios of 40:1, 28:1, 20:1, 10:1, and 4:1
between ZnO and CNTs). The dispersion of ZnO/CNT solution was performed with a tip sonicator
(130 W ultrasonic processors, Ningbo SCIENTZ Biotechnology Corp., Zhejiang, China) for 5 min to
prevent aggregation. To prepare the ZnO NP/CNT hybrid film, a glass substrate was washed with
acetone, isopropyl alcohol, and DI water, respectively, followed by drying using a N2 blowing gun.
Subsequently, the substrate was cleaned with UV-ozone (UV SMT, 25 W, UV SMT corp., Gyeonggi,
Korea) for 30 min. Then the ZnO NP/CNT solution was spin-coated at 2500 rpm for 40 s, followed by
annealing in the air at 120 ◦C for 20 min. The spin coating and annealing process was repeated up to 5
times to obtain the optimum thickness for the ZnO@CNT film. Two Ag electrodes (1 mm × 3 mm,
thickness of 150 nm) were deposited using a thermal evaporator (DKOL04-02-T, MBE Komponenten
Corp., Weil der Stadt, Germany). The distance between the electrodes is adjusted from 1 mm to 9 mm
using shadow masks with different configurations. As a control sample, an UV sensor with the pure
ZnO NPs film was separately fabricated using the same method.

Table 1. Characteristics of various SWNTs: A-SWNTs, H-SWNTs, and C-SWNTS.

Materials Length
(µm) Diameter (nm) Aspect ratio Property Sheet Resistance

(Ω/�)

A-SWNTs 5–10 1.3–1.5 3300–7700 ~33% metallic (~67%
semiconducting) 515

H-SWNTs 0.1–1 0.8–1.0 100–1250 ~33% metallic (~67%
semiconducting) 20620

C-SWNTs 0.1–1 0.7–0.8 120–1430 ~10% metallic (~90%
semiconducting) 34791

2.4. Characterization and Device Measurement

The structure of the as-synthesized ZnO was examined using X-ray diffraction (XRD; D/MAX-2200
Rigaku, Tokyo, Japan). The optical absorbances of ZnO and ZnO/CNT were obtained using a UV–Vis
spectrophotometer (LAMDA 750, Perkin Elmer, Waltham, MA, USA). The morphologies and elemental
distribution of the as-prepared samples were observed using high-resolution transmission electron
microscopy (HRTEM, Tecnai G2F30, Thermo Fisher Scientific, Waltham, MA, USA) coupled with
energy-dispersive X-ray (EDX) spectrometry. The film thickness was analyzed using field emission
scanning electron microscopy (FE-SEM, S-4700, Mono CL, Hitachi, Tokyo, Japan). To measure the
characteristics of UV sensors, the current–voltage (I–V) and current–time (I–t) were measured using a
Keithley 2400 source meter in the dark and under UV illumination. The UV light source used was
a UV lamp (UV-5NF, MiniMAX, Spectroline, Westbury, NY, USA) with wavelengths of either 254 or
365 nm. The UV light intensity was adjusted by controlling the distance between the light source
and the sample, and the power density was measured using a spectrometer (CAS140CT, Instrument
Systems, Munich, Germany). In the UV-sensing measurement, only the active area (1 mm × 3 mm
between the two electrodes) was illuminated by masking the remaining area. For the repeated on/off

operations of UV light, a mechanical shutter was used with UV light switched on.

3. Results and Discussion

3.1. Characterization of the As-Prepared ZnO NPs and the ZnO NP/CNT Film

Figure 1a presents the powder XRD patterns of the synthesized ZnO NPs. The typical peaks
observed at 31.8◦, 34.5◦, 36.3◦, 47.5◦, 56.6◦, and 62.9◦ correspond to the (100), (002), (101), (102),
(110), and (103) planes of crystalline ZnO (PDF# 27-1402) [41,42]. No other distinctive peaks were
observed, confirming that no impurities were produced. The UV–Vis absorbance spectra of ZnO NPs,
ZnO@MWNT films, and ZnO@SWNT films are displayed in the wavelength range of 250 to 550 nm
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(Figure 1b). All these samples show selective absorbance in the UV range (250–360 nm), which justifies
the applications to the UV PDs. Despite the absorbance of visible and infrared range from pure SWNTs
(inset in Figure 1b), the visible blindness is well-maintained because of the small amount of SWNTs
relative to the ZnO in the ZnO/SWNT hybrid film [43].
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Figure 1. (a) XRD patterns of the ZnO NPs and (b) UV–Vis absorption spectra of ZnO NPs, ZnO@MWNT,
and ZnO@SWNT. Inset shows the UV–Vis absorption spectrum of pure A-SWNT.

The microscopic powder morphology and elemental distribution of the as-prepared ZnO NPs
and ZnO@SWNT were observed by HRTEM imaging (Figure 2). As shown in Figure 2a,b, as-prepared
ZnO NPs exhibited several nanocrystallites of average size of 5–10 nm and an interplanar spacing
of 0.25 nm corresponding to the (101) plane of ZnO (the selective area diffraction pattern is shown
in the inset in Figure 2b). For ZnO@SWNT, the presence of SWNTs effectively surrounding the ZnO
NPs without much aggregations was also confirmed (Figure 2c,d). This morphology is advantageous
for UV PDs because the ZnO@SWNT hybrid film can increase the surface area of the heterojunction
and effectively enhances the electron transport under the UV exposure. Figure 2e,f confirmed the
homogeneous distribution of constituent elements (Zn and O for ZnO NPs, and Zn, O, and C for
ZnO@SWNT, respectively).
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3.2. Characterization of ZnO and ZnO@CNT Film

Figure 3 shows the SEM images of the bare ZnO film (Figure 3a,b, 7 rounds of spin coating,
thickness of 165 nm) and ZnO@CNT films (Figure 2c–f) by varying the number of spin coating (1,
3, and 5). The spin coating produced a well-defined film without much variation in the thickness
for the bare ZnO film (Figure 3a). The formation of quasi-close-packed arrangement of ZnO NPs
(Figure 3b) via spin coating is associated with the uniform size of ZnO NPs (5–10 nm as shown by the
TEM analyses in Figure 2) and a suitable solvent (co-solvent of butanol and methanol) of appropriate
viscosity. Even though CNTs were added to ZnO NPs, a high-quality ZnO@CNT film was still formed
(Figure 2c–f). The thickness of the film could be systematically controlled by the number of spin coating;
the thicknesses were 25, 67, and 165 nm for 1, 3, and 5 times of spin coating, respectively. Although the
photocurrent can be increased by increasing the number of spin coating, the variation in thickness
in a given spin coating condition became more pronounced for excessively thick films (beyond 5
rounds of spin coating), which made it difficult to obtain reproducible photocurrent measurements.
Therefore, the optimal thickness of the ZnO@CNT film was controlled to be ~165 nm with 5 rounds of
spin coating.
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Figure 3. (a) Cross-sectional and (b) top-view SEM images of the ZnO NP film, (c–e) cross-sectional
SEM images of ZnO@SWNT films spin-coated 1, 3, and 5 times, respectively, and (f) top-view of SEM
image of the ZnO@SWNT film. The thickness of ZnO film (7 times of spin coating in Figure 3a) and
ZnO@SWNT (5 times of spin coating in Figure 3e) were same as 165 nm.

Figure 4a presents the schematic illustration of the fabrication of the UV sensor device. On the
glass substrate, a well-defined ZnO@CNT film was prepared by repetitive spin coating. Thermal
annealing (120 ◦C at 20 min) was necessary to enhance the crystallinity of ZnO NPs and to stabilize
the interfaces between ZnO NPs films. Two Ag electrode terminals were deposited using a thermal
evaporator with a shadow mask that defined the active area. As shown in Figure 4b, the UV sensor
device appeared generally transparent because of the transparency of the substrate (glass) and the
active region (ZnO@CNT).
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3.3. Electrical Characteristics of ZnO, ZnO@MWNT Film, and ZnO@SWNT Film

Figure 5a,b displays the I–V characteristics measured in the dark and under UV light illumination
(254 and 365 nm) at a light intensity of 1.25 mW/cm2 over a voltage bias of 2 V. The thicknesses of the
film were controlled to be all ~165 nm for all samples. The linear I–V relationship with forward and
reverse biases indicates the ohmic contact between ZnO@CNT and Ag electrodes. The ohmic contact
behavior allows a negligible contact resistance at the metal–semiconductor interface and the linear
relationship between bias and photocurrent. The sensitivity (S) of the device to the UV light can be
calculated using the following equation [44],

S =
Iuv − Id

Id
(1)

where Iuv and Id denote the current under UV illumination and in the dark, respectively. The S value
was the highest for ZnO@SWNT, followed by ZnO@MWNT and ZnO; they were 950, 66, and 50 for UV
light of 254 nm (1.25 mW/cm2) and 310, 24, and 22 for 365 nm (1.25 mW/cm2), respectively. These trends
were consistent regardless of the light intensity.

The enhanced sensitivity in the presence of SWNTs can be explained by the different photocurrent
mechanisms for MWNTs and SWNTs in the ZnO-based UV sensor. As shown in Figure 6, the
photocurrent for ZnO@MWNT is mainly governed by the oxygen desorption mechanism under the
UV irradiation, which induces the hole depletion, thus generating free electrons (Figure 6a). The free
electrons generated in this process can move between two electrodes under the applied bias [45–47].
In this mechanism, the presence of MWNTs, which are metallic, simply provides pathways for the free
electrons to move from ZnO to Ag electrode, thus facilitating electron transport along the MWNTs.
However, there are still some holes which did not participate in pairing with negatively-charged
oxygen remained in ZnO NPs. Possibly, these remained holes can recombine with electrons, resulting
in the decrease in photocurrent. On the other hand, in the case of ZnO@SWNT, of which SWNTs
have both metallic and semiconducting characters with band gaps, the holes generated under the
UV light are partially trapped with charged oxygen, and free electrons are extracted mainly through
the metallic SWNTs (~33%) under the applied voltage bias between two electrodes as in the case of
ZnO@MWNT (Figure 6b). At the same time, the remained holes which did not pair with charged
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oxygen can be additionally extracted toward adjacent p-type semiconducting SWNT (~66%), of which
HOMO level exists above valence band of ZnO [48–51]. This additional hole extraction prevents the
recombination between holes and electrons, which is considered as a main factor that significantly
enhances the sensitivity of ZnO@SWNT over that of ZnO@MWNT. From our separate measurements
for another control sample (bare SWNTs or MWNTs without ZnO), there was no photoresponse for UV
light (Figure 5c,d). This was because CNTs cannot produce photocurrent by itself because free electron
cannot be generated even if CNTs themselves absorb the light in the UV region [52]. Although the
mechanism of free electrons based on oxygen desorption under the UV light has been dominantly
considered for most of the ZnO-based UV sensors with a lateral geometry (in-plane) of electrode
terminals [53], the performance improvement in our hybrid ZnO@SWNT film can be attributed to the
combination of two different mechanisms (i.e., electron transport through metallic SWNT and hole
extraction toward semiconducting SWNT as shown in Figure 6b).
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Another factor that contributes to the sensitivity is the structural quality of the CNT matrix.
Figure 7 compares the Raman spectra between SWNTs and MWNTs. Both SWNTs and MWNTs show
two peaks at ~1350 cm−1 (D-band) and 1580 cm−1 (G-band), respectively. The G-band and D-band
are characterized by the sp2 hybrid carbon–carbon bonds of graphene and their defects or disorder,
respectively. The ID/IG ratio reflects the number of sp3 carbon atoms present at the defect site and
the open end [54]. The MWNTs, consisting of composite graphite layers, showed a strong intensity
in the D band due to the large number of defects sites (ID/IG = 1.16). However, the low ID/IG ratio
of SWNTs (ID/IG = 0.20) indicates a low level of structural defects. In general, graphene with low
crystalline quality has low electrical conductivity or poor mechanical strength because of the defects or
oxygen sites [55,56]. Therefore, it can be expected that the electrons produced at ZnO NPs under the
UV irradiation can be more sustainable and can efficiently move along SWNTs without much loss than
MWNTs between Ag electrodes. In addition to the effect of structural quality of CNT, for the same
total weight of CNT, the SWNT network will be much denser and in closer vicinity to each ZnO NP as
one MWNT is equal by weight to hundreds of SWNTs. This is considered to be another factor that is
beneficial to enhance the sensitivity.
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Figure 8 compares the I–V relationship for ZnO@SWNT with three different types of SWNTs
(A-SWNTs, H-SWNTs, and C-SWNTs) along with their energy band diagrams, denoted as
ZnO@A-SWNT, ZnO@H-SWNT, and ZnO@C-SWNT (ZnO/SWNT = 20:1, w/w), respectively, under the
254 and 365 nm UV light illumination (0.47 mW/cm2). In general, SWNTs can be classified depending
on the synthesis methods. A-SWNTs, H-SWNTs, and C-SWNTs are three representative SWNTs
that are synthesized by the arc-discharge, high-pressure carbon monoxide disproportionation, and
chemical vapor deposition using catalysts such as Co and Mo. These different SWNTs possess typical
physical dimensions and chiralities that affect their mechanical, electrical, and optical properties.
The characteristics of these different SWNTs are summarized in Table 1. From the I–V measurements,
the sensitivity was found to be the highest for ZnO@A-SWNT, followed by ZnO@H-SWNT and
ZnO@C-SWNT for both 254 and 365 nm UV irradiation; the S values were 340, 60, and 8 for 254 nm
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UV light of (0.47 mW/cm2) and 100, 15, and 1.3 for 365 nm UV light (0.47 mW/cm2) at a bias
of 2 V, respectively (Figure. 7a–c). These trends were consistent with those for the other SWNT
concentrations (Figure S1). Because the photocurrent mechanism is governed by both (i) the free
electron generation from the oxygen desorption on the ZnO surface followed by the electron transport
through metallic SWNT and (ii) the additional hole extraction toward semiconducting SWNT due to
the p-n heterojunction for all ZnO@SWNT samples, the sensitivity is associated with the combination of
these two mechanisms simultaneously. Upon comparing the energy band for different SWNTs [48,49],
ZnO@C-SWNT should be the most favorable in extracting holes at heterojunction under the UV light
followed by ZnO@H-SWNT and ZnO@A-SWNT (Figure 7d–f). However, the measured sensitivity
was opposite to this trend. This suggests the sensitivity is highly correlated with other factors among
SWNTs. Because the defect densities in different SWNTs are similar, as revealed by Raman spectroscopy
(Figure S2), the electric conductivity of metallic SWNT in each SWNT is the major factor that determines
the sensitivity. Indeed, as shown in Table 1, the sheet resistance was the lowest for A-SWNTs (the
thicknesses for all SWNT film were controlled to be 100 nm), suggesting that the electron transport
will be most efficient for ZnO@A-SWNT. The effect of band structure for different SWNTs seems to be
relatively small, because of their trivial bandgap differences compared with that of ZnO (Figure 8d–f).
Another important factor that can contribute to the sensitivity of SWNTs is the aspect ratio of SWNTs.
The aspect ratios of SWNTs were 3300–7700, 100–1250, and 120–1430 for A-SWNTs, H-SWNTs, and
C-SWNTs, respectively. The highest aspect ratio for A-SWNT leads to a reduced percolation threshold
and more efficient carrier transport pathways for the given SWNT concentration.
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Figure 8. I–V curves for (a) ZnO@A-SWNT, (b) ZnO@H-SWNT, and (c) ZnO@C-SWNT(ZnO/SWNT =

20:1, w/w) under 254 and 365 nm UV light illumination (0.47 mW/cm2). Energy band diagram of (d)
ZnO@A-SWNT, (e) ZnO@H-SWNT, and (f) ZnO@C-SWNT.

Figure 9 displays the I–V characteristics under the effect of the concentration of A-SWNTs in
ZnO@A-SWNT (Figure 9a) and electrode distance (Figure 9b). The sensitivity generally increased with
the increase in the concentration of A-SWNTs (Figure 9a). This is because of the increased number of
electron–hole pairs at the p-n heterojunction and more A-SWNT pathways for the photogenerated
electrons with the increase in A-SWNTs. However, the excessive A-SWNTs mixed with ZnO NPs
adversely affected the sensitivity because of the poor dispersion of A-SWNTs in the ZnO/A-SWNT
solution, which induced the aggregated domains on the film after spin coating (Figure 9a). This behavior
was commonly observed regardless of the types of SWNTs (Figure S3 (solution) and Figure S4 (film)).
The sensitivity was maximized only at the optimum mass ratio between ZnO NPs and SWNTs
(Figure 9a). The reduction in electrode gap increased the sensitivity because of the reduced pathway
on which the photocarriers travel under the 254 nm UV irradiation (Figure 9b).
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Finally, photoresponse for the ZnO@A-SWNT UV sensor was measured to investigate the
photocarrier interaction between ZnO NPs and A-SWNTs. Figure 10a shows the spectral
photoresponsivity (left y-axis) and detectivity (right y-axis) as a function of light wavelength for the
ZnO@A-SWNT UV PD under the bias of 10 V. The responsivity (R) and detectivity can be calculated
based on the following equation,

R(λ) =
Iuv(λ) − Id(λ)

P(λ) ×A
(2)

D =
R(λ)

(2qId(λ))
1/2

(3)

where R(λ), Iuv(λ), Id(λ), P(λ), A, D, and q denote the responsivity (A/W), the current under UV
illumination at the wavelength of λ, the current in the dark (A) at λ, the light intensity (W/cm2), the
active area (cm2), the detectivity (cm Hz1/2 W−1 or Jones), and the elementary charge of a single electron,
respectively. The maximum responsivity and detectivity were measured to be ~0.04 A/W and 7.1 ×
1012 cm Hz1/2 W−1 at 250 nm, followed by a gradual decrease in responsivity and detectivity with the
increase in the light wavelength, showing a similar trend to that observed in the absorbance spectrum
(Figure 1b). The cut-off edge wavelength was measured to be ~380 nm for the ZnO@A-SWNT UV PD,
indicating the visible blindness of the device [57–60]. Figure 10b,c shows the photocurrent as a function
of time for bare ZnO and ZnO@A-SWNT under 365 nm UV irradiation with 0.47 mW/cm2 at a bias of
2 V. Here, the rise time refers to the time to reach 90% of the maximum photocurrent after UV light is
switched on and the decay time corresponds to the time to reach 10% of the maximum photocurrent
after UV light is switched off [61,62]. The rise times of bare ZnO and ZnO@A-SWNT devices were
14.4 s and 33.6 s, respectively, and the decay times were 11.3 s and 6.0 s, respectively, resulting in a
much faster photoresponse of ZnO@A-SWNT because of the existence of highly conductive A-SWNTs
surrounding Zn NPs. The recovery time (defined as the time for photocurrent to decrease to 37% of
the maximum current state) was ~11.8 s for ZnO NPs, but ~2.7 s for ZnO@A-SWNT. The reduction
in rise time, decay time, and recovery time for ZnO@A-SWNT relative to those of bare ZnO NPs is
attributed to the enhanced transport of photoinduced electrons in the ZnO@A-SWNT hybrid structure.
Figure 10d,e compares the photoresponses of ZnO NPs and the ZnO@A-SWNT UV sensor for a repeated
on/off operation under the 365 nm UV light (0.47 mW/cm2) at 2 V bias. ZnO@A-SWNT displayed a
stable on/off cyclic performance with enhanced sensitivity, increased signal-to-noise ratio, and better
reproducibility relative to those of the bare ZnO. Specifically, at the given measurement conditions,
the sensitivity of ZnO@A-SWNT was higher than that of ZnO by a factor of ~45. The on/off current
ratio for ZnO@A-SWNT remained at ~80% after 20 cycles, which is much higher than that of ZnO
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(~63%), indicating a much more reliable on/off cyclic performance for ZnO@A-SWNT. This measured
performance of our ZnO@A-SWNT is outstanding in comparison with those of other ZnO-based UV
PDs reported in the literature (Table 2) [60–64]. Even comparing with other photoconductor-type UV
sensors using different active materials, our ZnO-based device shows good performance in terms of
sensitivity and response time (Table 3). All these enhanced performances due to the introduction of
A-SWNTs to the ZnO film are based on the effective combination of photocurrent generations: the
formation of effective pathways for the photogenerated electrons and the flow of electrons and holes
generated by the p-n heterojunctions between ZnO and A-SWNTs.
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Table 2. Comparison of performances for various ZnO-based UV PDs.

Material Wavelength
(nm) Bias (V)

Intensity of
Light

(mW/cm2)
Iuv-Idark

Rise Time
(s)

Decay
Time (s) Ref.

ZnO nanowires 365 1 1.3 1000 40 300 [60]
ZnO microtubes 365 5 150 600 5.9 638 [62]
ZnO nanorods 365 5 - 85 >500 500 [63]

ZnO-coated
ZnO arrays 365 3 150 1.25 120 180 [64]

ZnO@A-SWNT
365 2 1.25 49 11.3 5.97

This Work254 2 1.25 950 (@365nm) (@365nm)

Table 3. Comparison of performances for various material-based UV PDs.

Material Wavelength
(nm) Bias (V)

Intensity of
Light

(mW/cm2)
Iuv-Idark

Rise Time
(s)

Decay
Time (s) Ref.

SnO2 nanowire 250 3 - 10 >20 >10 [65]
ZnGa2O4 nanowire 350 5 0.53 130 15 >10 [66]

Graphene/TiO2 365 5 - - >150 >150 [67]
TiO2-ZnTiO2

nanowires 320 2 0.186 >300 >10 10 [68]
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4. Conclusions

We demonstrated a high-performance UV PD using the ZnO@A-SWNT hybrid film prepared via
a facile and fast spin coating process. The effect of introducing different types of CNTs (A-SWNTs,
H-SWNTs, C-SWNTs, and MWNTs) on the performance of UV PDs was systematically investigated.
The addition of semiconducting SWNTs to ZnO exhibited a superior performance when compared
with the addition of metallic MWNT based on the dual mechanisms of enhanced photocarrier (electron)
stability (p-n heterojunction between SWNTs and ZnO) and more efficient electron transport along the
SWNTs with a low defect density. Among the different SWNTs, A-SWNTs showed the most suitable
combination with ZnO because of their higher electric conductivity and higher aspect ratio, despite
the most unfavorable band structure. As a result, the ZnO@SWNT hybrid film exhibited an excellent
performance as a UV PD with improved sensitivity and photoresponse and long-term operation
compared to other cases. At the optimized conditions, the ZnO@SWNT-based UV PD showed a high
sensitivity (490), high on/off current ratio (> 100,000), and fast photoresponses (rise time of 11.3 s and
decay time of 6.0 s) at a bias of 2 V under the UV light (365 nm, intensity of 0.47 mW/cm2), which is
much superior to the performance of pristine ZnO NP film. Overall, our current study provides the
new insight regarding the rationale strategy to enhance the lateral-type UV PD devices.
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