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A B S T R A C T

Mucopolysaccharidosis type I (MPS I) is an autosomal recessive storage disorder that result as a consequence of a
deficiency in the lysosomal hydrolase, a-L-iduronidase enzyme encoded by IDUA gene. Over a hundred causative
variants in IDUA have been identified, which result in a progressive multi-systemic disease with a broad range of
severity and disease progression reported across affected individuals. The aim of this study was the detection and
interpretation of IDUA mutation in a family with two children affected with lethal MPS I. The IDUA gene was
sequenced in the parents of two deceased children who had a clinical diagnosis of MPS I, to assess their carrier
status and to help inform on risk in future children. The sequencing analysis was performed by PCR and bi-
directional Sanger sequencing of the coding region and exon-intron splice junctions at Labor MVZ
Westmecklenburg molecular diagnostics laboratory. A heterozygous c.657delA variant in exon 6 was identified
in each parent, which is the most likely explanation for disease in their children. This report represents the first
Yemeni family to have a molecular diagnosis for MPS I.

1. Introduction

Mucopolysaccharidosis type I (MPS I) is an autosomal recessively
inherited lysosomal storage disorder, characterized by progressive
multi-systemic disease. The clinical phenotype of MPS I has been
grouped into three categories based on severity of the disease [1–3]: A
severe form (Hurler syndrome) which involves mental retardation,
skeletal deformities, stiff joints, hepatosplenomegaly, corneal clouding,
and a shortened life expectancy [4]. An intermediate form (Hurler/
Scheie syndrome) which involves skeletal deformities, severe organo-
megaly, usually limited bone involvement, and a variable life span with
neurological involvement [5]. A mild form (Scheie syndrome), which is
characterized by mild skeletal deformities, stiff joints, corneal clouding
and a long life span without mental retardation [6–8].

MPS I is caused by variants that reduce or completely eliminate the
lysosomal enzyme alpha-L-iduronidase (IDUA) enzyme [6,9,10] which
is responsible for degradation of mucopolysaccharides. Deficiency of

the IDUA enzyme results partial degradation and lysosomal accumu-
lation of its substrates [1,11], which lead to progressive dysfunction of
several organs [12,13]. Currently more than hundred mutations in the
IDUA gene have been reported (Human Gene Mutation Database,
http://www.hgmd.org/) [14,15]. High prevalence of common muta-
tions p.W402X, p.Q70X and P533R has been confirmed [16–18]. Rare
mutations including single base substitution, deletion, insertion, and
splicing site mutation have been recognized [19], an indication of a
high degree of allelic heterogeneity of IDUA mutation [18,20].

Identification of the specific mutations in affected patients and
carriers is useful both for prenatal diagnosis, as well as genotype-phe-
notype correlations [21]. In this study we report a novel IDUA mutation
in MPS I affected Yemeni consanguineous family.
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2. Patients and methods

2.1. Patients

In this study a consanguineous Yemeni family with MPS I was in-
vestigated. The affected probands (Fig. 1 IV-1 and IV-2) underwent a
clinical diagnosis prior to their death. Blood samples were collected
from the two parents (Fig. 1 III-7 and III-8) after informed consent.

2.2. IDUA mutation analysis

Genomic DNA was isolated from peripheral blood using commercial
kit (Qiagen miniprep, USA) according to the manufacturer's protocol.
The extracted DNA from the two parents was submitted to the Labor
MVZ Westmecklenburg molecular diagnostics laboratory in Germany
for Sanger sequencing of the IDUA gene. All coding exons and only exon
6 of the IDUA gene for the father (Fig. 1 III-7) and the mother (Fig. 1 III-
8) respectively, plus the exon-intron splice junctions were amplified by
polymerase chain reaction (PCR). PCR fragments were sequenced using
bidirectional Sanger sequencing.

Alamut Visual Version 2.6 software was used to analyze the variant
against databases including dbSNP and EXAC.

3. Results

3.1. Clinical features and family history

A consanguineous first cousin Arabian Yemeni couple sought clin-
ical attention and genetic counseling due to a family history of two
deceased offspring with a clinical diagnosis of MPS I, as well as a sister
with MPS I (Fig. 1). The couple (III-7 ad III-8) were not affected and did
not have any other children. Clinical diagnosis of MPS I was made for

the affected siblings (IV-1 and IV-2) based on the clinical features, fa-
mily history and biochemical testing. Patients IV-1 and IV-2 showed
classical hurler syndrome's signs and symptoms. They mainly suffered
from cardiomegaly, coarse facial features, dysplasia, and intracranial
hypertension. Both children died at ages 2 and 5 years respectively.
Their paternal aunt (III-1) reportedly also suffered from similar clinical
manifestations.

3.2. Molecular analysis

Molecular characterization of the IDUA gene by Sanger sequencing
was done for individuals III-7 and III-8 (Fig. 1).

Sequencing analysis identified a heterozygous single base deletion
in exon 6 of IDUA (c.657delA) in each parent, which is predicted to
result in a frameshift of the protein sequence (p. Gly220Alafs*14). As
the impact of this variant is deleterious to the function of the protein,
this variant in the homozygous state is likely the cause of MPS in the
offspring. However, DNA from the affected offspring was not available
for testing to confirm this. The c.657delA mutation has not been re-
ported in other MPS cases in the literature, but it was reported in 1/
42210 European alleles in the ExAC database (http://exac.
broadinstitute.org/variant/4-995534-AG-A). Other clinically irrele-
vant polymorphisms were detected (Table 1).

4. Discussion

MPS I is a rare genetic disorder with an estimated incidence of 1
case per 100,000 live births [12,13,22], it's characterized by a wide
spectrum of disease with variable age of onset, progression, and organ
involvement [23]. Without treatment, patients with the most severe
phenotype will be exposed to a progressive deterioration of the mus-
culoskeletal, cardiorespiratory, and central nervous system and, in most

Fig. 1. Pedigree of MPS I family. Each generation is designated by
roman numerals (I–IV). Squares and circles indicate male and female
members, respectively. Half Shaded symbols indicate carrier in-
dividuals; full shaded symbols indicate affected individuals. Double
lines indicate consanguineous mating.

Table 1
Polymorphisms characteristics and position in MPS I family.

Location Position Type Nuc change AA change cDNA Polyphen2 SIFT Web reference

E1 187 (99) C T → G (homo) H→ Q [33] c.99T>G Benign Neutral rs10794537
E3 15 (314) C G→ A (het) R→ Q (105) c.314G>A Benign Neutral rs3755955
E5 50 (543) C T → C (het) N→ N (181) c.543T>C N/A N/A rs6815946
I6 −8 C C → T (het) c.590-8C>T N/A N/A rs6848974
E8 109 (1081) C G→ A (het) A → T (361) c.1081G>A Benign Neutral rs6831280
E8 192 (1164) C G→ C (het) T→ T (388) c.1164G>C N/A N/A rs6836258
I9 −19 C G→ C (het) c.1190-19G>C N/A N/A rs150523349
E9 41 (1230) C C → G (het) T→ T (410) c.1230C>G N/A N/A rs11579097
E9 171 (1360) C G→ A (het) V→ I (454) c.1360G>A Benign Neutral rs73066479
E10 65 (1467) C C → T (het) R→ R (489) c.1467C>T N/A N/A rs11592969

E: Exon, I: Intron, AA: amino acid.

B. Azab et al. Molecular Genetics and Metabolism Reports 12 (2017) 76–79

77

http://exac.broadinstitute.org/variant/4-995534-AG-A
http://exac.broadinstitute.org/variant/4-995534-AG-A


cases, die before the age of 10 years [22,24]. Patients with the mild
phenotype have normal cognitive functioning and survive into adult-
hood; nevertheless 50% may be affected by cardiac valve abnormalities,
joint contractures, corneal clouding, hernias, and hepatomegaly [8,24].
Treatments aimed at delivering functional IDUA enzyme to patients
include bone marrow (BMT) or umbilical cord transplant and enzyme
replacement therapy (ERT), which appear to be effective in slowing
down the progression of the disease [25].

MPS I results from a mutation in IDUA gene and has an autosomal
recessive mode of inheritance. A large number of pathogenic variants in
the IDUA gene has been reported (see Table 2), including in Middle
Eastern patients [26]. However to the best of our knowledge, this is the
first study to sequence IDUA for mutations in Yemeni patients with MPS
I. The identified disease causing c.657delA variant is not reported in

any other patients with MPS I, but in seen in one allele in the ExAC
database. The broad spectrum of variants in seen in Middle Eastern
patients does not support a unique race-specific variant (a founder
mutation) or variant spectrum, and highlights the need for compre-
hensive sequence analysis of the IDUA gene when MPS I is suspected in
a Middle Eastern individual. Due to the rarity of the disease as well as
the variability of clinical features, MPS I poses challenges for early
clinical diagnosis. Molecular diagnosis via IDUA sequencing allows for
early diagnosis and the potential to pursue available treatments which
may slow down disease progression.

We performed in-silico analysis for the pathogenic variant, it is
identified by SIFT as deleterious (http://sift.jcvi.org/) and probably
damaging by Polyphen (http://genetics.bwh.harvard.edu/pph2/). The
IDUA mRNA transcript of the mutated allele harbored an earlier pre-
mature translation termination codon, resulting in truncated IDUA
protein at residue 229 of the total 653 amino acids (Fig. 2). A com-
parative in-silico protein modeling using SWISS-MODEL (http://
swissmodel.expasy.org/) reveals the mutated IDUA and its' wild-type
counterpart (Fig. 2). The virtual 3D modeling shows the magnitude of
mutation impact on the simulated protein structure. The PTC would
occur in exon 6 (of 14) and thus the mutant IDUA transcript is predicted
not to reach the translation machinery. Rather it is predicted to be
degraded by nonsense-mediated mRNA decay (NMD) (Fig. 2). NMD is a
surveillance pathway that exists in all eukaryotes [31,32]. It targets
mRNAs harboring PTCs for degradation [33], which if left intact, would
lead to production of truncated proteins with predicted deleterious ef-
fects for the organism [34]. From a medical view, this suggests that the
NMD pathway plays a significant role in modulating the phenotypic
outcome of genetic disorders that are caused due to the presence of PTC
[35,36].

In summary, this is the first study to sequence IDUA for pathogenic
variants in a Yemeni family. We identified a novel pathogenic frame-
shift variant. This finding expands the pathogenic variant spectrum

Table 2
List of IDUA pathogenic variants causing MPS I in Middle Eastern populations.

No. Population Mutation Reference

1 Yemen c.657delA This study.
2 Saudi Arabia c.1525-1G>C [27]
3 Saudi Arabia p.Leu623Pro (c.1868T>C) [27]
4 Saudi Arabia p.Trp402 (c.1206G>A) [27]
5 Saudi Arabia c.1598_1599ins52 [27]
6 Kwait p.Arg628* (c.1882C>T) [27]
7 Tunisia p.Y581X [28]
8 Tunisia p.F177S [29]
9 Tunisia p.P533R [28]
10 Tunisia p.L530fs [29]
11 Tunisia p.F602X [28]
12 Tunisia p.R628X [28]
13 Tunisia p.L578Q [28]
14 Tunisia c.1805delT [30]
15 Turkey p.Trp68* (c.203G>A) [27]

The pathogenic variant of this study is made highlighted with bold text.

Fig. 2. Mutation analysis of the IDUA gene (c.657delA). Deletion of alanine leads to a premature stop codon, the affected allele will be either degraded by non-sense mediated mRNA
decay (NMD) and in consequence the allele is functionless, or it can be translated causes the resulting protein to be truncated.
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across Middle Eastern individuals and highlights the utility of early
detection through molecular diagnostic for early intervention.
Furthermore identification of this variant will facilitate accurate risk
assessment as well as prenatal testing for future pregnancies.
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