
RTA Promoter Demethylation and Histone Acetylation
Regulation of Murine Gammaherpesvirus 68 Reactivation
Zhangsheng Yang1,2, Haidong Tang1,2, Hai Huang1,2, Hongyu Deng1,3*

1 Center for Infection and Immunity and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China, 2 Graduate

School of the Chinese Academy of Sciences, Beijing, China, 3 School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America

Abstract

Gammaherpesviruses have a common biological characteristic, latency and lytic replication. The balance between these two
phases in murine gammaherpesvirus 68 (MHV-68) is controlled by the replication and transcription activator (RTA) gene. In this
report, we investigated the effect of DNA demethylation and histone acetylation on MHV-68 replication. We showed that
distinctive methylation patterns were associated with MHV-68 at the RTA promoter during latency or lytic replication. Treatment of
MHV-68 latently-infected S11E cells with a DNA methyltransferases (DNMTs) inhibitor 5-azacytidine (5-AzaC), only weakly
reactivated MHV-68, despite resulted in demethylation of the viral RTA promoter. In contrast, treatment with a histone deacetylase
(HDAC) inhibitor trichostatin A (TSA) strongly reactivated MHV-68 from latency, and this was associated with significant change in
histone H3 and H4 acetylation levels at the RTA promoter. We further showed that HDAC3 was recruited to the RTA promoter and
inhibited RTA transcription during viral latency. However, TSA treatment caused rapid removal of HDAC3 and also induced passive
demethylation at the RTA promoter. In vivo, we found that the RTA promoter was hypomethylated during lytic infection in the
lung and that methylation level increased with virus latent infection in the spleen. Collectively, our data showed that histone
acetylation, but not DNA demethylation, is sufficient for effective reactivation of MHV-68 from latency in S11E cells.
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Introduction

Murine gammaherpesvirus 68 (MHV-68, also referred to as

cHV68), is a member of the gammaherpesvirus subfamily [1].

MHV-68 is phylogenetically related to two other human gamma-

herpesviruses, Epstein-Barr Virus (EBV) and Kaposi’s sarcoma-

associated herpesvirus (KSHV), which are associated with lympho-

proliferative diseases and several human tumors [1,2,3,4]. Due to

the difficulty in culturing EBV and KSHV in vitro and the lack of a

good in vivo system to directly study them, MHV-68 has been used as

an in vitro and in vivo model for gammaherpesvirus infection

[3,5,6,7].

Herpesviruses have two distinct life cycle phases, latency and

lytic replication. Latent infection is thought to be important for

tumorigenesis associated with these viruses. Reactivation from

latency to lytic replication is essential for transmission of the virus

from host to host; it has been suggested that even low-frequency

viral reactivation plays a significant role in viral pathogenesis [6,8].

A viral protein, replication and transcription activator (RTA),

primarily encoded by open reading frame (ORF) 50, is well

conserved among gammaherpesviruses [9,10,11,12]. RTA is

regarded as a ‘‘molecular switch’’ controlling reactivation of

KSHV and MHV-68; both KSHV RTA and MHV-68 RTA are

sufficient and necessary to reactivate their respective viruses from

latently infected cells [10,13,14,15].

Chromatin modifications, including DNA methylation and histone

acetylation, play an important role in regulating gene transcription

[16]. Histone deacetylases (HDACs), which act in opposition to

histone acetyltransferases (HATs), control the level of histone

acetylation and serve as means for post-translational modification

of nucleosomal histones that influence gene expression [17]. Histone

acetylation promotes gene transcription by relaxing chromatin

structure and facilitating access to DNA by the transcriptional

machinery, whereas histone deacetylation promotes transcriptional

repression by condensing chromatin structure. It has been reported

that KSHV was reactivated from latency after 5-azacytidine (5-AzaC)

treatment of primary effusion lymphoma-derived cell lines [18]. In

addition, HDAC inhibitors activate KSHV RTA promoter strongly

and HDACs are recruited to the RTA promoter [19]. Studies of EBV

have also shown that chromatin modifications regulate virus

reactivation [20,21,22]. However, the effect of DNA demethylation

and histone acetylation of MHV-68 reactivation have not been

characterized yet. Therefore, the aim of this study was to investigate

the role of DNA demethylation and histone acetylation in MHV-68

reactivation. We show that histone acetylation is sufficient for MHV-

68 reactivation from latency in S11E cells (a B cell line latently

infected with MHV-68), and this process is accompanied by

demethylation of the RTA promoter.

Results

1. 5-AzaC treatment weakly led to MHV-68 lytic
replication in S11E cells

It has been reported that EBV and KSHV can be reactivated

from latency by DNA methylation inhibitor reagents such as 5-
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AzaC [18,22]. In order to determine if latent MHV-68 virus can

also be reactivated by this drug, we treated a MHV-68 latently-

infected cell line, namely S11E, with 5-AzaC. 12-O-tetradeca-

noylphorbol-13-acetate (TPA) plus sodium butyrate (NaB) treat-

ment, which has been reported to activate MHV-68 lytic

replication [23,24], served as a positive control. At indicated time

points, cellular extracts were analyzed by western blotting using a

polyclonal antibody against MHV-68 lytic antigens. As shown in

Fig. 1A, TPA plus NaB treatment for 36 hrs induced MHV-68

reactivation, leading to production of lytic antigens (lane 8),

compared to untreated control cells (lane 1). In contrast, treatment

of S11E cells with 5 mM or 10 mM 5-AzaC for 24 or 48 hrs,

induced little reactivation of MHV-68 virus (lanes 2 to 5).

Extending the treatment to 72 hrs resulted in modestly increased

level of reactivation (lanes 6 and 7). The different patterns of lytic

proteins induced by 5-AzaC vs TPA plus NaB might be attributed

to different signaling pathways involved in viral reactivation. To

analyze the reactivation efficiency of 5-AzaC more quantitatively,

supernatants were collected for plaque assay. As shown in Fig. 1B,

treating S11E cells with 5-AzaC for 72 hrs resulted in detectable

production of infectious viral particles, compared to untreated

control cells. However, this production level is very low, as TPA

plus NaB treatment generated a significantly higher number of

viral particles compared to untreated control. Taken together,

these data indicated that 5-AzaC treatment only led to weak

reactivation of MHV-68 from latency.

2. RTA promoter methylation was associated with MHV-
68 latency in vitro

There were two obvious explanations for the 5-AzaC experi-

ment results: 5-AzaC treatment was unable to induce demethyl-

ation of latent MHV-68 genome, or demethylation of the latent

MHV-68 genome was not sufficient to induce efficient MHV-68

reactivation. To facilitate examination of these possibilities, we

decided to focus on the RTA promoter region on viral genome,

since RTA has been shown to be the ‘‘molecular switch’’ for

controlling MHV-68 reactivation. Although it has been reported

that the whole MHV-68 genome was highly CpG suppressed [18],

there are a few CpG sites at the RTA promoter near the ATG

initiation cordon for RTA protein synthesis. We thus examined an

approximately 1 kb fragment in the proximal RTA promoter

region which includes 15 CpG sites. For convenience of technical

analysis, we divided this 1 kb fragment into two parts, P1 and P2

(Fig. 2A). We performed quantitative methylation-specific PCR

(Q-MSP) to detect methylation status at the RTA promoter in

S11E cells during latency and after reactivation. As a comparison,

we also analyzed the RTA promoter on viral genome from virions.

As shown in Fig. 2B, the ratio of methylation-specific products and

unmethylation-specific products was different among these 3

groups of samples, suggesting a much higher percentage of

methylated CpG sites on RTA promoter in S11E cells than in

virions, and that the percentage of methylated CpG sites

dramatically decreased after viral reactivation induced by TPA

plus NaB treatment.

To confirm this result, we performed combined bisulfite

restriction analysis (COBRA) experiments (Fig. 2C). In this

method, sodium bisulfite treatment of DNA fragment converts

unmethylated cytosines to uracils. PCR amplification of the

converted fragment leads to creation of new, or loss of existing,

restriction site (s), and susceptibility or resistance to selected

restriction enzyme digestion reveals the methylation status of the

original DNA fragment. For the RTA promoter P1 fragment, the

majority of the DNA extracted from S11E cells (80–90%) could be

digested by Taqa|, indicating methylation of the DNA fragment

(Fig. 2C, lane 2). 5-AzaC treatment resulted in a large proportion

of the CpG sites (approximately 80%) resistant to Taqa| digestion,

indicating demethylation induced by 5-AzaC (Fig. 2C, lane 4). As

a comparison, only 10 to 20 percent of the DNA sample from

virions could be digested by Taqa|, suggesting that they were

mostly in unmethylated status (Fig. 2C, lane 3). The RTA

promoter fragment from de novo infected BHK-21 cells, were

nearly all unmethylated (Fig. 2C, lane 5). Results from the

methylation analysis of P2 fragment were similar to those of the P1

part (Fig. 2C, lanes 8–11).

Both MSP and COBRA analyses examined the methylation

status of the RTA promoter at the population level. We thus

Figure 1. 5-AzaC treatment of S11E cells induced weak MHV-68 lytic replication. (A) Detection of MHV-68 lytic protein by western blotting
after S11E cells were induced by 5-AzaC. S11E cells were treated with 5 mM or 10 mM 5-AzaC for 24, 48 or 72 hrs, then cells were lysed and viral lytic
proteins detected using a polyclonal antibody against MHV-68 lytic antigens. TPA (25 ng/ml) plus NaB (4 mM) treatment served as a positive control.
(B) Supernatants from induced S11E cells were collected, and plaque assay were performed to detect viral titers. The experiments were repeated
three times and standard deviations were expressed as error bars.
doi:10.1371/journal.pone.0004556.g001
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decided to further investigate the methylation status of this DNA

fragment on individual viral genomes, using bisulfite genomic

sequencing (BGS). Results showed that in latently infected S11E

cells, majority of the CpG sites in the RTA promoter region were

methylated (Fig. 2D, panel a). By contrast, analysis of the virion

DNA or viral genome in de novo infected BHK-21 cells showed that

most of the CpG sites in the RTA promoter were unmethylated

(Fig. 2D, panels b and c). More importantly, after S11E cells were

treated with 5 mM 5-AzaC for 24 hrs, the RTA promoter region

was mostly demethylated (Fig. 2D, panel d). Taken together, these

data indicated that distinctive methylation patterns were associ-

ated with MHV-68 at the RTA promoter during latency or lytic

replication in cell culture. Furthermore, 5-AzaC treatment of

S11E cells successfully induced demethylation of the RTA

promoter region, however, demethylation only led to weak

reactivation of MHV-68 from latency.

Figure 2. Methylation status at the MHV-68 RTA promoter. (A) A schematic view of the RTA promoter on MHV-68 genome (NC_001826, n.t.
65695-66879). The 15 CpG sites shown were analyzed in this study, the promoter region divided into two parts for analysis, named P1 and P2. (B)
Quantitative methylation-specific PCR (Q-MSP) analysis of the RTA promoter methylation status. Genomic DNAs were prepared from untreated S11E
cells, MHV-68 virion or TPA (25 ng/ml) plus NaB (4 mM) treated S11E cells. Then Q-MSP was performed to detect methylation status of the RTA
promoter P1 and P2 fragments, using methylation-specific (M) or unmethylation-specific (U) primers, respectively. Standard reactions were performed
at the same time to quantify copy numbers, and the ratio of methylation-specific and unmethylation-specific products was calculated for each
sample. Results represent the average from three experiments, with standard deviations shown. (C) Combined bisulfite restriction analysis (COBRA) of
the MHV-68 RTA promoter methylation status. Genomic DNAs were prepared from untreated S11E cells, MHV-68 virion, 5-AzaC (10 mM, 36 hrs)
induced S11E cells or de novo infected MHV-68 BHK-21 cells, bisulfite modified, and subsequently used for PCR amplification. The PCR products were
digested by Taqa| for COBRA. The digested products for P1 fragments are 84 bp, 52 bp, 136 bp, 447 bp and 395 bp. The digested products for P2
fragments are 411 bp and 91 bp. (D) Bisulfite genomic sequencing (BGS) analysis of the 15 CpG sites at the RTA promoter. Genomic DNAs from
untreated S11E cells, MHV-68 virion, de novo infected MHV-68 BHK-21 cells or 5-AzaC (10 mM, 24 hrs) induced S11E cells, bisulfite modified, and then
used for PCR amplification, The PCR products were cloned into T-A vector. Each group included eight independent clones. Solid circles indicate
methylated CpG, open circles indicate unmethylated CpG and triangle indicate ambiguous sequencing results.
doi:10.1371/journal.pone.0004556.g002
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3. Trichostatin A (TSA) strongly reactivated MHV-68 from
latency in S11E cells

Our data above indicated that DNA demethylation is not

sufficient for MHV-68 reactivation, at least in the S11E cells we

tested. Since histone acetylation also plays a role in regulating gene

transcription, we next investigated whether modification of histone

acetylation of the MHV-68 genome could induce MHV-68 to go

to lytic replication from latency in S11E cells. As shown in Fig. 3A,

when S11E cells were treated with TSA for 24 or 36 hrs (200 ng/

ml, lanes 2 and 6; or 1000 ng/ml, lanes 3 and 7), increased MHV-

68 lytic protein expression was detected by western blotting using a

polyclonal antibody against MHV-68 lytic antigens, indicating

reactivation of MHV-68 virus. To quantitatively examine the

effect of TSA induction, we measured virus titer present in the

supernatant by plaque assay. After TSA induction for 36 hrs, virus

titer increased considerably than that from mock treatment

(Fig. 3B). These data demonstrated that TSA treatment success-

fully led to MHV-68 lytic replication in S11E cells. Because the

reactivation efficiency in S11E cells may vary from time to time,

we directly compared the effect of 5-AzaC and TSA on viral

reactivation in the same experiment. Result shown in Fig. 3C

confirmed that TSA induced MHV-68 reactivation more robustly

than 5-AzaC did.

4. Histone acetylation modification at MHV-68 RTA
promoter

It has been reported that most MHV-68 viruses were present as

episomes in S11E cells [25], therefore, the virus genomes are

subject to chromatin modifications such as histone acetylation. We

thus employed chromatin immunoprecipitation (ChIP) assay to

examine whether histone acetylation modification occurred at the

RTA promoter after TSA treatment. We first used an antibody

against acetylated histone H3 to detect the change of histone H3

acetylation level at the RTA promoter. TSA treatment of S11E

cells for 4 hrs resulted in up-regulation of histone H3 acetylation

level, compared to that of mock treatment. As a control, TSA

treatment did not change the level of histone H3 acetylation at

GAPDH locus (Fig. 4A, lanes 5 and 6). Furthermore, the ChIP

assay showed that the level of acetylated histone H4 at the RTA

promoter also increased significantly after TSA treatment (Fig. 4B).

In vivo, histone acetylation and histone deacetylation are

controlled by HATs and HDACs. Their balance is important

for regulating gene expression. Since TSA is an inhibitor of

HDACs, we next investigated whether TSA reactivation of MHV-

68 was mediated through affecting HDAC binding at the RTA

promoter. We used a panel of antibodies against individual

HDACs in ChIP to investigate the recruitment of HDACs at the

RTA promoter during latency. As shown in Fig. 4C, we found that

HDAC3 was recruited to the RTA promoter in S11E cells (lane 2),

however, HDAC5, 7, 1, 4, or 6 were not recruited (lanes 3 and 4,

and data not shown).

We next examined whether association of HDAC3 with latent

MHV-68 RTA promoter in S11E cells was indeed modulated by

TSA treatment. As shown in Fig. 4D, treatment with TSA caused

removal of most of the HDAC3 from the RTA promoter (lane 3).

This is accompanied by increased acetylation level of histone H3

and histone H4, consistent with the results from Fig. 4A and 4B.

As a comparison, treatment of S11E cells with 5-AzaC had little

effect on HDAC3 binding, and the acetylation level of H3 and H4

at the RTA promoter remained unchanged compared to mock

treatment (Fig. 4D, lanes 1 and 2). Taken together, these data

indicated that HDAC3 plays an important role in suppressing

RTA promoter transcription during viral latency.

5. Passive demethylation at the RTA promoter was
associated with MHV-68 reactivation

As described above, TSA treatment led to removal of HDAC3

complex from latent RTA promoter and viral reactivation (Fig. 4).

The RTA promoter has distinctive methylation status during

latency and lytic replication (Fig. 2). Therefore we asked whether

TSA treatment could also result in change of the methylation

status of RTA promoter. COBRA revealed that, after 4 hrs of

TSA treatment, the RTA promoter methylation status was similar

to that from mock treatment (Fig. 5A, lanes 1, 3, 6 and 8).

However, after 24 hrs of TSA treatment, the RTA promoter

region was mostly demethylated (Fig. 5A, lanes 4 and 9), and the

extent of demethylation was more than that from 5-AzaC

treatment for 24 hrs (Fig. 5A, lanes 2 and 7). A time course

analysis of TSA treatment showed that the RTA promoter

demethylation occurred between 8 to 12 hrs post-induction

(Fig. 5B).

Two distinct demethylation mechanisms have been reported,

active demethylation and passive demethylation. Passive DNA

demethylation occurs through inhibition or under-maintenance of

DNMTs throughout cycles of replication, while active DNA

demethylation requires specific enzymatic reactions [26]. In order

to investigate whether the RTA promoter demethylation we

observed was caused by direct demethylation after TSA treatment

or was a result of passive demethylation after viral genome

replication, we applied phosphonoacetic acid (PAA), an inhibitor

of DNA replication. As shown in Fig. 5C, after treatment with

TSA alone for 12 hrs, the RTA promoter demethylation was

observed as previously (lanes 5 and 11, compared to lanes 2 and 8).

However, presence of PAA greatly reduced demethylation of the

RTA promoter (lanes 6 and 12). Although it is possible that

treatment with PAA may have an effect on virus gene

transcription, such a possibility is not supported by the fact that

RTA transcription level was not affected as detected by RT-PCR

(Fig. 5D). Taken together, these data indicated that passive

demethylation at the RTA promoter was associated with TSA

induction of MHV-68 reactivation and most likely occurred on

newly replicated viral genomes.

6. TSA and 5-AzaC did not act synergistically in S11E cells
Our previous data suggested that 5-AzaC alone could reactivate

MHV-68 very weakly, but TSA alone could reactivate MHV-68

strongly. We then went to determine whether these two chemicals

could act synergistically to induce MHV-68 reactivation in S11E

cells. Treatment of S11E cells with both 5-AzaC and TSA, when

compared to TSA treatment alone, neither enhanced RTA

transcription (Fig. 6A) nor increased MHV-68 lytic protein

expression (Fig. 6B). These data indicated that 5-AzaC and TSA

cannot act synergistically to reactivate RTA transcription in S11E

cells.

7. Analysis of the methylation status and acetylation level
of the RTA promoter in vivo

Compared to EBV and KSHV, MHV-68 is able to infect

laboratory mouse, providing a useful model to study the basic

biology of gammaherpesvirus infection in vivo. After intranasal (i.n.)

infection, MHV-68 takes on acute virus replication in the lung,

followed by B-cell-dependent spread of virus to the spleen and

other lymphoid tissues. Latency is established predominantly in B

cells, macrophages, dendritic and epithelial cells [27,28,29,30]. To

analyze the MHV-68 RTA promoter methylation status in vivo, we

infected BALB/C mice by i.n. infection. At different days post

infection (dpi), we performed RT-PCR analysis of viral gene

MHV-68 Epigenetic Regulation
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expression to assess whether the virus was in lytic replication or

latency. ORF52, encoding a viral tegument protein, is only

expressed during lytic phase but not in latency, whereas the classic

latency gene ORF73 is expressed during both phases. Consistent

with previous report [27,28], at 5 dpi, both ORF52 and ORF73

were abundantly expressed, indicating that MHV-68 was in lytic

phase (Fig. 7A, lane 1). However, expression of ORF52 decreased

and diminished at 16, 21 and 28 dpi, whereas ORF73 maintained

a decreased level of expression even at 28 dpi (Fig. 7A, lanes 2–4),

suggesting that MHV-68 had gone through the process of

establishing to maintenance of latency. Concurrently, COBRA

analysis showed that at 5 dpi, the RTA promoter region was

nearly all unmethylated (Fig. 7B, panel a). As viral latency was

established and maintained at 16, 21 and 28 dpi, increased level of

methylation was observed at the RTA promoter (Fig. 7B, panels

b–d). BGS of selected individual samples further confirmed the

results (data not shown).

We also attempted to examine the acetylation level of the

RTA promoter in vivo. As a comparison, we administered mice

with latent MHV-68 infection (at 28 dpi) with TSA, since it has

been reported that subcutaneous injection of TSA at 2.4 mg/kg

did not give rise to obvious toxic effect on mice [31]. ChIP assay

was performed to detect the acetylation level of histones H3 and

H4 at the RTA promoter at 5 hrs post-treatment. The results

showed that the acetylation level of histones H3 and H4 at the

RTA promoter was low during viral latency in vivo (Fig. 7C, lane

Figure 3. TSA strongly reactivated MHV-68 lytic replication from latency. (A) Detection of MHV-68 lytic protein by western blotting after
S11E cells were induced by TSA. S11E cells were treated with 200 ng/ml or 1000 ng/ml TSA for 24 or 36 hrs, and then total cells were lysed and viral
lytic proteins detected with anti- MHV-68 lytic antigens. TPA (25 ng/ml) plus NaB (4 mM) treatment served as a positive control. (B) Plaque assay on
viral titer from the S11E cell supernatant after TSA treatment for 36 hrs. The experiments were repeated three times for each treatment. Standard
deviations are expressed as error bars.
doi:10.1371/journal.pone.0004556.g003

Figure 4. Histone acetylation modification at MHV-68 RTA promoter. (A) ChIP analysis of histone H3 acetylation level at MHV-68 RTA
promoter. S11E cells were stimulated with TSA (200 ng/ml) for 4 hrs or mock-treated. Chromatin fragments were immunoprecipitated with an
antibody against acetylated histones H3 (or no antibody control). Primers specific for RTA promoter or the GAPDH coding sequence were used to
amplify the DNA isolated from the immunoprecipitated chromatin. The input DNAs and their dilutions were amplified to serve as positive controls. (B)
ChIP analysis of histone H4 acetylation level at MHV-68 RTA promoter. Experiments were conducted as above, except an antibody against acetylated
histone H4 was used. (C) HDAC3 was recruited to the MHV-68 RTA promoter. Recruitment of HDAC3, 5 or 7 to MHV-68 RTA promoter in S11E cells was
investigated by ChIP. ChIP analysis of GAPDH coding sequence region is shown in the lower panel. Negative control (‘‘No antibody’’) and positive
control (‘‘Input’’) were indicated. (D) ChIP analysis of HDAC3, acetylated histones H3 or acetylated histones H4 at RTA promoter. S11E cells were
treated with 5-AzaC (10 mM, 36 hrs), TSA (200 ng/ml, 4 hrs) or left untreated, chromatin fragments immunoprecipitated and then analyzed by ChIP.
doi:10.1371/journal.pone.0004556.g004

MHV-68 Epigenetic Regulation

PLoS ONE | www.plosone.org 6 February 2009 | Volume 4 | Issue 2 | e4556



5), and this level was up-regulated by TSA treatment (Fig. 7C,

lane 6).

Discussion

MHV-68 belongs to the gammaherpesvirus subfamily, which is

characterized by common biological traits, latency and lytic

replication. Previous studies have shown that both DNA

methylation and histone acetylation regulate EBV and KSHV

reactivation [18,19,20,21,22]. The role of epigenetic regulation in

MHV-68 reactivation has not been reported. In this study, we

investigated the effect of DNA methylation and histone acetylation

associated with MHV-68 reactivation in S11E cells. The MHV-68

RTA promoter harbored distinctive methylation patterns during

latency and lytic replication in vitro and in vivo. However,

methylation inhibitor 5-AzaC was ineffective in reactivating

MHV-68 to lytic phase. In contrast, HDAC inhibitor TSA

strongly induced MHV-68 to go to lytic replication. During

MHV-68 latency, HDAC3 complex was recruited to the RTA

promoter to suppress transcription. TSA treatment led to removal

of HDAC3 from the RTA promoter, up-regulation of histone H3

and H4 acetylation level, and viral reactivation. Reactivation is

accompanied by passive demethylation at the RTA promoter.

These findings led us to propose a model in which, at least in S11E

cells, histone acetylation induced by TSA, but not DNA

demethylation, is sufficient for effectively reactivating MHV-68

from latency (Fig. 8).

Many factors have been shown to be involved in MHV-68

reactivation. Firstly, several chemical reagents stimulate ORF50

gene expression and consequently lead to viral lytic reactivation

[23,24]. Additionally, some viral proteins, including RTA itself,

and host cell signals activate RTA transcription and eventually

lead to MHV-68 lytic replication [14] (unpublished data). Here,

we show that chromatin remodeling also affects MHV-68

reactivation.

DNA methylation is an important mechanism for regulating

gene expression. It has been well demonstrated that DNA

methylation suppresses transcription, and transcription can be

activated when treated with methylation inhibitors [32,33]. Many

tumor suppressor genes are repressed by hypermethylation, hence

Figure 5. Passive demethylation at RTA promoter was associated with MHV-68 reactivation. (A) COBRA of methylation status at RTA P1
and P2 promoter. S11E cells were stimulated with 5-AzaC (10 mM, 24 hrs), TSA (200 ng/ml, 4 hrs), TSA (200 ng/ml, 24 hrs) or mock treated for COBRA.
(B) Time course of methylation status change at the P1 and P2 fragments of RTA promoter in S11E cells. S11E cells were treated with TSA (200 ng/ml),
and at 0, 4, 8, 12, 16 or 24 hrs post-induction, DNA was extracted for COBRA. (C) COBRA of methylation status at RTA promoter with PAA treatment.
S11E cells were treated with TSA (200 ng/ml) and/or PAA (200 mg/ml) for 8 or 12 hrs, and DNA extracted for COBRA of the RTA P1 and P2 methylation
status. (D) RT-PCR analysis of MHV-68 RTA mRNA expression after TSA plus PAA treatment. S11E cells were stimulated with TSA (200 ng/ml) 12 hrs,
TSA (200 ng/ml) plus PAA (200 mg/ml) 12 hrs or TSA (200 ng/ml) for 24 hrs, and then total RNA isolated for RT-PCR. Analysis of GAPDH served as a
control.
doi:10.1371/journal.pone.0004556.g005
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leading to cancer growth [34,35]. In KSHV, the RTA promoter is

methylated during latency[18]. The EBV genome is also highly

methylated in latently infected cells, and the virus can be

converted from latency to lytic replication by DNA methylation

inhibitors such as 5-AzaC [21,22,36,37]. Our study of MHV-68

showed that both in vitro and in vivo, the viral RTA promoter region

was highly methylated during latency, whereas during de novo

infection, in vitro or in vivo, the RTA promoter was mostly

unmethylated (Fig. 2 and 7). Furthermore, treatment of S11E cells

by 5-AzaC, although successfully resulted in demethylation of the

RTA promoter (Fig. 2), is not sufficient to effectively induce

MHV-68 reactivation (Fig. 1). Therefore, for MHV-68, it seems

that methylation of the RTA promoter is tightly associated with

establishment and maintenance of viral latency, however,

demethylation of the RTA promoter alone is not sufficient to

effectively reactivate the virus.

In a related study, Moser et al have shown that conditional

deletion of DNMT 1 alleles from MHV-68 infected cells in vivo led

to a severe ablation of viral latency [38]. DNMT 1 is a critical

maintenance methyltransferase which maintains the DNA meth-

ylation patterns of the cellular genome during DNA replication.

Since such a process is essential for the survival of the proliferating

cells, the authors concluded that the proliferation of latently

infected B cells is critical for the establishment of MHV-68 latency

[38]. However, since the latent MHV-68 would have to replicate

its genome in sync with the cellular genome during B cell

proliferation, deletion of DNMT1 would also result in loss of

methylation of the newly replicated viral genomes. Based on our

study reported here, demethylation of the viral genome, especially

of the RTA promoter, would lead to reactivation of MHV-68 into

lytic replication and eventual lysis (and loss) of the latently infected

cells, and hence may also be responsible for the severe ablation of

the viral latency observed.

Many studies have reported that the activities of HATs and

HDACs are linked to transcription [39,40]. Up till now, 18

members of the HDACs family have been reported [41,42,43].

Based on size, catalytic domain, subcellular localization, and

mechanism of deacetylation, HDACs are classified into four

classes. Class I HDACs include HDAC1, 2 and 3, which have

been showed to be sensitive to HDAC specific inhibitors such as

TSA [44]. Previous data showed that TSA induced both KSHV

and EBV reactivation [19,20,21,45]. In KSHV, Lu et al reported

that the RTA promoter is highly responsive to TSA as well as

another HDAC inhibitor NaB. However, although the RTA

promoter is found associated with several HDACs in latently

infected cells, NaB treatment did not result in significant change in

the association of HDACs. Instead, chromatin remodeling

complex Snf5/Ini1 was recruited to the RTA promoter [19]. As

for EBV, the scenarios are more complicated. Chang et al showed

that TSA treatment of an EBV latently infected cell line P3HR1

resulted in acetylation of histone H4 at the BRLF1 promoter as

well as transcription activation of the BRLF1, suggesting that

histone acetylation at the RTA promoter induces EBV reactiva-

tion [20]. However, a more thorough analyses of the effect of

several HDACs inhibitors (NaB, TSA and valproic acid) on

multiple latent EBV cell lines by Countryman et al revealed that

those HDAC inhibitors, though capable of promoting hyperace-

tylation at the promoters for BZLF1 (ZEBRA) and BRLF1 (RTA),

only induced EBV go to lytic cycle in some cell line background

[21]. Thus, open chromatin at EBV BZLF1 and BRLF1

promoters by itself is not sufficient to activate EBV lytic cycle

gene expression [21]. In MHV-68, our data showed that HDAC3

was recruited to the RTA promoter in latently infected S11E cells

to suppress RTA transcription, and TSA treatment reactivated

MHV-68 through dissociation of HDAC3 from the RTA

promoter, accompanied by up-regulation of histone H3 and

histone H4 acetylation levels (Fig. 3 and 4).

Only HDACs residing in the nucleus can deacetylate histones

and repress transcription, and proteosome degradation appears to

be a mechanism of regulation of HDAC function [46,47,48,49].

We thus examined the distribution and integrity of HDAC3 after

TSA treatment of S11E cells. Consistent with previous finding that

HDAC3 can be found in both the nucleus and cytoplasm [50,51],

our western blot analysis also detected HDAC3 in both fractions

(data not shown). However, HDAC3 was neither translocated nor

degraded after TSA treatment (data not shown). Therefore, the

exact mechanism governing the role of HDAC3 in regulating

MHV-68 reactivation remains to be further investigated.

Nonetheless, it should be noted that HDACs generally exist as a

component of stable large multi-subunit complexes, and the

activities of most if not all HDACs are regulated by protein-

protein interactions [52,53,54]. There are also cross-talks between

the epigenetic processes of DNA demethylation and histone

modifications [55,56]. It has been well demonstrated that DNA

methylation can repress transcription through several mechanisms,

e.g. directly inhibiting binding of transcription factor to DNA, and

Figure 6. TSA and 5-AzaC did not act synergistically to induce
MHV-68 reactivation. (A) RT-PCR analysis of MHV-68 RTA mRNA
expression after 5-AzaC and/or TSA treatment. S11E cells were induced
with 5-AzaC (10 mM) and/or TSA (200 ng/ml) for 24 hrs and then total
RNA were isolated for RT-PCR, GAPDH mRNA was amplified as a control.
(B) Western blotting analysis of MHV-68 lytic protein expression after 5-
AzaC and/or TSA treatment. TPA (25 ng/ml) plus NaB (4 mM) treatment
served as a positive control.
doi:10.1371/journal.pone.0004556.g006
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indirectly through the effects of methyl-CpG binding proteins.

Thus, methyl-CpG binding proteins (e.g. MeCP2 and MBDs) can

be recruited to methylated CpG where they can act as mediators

of transcriptional repression through the association with HDAC

containing repressor complexes [57]. For instance, HDAC1 and

HDAC2 exist in NuRD (Nucleosomes remodeling and deacety-

lase) as well as at least two other distinct complexes to repress

transcription, and the NuRD complex also contains MBD3

[58,59]. Therefore, demethylation will result in removal of MeCP

or MBDs, leading to dissociation of the NuRD complex containing

HDAC1/HDAC2 and hence activating gene transcription.

Consistently, previous reports showed that in KSHV, it was

HDAC1, but not the HDAC3, which was recruited to the RTA

promoter [19], and demethylation of the KSHV ORF50 promoter

strongly induced viral reactivation from latently infected cell line

[18].

In contrast, HDAC3 depends upon SMRT (Silencing mediator

of retinoid and thyroid receptor) and N-CoR (Nuclear receptor co-

repressor) complexes to remodel the promoter structure and

repress transcription [52,60,61,62]. Till now, it is regarded that

HDAC3 does not interact with MBDs [57,59]. Consistently, our

data showed that, during MHV-68 latency, HDAC3 was recruited

to the RTA promoter (Fig. 4C), however, demethylation of the

RTA promoter could not remove the HDAC3 complex (Fig. 4D)

and thus was not sufficient to effectively reactivate the virus from

latency. This may also offers an explanation for why we could not

detect synergistic effects between 5-AzaC and TSA treatment for

induction of MHV-68 reactivation (Fig. 6), in contrary to many

reports showing that inhibiting DNA methylation and histone

deacetylation can synergistically induce gene expression

[63,64,65].

To our knowledge, this study is the first to investigate the DNA

demethylation and histone acetylation associated with gamma-

herpesvirus reactivation in vitro and in vivo in the same system. In

this system we found that histone acetylation plays a much more

significant role in regulating MHV-68 reactivation. As a

comparison, KSHV can be reactivated from latently infected

BCBL-1 cells by either the DNMTs inhibitor reagent such as 5-

AzaC [18], or the HDAC inhibitors such as NaB or TSA [19].

These data show that both reagents were strong to reactivate the

Figure 7. Analysis of methylation and acetylation status of the RTA promoter in vivo. (A) RT-PCR detection of ORF52 and ORF73
expression. Infected tissues were prepared mice at 5, 16, 21 and 28 dpi and mRNA extracted. The coding sequences for ORF52 and ORF73 were RT-
PCR amplified and separated on a 2% agarose gel. (B) COBRA of methylation status of RTA promoter. DNAs were extracted from infected tissue at 5, 8,
16, 21 or 28 dpi respectively, bisulfite treated, amplified by PCR, digested with Taqa| and separated on a 2% agarose gel. (C) TSA treatment of MHV-68
latently infected mice. At 28 dpi, MHV-68 infected BALB/C mice were administrated with TSA by subcutaneous injection in the groin (2.4 mg/kg). Five
hrs post-induction, ChIP assay were used to detect histones H3 and H4 acetylation level at the RTA promoter.
doi:10.1371/journal.pone.0004556.g007
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virus, though the reactivation efficiencies could not be directly

compared due to the usage of different investigating methods. We

hypothesize that in the MHV-68 system, DNA methylation is

critical for maintaining the viral latency status, while histone

acetylation is important for chromatin structure remodeling at the

RTA gene promoter and accordingly induces MHV-68 reactiva-

tion. It should be noted that, till now only one naturally occurring

MHV-68 latently infected cell line has been isolated. Performing

similar analysis in additional MHV-68 latently infected cell lines

(once available) will yield more information and shed more light

on the role of epigenetic modification in controlling MHV-68

reactivation.

Materials and Methods

1. Cell culture and chemical treatment
S11E is a clonal cell line of S11, which was established from a B-

cell lymphoma developed in an MHV-68 infected mouse and

contains latent MHV-68 [25]. S11E cells were cultured in RPMI

1640 medium containing 15% FBS, penicillin (100 U/ml),

streptomycin (100 mg/ml) and 50 mM b-mercaptoethanol. 293T

and BHK-21 were maintained in Dulbecco’s modified Eagle’s

Medium (DMEM) plus 10% FBS, penicillin (100 U/ml) and

streptomycin (100 mg/ml). 5-azacytidine (5-AzaC), trichostatin A

(TSA), 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium

butyrate (NaB) were purchased from Sigma. These chemicals were

used to induce S11E cells at various concentrations for various

times in different experiments. For cell treatment with 5-AzaC for

a total of 36, 48 or 72 hrs, media with freshly added 5-AzaC was

replaced at 24-hr interval. Phosphonoacetic acid (PAA) was also

purchased from Sigma, and S11E cells were treated at a

concentration of 200 mg/ml.

2. Mouse administration and in vivo infection
Four to six week-old, specific pathogen free (SPF) female

BALB/C mice were purchased from Beijing Laboratory Animal

Research Center. Maintenance of mice and experimental

procedures were approved by the Animal Welfare and Research

Ethics Committee of the Institute of Biophysics, Chinese Academy

of Sciences. For in vivo infection, the mice were anesthetized

intraperitoneally (i.p.) with pentobarbital sodium (50 mg/kg body

weight), and then inoculated intranasally ( i.n.) with 20 ml of viral

stock contain 4.06105 PFU of MHV-68 viruses. Control mice

were inoculated i.n. with 20 ml of phosphate-buffered saline (PBS).

For TSA induction experiment, the mice were injected directly by

subcutaneous route in the groin at a dosage of 2.4 mg/kg.

3. Western blotting
Total cell extracts were prepared using standard protocols and

resolved on a SDS-polyacrylamide gel. After transferring to

polyvinylidene fluoride (PVDF) membrane (Millipore) and block-

ing with 5% milk, the MHV-68 lytic proteins were detected using

a rabbit polyclonal antibody (a kind gift from Prof. Ren Sun,

UCLA) at 1:2000 dilution, followed by HRP-conjugated anti

rabbit IgG (Beijing Zhongshan Golden Bridge Biotechnology Co.,

LTD) at 1:10,000 dilution. b-actin was detected by a mouse

monoclonal antibody (Sigma) at 1:5000 dilution, followed by

HRP-conjugated anti mouse IgG (Beijing Zhongshan Golden

Bridge Biotechnology Co., LTD) at 1:10,000 dilution. Protein

bands were visualized by the chemiluminescence detection system

(Millipore).

4. Plaque assay
BHK-21 cells were grown in 12- well plates to 20–30%

confluency. Cells were infected in duplicates with serial 10-fold

dilutions of cell culture supernatants, and incubated at 37uC for

1 hr, with gentle rocking every 15 min. After that the inoculum

was aspirated out, cells were then overlaid with 2 ml of DMEM

containing 10% FBS, 1% antibiotics and 1% methyl cellulose agar

(Sigma). After 5 days of incubation, the plaques were stained and

counted under a microscope to determine viral titers.

5. Genomic DNA Isolation, Q-MSP, COBRA and BGS
Genomic DNA was isolated by standard phenol-chloroform

extraction procedure. In brief, S11E cells were washed twice with

ice-cold phosphate-buffered saline (PBS), and then incubated at

55uC overnight with digestion buffer (100 mM NaCl, 25 mM

EDTA, 10 mM Tris-HCl [pH 8.0], 0.5% sodium dodecyl sulfate,

Figure 8. A working model for DNA demethylation and histone acetylation regulation of MHV-68. (A) In S11E cells or latent infection in
vivo, the RTA promoter is methylated and HDAC3 complex is recruited to the RTA promoter to suppress transcription. (B) When treated with TSA, the
HDAC3 complex is rapidly removed, the RTA promoter demethylated through a passive mechanism, and RTA transcription is turned on. (C) However,
when treated with 5-AzaC, though the RTA promoter becomes demethylated, HDAC3 stays at the promoter and the RTA promoter remains
suppressed. M: methylation; A: acetylation.
doi:10.1371/journal.pone.0004556.g008
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0.1 mg/ml proteinase K). DNA was extracted twice with phenol-

chloroform-isoamyl alcohol (25:24:1), and collected by ethanol

precipitation.

Bisulfite treatment of genomic DNA was preformed in agarose

by a special method described previously [66,67]. In brief, 700 ng

DNA was digested by Bgl||, which does not cut within the region

of interest, and denatured in 0.3 M NaOH at 50uC for 15 min.

The denatured DNA was mixed with melted 2% (w/v) LMP

agarose (Amresco) to form beads, and incubated with 2.5 M

sodium bisulfite (Sigma) at pH 5.0 and 0.5 mM hydroquinone

(Sigma) at 50uC for 4 hrs. The beads were washed by TE to

remove agarose, incubated with 0.2 M NaOH for 30 min for

desulfonation, and washed again by TE to remove NaOH

solution. The beads could then used for PCR directly.

The 1 kb MHV-68 RTA promoter region was divided into two

fragments for convenience of analysis, defined as P1 and P2, which

include a total of 15 CpG sites. For quantitative methylation-

specific PCR (Q-MSP) assay, beads were amplified by Bio-Rad

MyiQ single-color real-time PCR detection system with methyl-

ated primers or unmethylated primers respectively, and the results

were quantified based on standard reactions performed at the

same time. For Bisulfite Sequencing Analysis (BGS), beads were

amplified by semi-nested PCR, and PCR products recovered and

cloned into pMD18-T vector (TaKaRa) for sequencing. For

Combined bisulfite restriction analysis (COBRA), beads were also

amplified by semi-nested PCR and DNA recovered, followed by

digestion with Taqa| (NEB) for 2 hrs, and visualized by ethidium

bromide staining of 2% agarose gels. All PCR primers are listed in

Table 1.

6. ChIP assay
Chromatin immunoprecipitation (ChIP) protocol was per-

formed according to Upstate Company online protocol and a

procedure described previously [68]. In brief, S11E cells were

treated with or without TSA (200 ng/ml) for 4 hrs or 5-AzaC

(10 mM) for 36 hrs (with fresh media every 24 hrs), then cross-

linked with formaldehyde to a final concentration of 1% for

10 min at 37uC. The cells were washed in ice-cold PBS twice,

resuspended in sodium dodecyl sulfate (SDS) lysis buffer and

incubated for 20 min on ice. Lysates were sonicated to produce

DNA fragments of an average length at 300–1000 bp. Extracts

were then diluted 10-fold with immunoprecipitation (IP) dilution

Table 1. Primers used in this study.

Primers DNA Sequences (59 - 39)
Coordinates on MHV-68 or
Cellular Genome

Primers for BGS

P1-Forward GGTTTTTGTGTAGAATTTTTGATTATGA NC_001826, 65695-65722

P1-Reverse CCAACCTCACCAACTTTTACAATA NC_001826, 66235-66258

P1-Nest AGTTATATTTTGTATATAAATATTTATGGT NC_001826, 65728-65757

P2-Forward TTTTTTGAATAGAGTGAGAAGGGTAG NC_001826, 66355-66380

P2-Reverse TCAAACTAATAACAACACTTTAATTTTTAA NC_001826, 66858-66879

P2-Nest TAGGTATATAATAAAATTTTTTGGAATT NC_001826, 66378-66405

Primers for MSP

P1-M-Forward TGTTGGTTACGTTTAGGTATTCGA NC_001826, 65791-65814

P1-M-Reverse ATCTCACTAAAAACACTCCAACGAC NC_001826, 66060-66084

P1-U-Forward GTTGGTTATGTTTAGGTATTTGA NC_001826, 65792-65814

P1-U-Reverse ATCTCACTAAAAACACTCCAACAAC NC_001826, 66060-66084

P2-M-Forward GTATTACGAGGGAATTTTTGTAGC NC_001826, 66753-66776

P2-M-Reverse ATTTTTAATAAAATACTAATCTATCTACGT NC_001826, 66828-66857

P2-U-Forward TATTATGAGGGAATTTTTGTAGTGA NC_001826, 66736-66760

P2-U-Reverse ATTTTTAATAAAATACTAATCTATCTACAT NC_001826, 66828-66857

Primers for ChIP

RTA-Forward CTCTGTCAGATGTGACCATGAG NC_001826, 66501- 66522

RTA-Reverse AAAATGTTTACCTACCTTATCGGCTG NC_001826, 66785-66810

GAPDH-Forward CACCCAGAAGACTGTGGATG M_001001303, 601-620

GAPDH-Reverse CGAAGGTGGAAGAGTGGGAG M_001001303, 919-938

Primers for RT-PCR

RTA-Forward CTACATACCTACTCCCAACTCAG NC_001826, 68782-68804

RTA-Reverse ATTTACCTCCTCATCGCTCT NC_001826, 68892-68911

ORF52-Forward AGGAATTCGGTCAGGCGCTGTCTCATCAGA NC_001826, 71056-71075

ORF52-Reverse TCGGTACCTTATTCATGATCATGTCTGTGTC NC_001826, 71342-71364

ORF73-Forward TCCCTGGCTGGACTCCTCAT NC_001826, 104692-104711

ORF73-Reverse CCCACCGACTACACGCAACA NC_001826, 104838-104857

GAPDH- Forward TGAAGCAGGCATCTGAGGG M_001001303, 837-855

GAPDH-Reverse CGAAGGTGGAAGAGTGGGAG M_001001303, 919-938

doi:10.1371/journal.pone.0004556.t001
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buffer. Two hundred microliters of the diluted sample (10%) was

used as input controls and 1.8 ml of diluted sonicated extract for

IP. After pre-clearing with Protein G Agarose for 30 min at

4uCwith agitation, appropriate antibodies (anti-acetyl-histone H3

[Upstate], anti-acetyl-histone H4 [Upstate], anti-HDAC1, 3, 4, 5,

6, 7 [Cell signaling kit], anti-HDAC3 [Abcam]) were incubated

overnight at 4uC with rotation. To collect the immune complexes,

appropriate Protein G Agarose mixture was added to each

reaction mixture and the mixture was rotated for 2 hrs at 4uC.

Beads were centrifuged and washed for 5 min at 4uC with each of

the following: low salt, high salt, LiCl, and Tris-EDTA buffer. The

immune complexes were eluted by incubation in elution buffer,

and supernatants were isolated and further incubated for 4 hrs at

65uC to reverse cross-linking. Input controls were treated in the

same manner at this point. After reverse cross-linking, proteinase

K was added and the mixture was incubated for 1 hr at 45uC.

DNA was deproteinized by phenol-chloroform extraction and

ethanol precipitation in the presence of 20 mg of glycogen. DNA

was washed in 70% ethanol, dried, and resuspended in 20 ml of

TE. For a typical PCR, 2 to 5 ml of the 20 ml total DNA was

amplified for 22 to 34 cycles and visualized by ethidium bromide

staining of agarose gels. Primers for RTA promoter and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) coding

sequence are listed in Table 1.

7. RNA isolation and RT-PCR
Total cellular RNA was extracted with TRIzol reagent

according to the recommendations of the supplier (Invitrogen)

and quantified using GeneQuant pro (Amersham Biosciences).

Two microgram of RNA was reverse transcribed by moloney

murine leukemia virus reverse transcriptase (M-MLV) using

Oligod (T) 15 primer (TaKaRa). RTA and the constitutively

expressed housekeeping gene GAPDH coding sequence were

amplified by PCR using RT-PCR primers (see Table 1). PCR

products were resolved by 2% agarose gel electrophoresis and

visualized by ethidium bromide staining.
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