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Population-scale studies of structural variation (SV) are growing rapidly worldwide with the develop-
ment of long-read sequencing technology, yielding a considerable number of novel SVs and complete
gap-closed genome assemblies. Herein, we highlight recent studies using a hybrid sequencing strategy
and present the challenges toward large-scale genotyping for SVs due to the reference bias.
Genotyping SVs at a population scale remains challenging, which severely impacts genotype-based pop-
ulation genetic studies or genome-wide association studies of complex diseases. We summarize aca-
demic efforts to improve genotype quality through linear or graph representations of reference and
alternative alleles. Graph-based genotypers capable of integrating diverse genetic information are effec-
tively applied to large and diverse cohorts, contributing to unbiased downstream analysis. Meanwhile,
there is still an urgent need in this field for efficient tools to construct complex graphs and perform
sequence-to-graph alignments.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Structural variation (SV) is arbitrarily defined as chromosomal
genomic rearrangements greater than 50 bp, including insertions,
duplications, deletions, inversions, and translocations [1–3].
Population-scale studies like Human Genome Structural Variation
Consortium (HGSVC) [4], GenomeAD-SV [5], and Pan-Cancer Anal-
ysis of Whole Genomes (PCAWG) Consortium [6] have found that
basic SVs are often nested together to form more complex SVs
[7,8]. Compared to the ubiquitous single nucleotide variation
(SNV) and small indels, SVs are numerically fewer but larger in
size, therefore having a greater impact on DNA sequences and cor-
respondingly on gene expression and protein functionality [9–11].
As a result, SV has received extensive attention in recent studies on
genome evolution [10], population diversity [12], demographic
history [13], and genetic adaptation [14], bringing new insights
into population genetics. In addition, SV can act as a genetic factor
underlying disease risk [15] and has already been reported to be
involved in the tumorigenesis of various cancers [6,16,17], espe-
cially nested SVs in complex genetic backgrounds [18,19].

However, during the rapid development phase of short-read
sequencing (SRS) with high base accuracy and relatively low cost,
the study of SVs lagged far behind SNVs or indels [2,3]. In contrast
to these small variants, SV tends to occur in highly repetitive and
polymorphic regions [12], making it more challenging to detect.
Most SRS-based methods extract information of discordant read
pairs (RP), split-reads (SR), and read-depth (RD) from alignment
with the reference genome to infer the existence of breakpoints
[20]. Nevertheless, the short readscannot span the entire repetitive
sequences, leading to low-quality alignment and false-positive
identification of SVs [2,3,21]. Even in the case of non-repetitive
regions, insertions longer than short reads are easily missed
because they cannot align correctly with the reference genome
[12,22]. Fortunately, the third-generation long-read sequencing
(LRS) technologies, such as nanopore sequencing by Oxford Nano-
pore Technologies and single-molecule real-time sequencing
(SMRT) by PacBio, as well as other non-sequencing-based long-
range technologies [23], such as optical mapping (OM) by Bionano
Genomics, have developed rapidly in recent years and revitalized
SV studies. LRS is best characterized by a much longer read-
length with an average size of 10 kb [2,23], far exceeding the
100–500 bp read-length of SRS. Standard long reads generated
via nanopore sequencing (R9.4.1 or R10.3 flow cell) can reach
lengths of even 10–100 kb, but their accuracy (87–98%) is highly
dependent on the base-calling algorithm and is inferior to that of
high-fidelity (HiFi) sequencing reads, which represent the latest
data type developed by PacBio with high performance (accuracy
>99%, length >10 kb) [22,23]. The advent of LRS makes it possible
to span complete repetitive DNA sequences, which enables more
accurate measurement of long-distance repeat elements [24,25],
resolves complex rearrangements [26,27], and simplifies the com-
putational complexity of de novo genome assembly [28,29]. Taking
advantage of LRS technology, researchers have successfully con-
ducted large-scale SV studies in diverse populations worldwide
[30–32], yielding a considerable number of novel SVs and complete
gap-closed genome assemblies. In this review, we are concerned
with technologies that produce continuous reads and do not
involve optical mapping.

Current large-scale population studies generally use a hybrid
approach combining long-read and short-read sequencing tech-
nologies to better utilize sequence-resolved SV collections
[22,33] (Fig. 1). In brief, a relatively small number of deep
sequenced LRS samples are used for genome assembly and variant
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detection, followed by a large number of SRS samples for genotyp-
ing. On the one hand, this strategy can take advantage of LRS to
accurately detect as many variant loci as possible at an economical
cost. On the other hand, many large-scale whole-genome sequenc-
ing (WGS) datasets collected from valuable clinical samples and
other specific populations have been established in the SRS era
[34–38]. Detection of novel SVs identified by LRS in these SRS sam-
ples allows better estimation of the allele frequency in local popu-
lations, facilitating other genotype-based downstream analyses
[12,14,22,33]. As a result, genotyping of SVs in cumulative SRS
samples remains a critical issue [33,39], although large-scale SV
studies using LRS samples exclusively are emerging [40,41]. Simi-
lar to the detection strategy, traditional mapping-based genotypers
extract SV signatures around the known breakpoints and deter-
mine the presence of alternative or reference alleles [39]. However,
alignment against a single reference genome is biased towards the
reference allele [22,42–45], so sequences containing large deviated
alternative alleles are prone to mismatches or multiple alignments
[46]. As reported in several population-scale SV studies, many of
the SVs identified by LRS were classified as homozygous references
in SRS samples [12,14,32], which severely impacts genotype-based
population genetic studies or genome-wide association studies of
complex diseases. Therefore, it is of paramount importance to
explore new methods to eliminate reference bias to improve geno-
typing accuracy in population-scale SV studies.

The mapping-based tools for SV genotyping are biased towards
the reference allele mainly because reads are aligned only to the
reference genome [22]. Thus, various strategies have been tried
to complement the comparison between sequencing reads and
the alternative allele, two of which have been widely implemented
in published genotyping tools. The first strategy still utilizes a lin-
ear reference genome, realigning short reads to a complete refer-
ence library that combines primary contigs and alternative allele
sequences [12,47]. Considering that alt-aware mapping is still a
non-trivial task, these studies endeavor to filter representative
sequences from the original alignment [48]. Another approach is
to build a graph-based pan-genome by integrating the reference
and alternative alleles and searching for the path that best matches
the genetic information of the target haplotype [39]. The graphical
representation can describe all nested variants in the sequence
more accurately than the linear structure [49]. However, appropri-
ate tools are required to construct the variation graph and perform
sequence-to-graph alignment and genotyping [42–44]. Finally,
methods based on both strategies calculate support counts for
the reference or alternative allele and then estimate the genotype
through probabilistic [50] or machine learning models [12]. Some
of these genotypers have already been applied in population-
scale SV studies and demonstrate their potential in addressing ref-
erence bias [4,12].

Although several articles have reviewed SV calling algorithms
based on LRS [2,3,19,20,22,23,51–53], little information is available
on genotyping for SVs. In this review, we first examined
population-scale SV studies using a hybrid sequencing strategy,
pointing out the genotyping methods they used and the problems
encountered. We are interested in the ability to genotype
population-scale SVs, so we did not discuss studies analyzing a
small number of target SVs [54,55]. Then we summarized current
academic efforts to resolve the reference bias, including linear
and graphic representations of the alternative allele. At the end
of this review, we list pan-genomic tools available for genotyping
of SVs, including graph construction and sequence-to-graph align-
ment, in the hope of helping to develop more efficient and accurate
genotypers.



Fig. 1. An overview of the hybrid sequencing strategy. A small number of long-read sequencing (LRS) samples are used for variant detection, followed by a large number of
short-read sequencing (SRS) samples for genotyping. After the discovery of SV collections, including deletions (DEL), duplications (DUP), insertions (INS), inversions (INV),
inter-chromosomal translocations (CTX), and complex SVs (CPX), these variants are added to the reference to construct a linear representation of alternative alleles or a graph
representation of all alleles. Two strategies are then used to perform the genotyping, aligning short reads to the primary contig along with the alternative sequences or
performing a sequence-to-graph alignment.
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2. Population-scale structural variation studies using a hybrid
sequencing strategy

LRS technology has dramatically improved the sensitivity and
accuracy of SV detection, facilitating large-scale SV studies in var-
ious populations worldwide [22] (Table 1). In a pioneering study of
applying LRS for analyzing SVs in 2017, Huddleston et al. generated
deep SMRT sequencing data from two haploid human genomes
[47]. Interestingly, although nearly 90% of SVs identified by LRS
were missed in the 1000 Genomes Project reports [56], 61% of
these sequence-resolved SVs can be successfully genotyped by
short-read sequencing data [47]. This imbalance suggests that
decoupling SV genotyping from discovery allows for genotyping
the majority of previously missed SVs in the human genome
[47]. Therefore, this team from the University of Washington
School of Medicine has carried out a subsequent intensive series
of work on population-scale SV detection and genotyping using
the hybrid sequencing strategy [4,21,54,55,57]. In a landmark com-
prehensive study in 2019, Audano et al. sequenced eleven samples
from diverse populations using SMRT sequencing [12]. Combined
with four additional published resources [30,47,58], 99,604 nonre-
dundant SVs were identified, 15% of which were shared in more
2641
than half of the samples [12], suggesting that the current reference
genome either represents minor alleles or contains assembly errors
[59]. In addition to characterizing the enrichment of SVs in tandem
repeat sequences and closing gaps in the reference genome, they
utilized Illumina WGS data collected from 440 samples to geno-
type sequence-resolved insertions and deletions, finding that 55%
of SVs were successfully genotyped with a missing rate <5% [12].
During this period, many researchers followed the pipeline
described in the abovementioned study but still used traditional
genotypers based on the analysis of alignments only against the
reference genome [31,60], such as SVTyper [61] and CNVnator
[62], which are biased towards the reference allele. Although the
SMRT-SV v2 genotyper developed by Audano et al. can represent
both reference and alternative alleles [12], it is not scalable to lar-
ger populations due to the limitation of time-consuming alt-aware
mapping [42].

With the advantages of LRS technology, high-quality and com-
plete genome assemblies and an extensive collection of genetic
variants have been accumulated rapidly in multiple populations,
making it possible to construct a nonlinear pan-genomic model
[22,42]. The pan-genome concept was initially proposed in micro-
biology to describe comprehensive genetic information, including



Table 1
An overview of population-scale structural variation studies using a hybrid sequencing strategy.

Study Discovery
sample size

Genotyping
sample size

Genotyper Genotyping rate Recall rate

Lu et al. (2022) [63] 35 (20–40�)a 35 (HGSVC)
879 (GTEx, > 25�)
445 (Geuvadis, 5�)

danbing-tk v1.3 – –

Beyter et al. (2021) [32] 3,622 (17�)b 10,000 (deCODE, 34�) GraphTyper v2.6 – 36%

Ebert et al. (2021) [4] 35 (20–40�)a 3,202 (1KG, 34�) Paragraph v2.4
PanGenie v1.0

79% 74%

Quan et al. (2021) [14] 25 (10–20�)b 276 (40x) Paragraph v2.4 69% 54%
Sirén et al. (2021) [64] 16 (>50�)a 2000 (MESA, 20�)

3202 (1KG, 20�)
toil-vg – –

Yan et al. (2021) [65] 15 (>50�)a 2504 (1KG, 30�) Paragraph v2.2 86% 73%
Ouzhuluobu et al. (2020) [31] ZF1 (70�)a 77 (30x) CNVnator – –
Soto etal. (2020) [60] 2 nonhumansb 8 (SGDP, 42�)

33 nonhumans
SVTyper v0.7 96% 45%

Audano et al. (2019) [12] 15 (>50�)a 174 (1KG, 25�)
150 (Polaris, 18�)
266 (SGDP, 15�)

SMRT-SV v2 55% 97%

Chaisson et al. (2019) [21] 9 (>50�)ab 238 (SGDP, 40�)
24 (1KG, 39�)

SMRT-SV
SVTyper

> 92% > 96%

Kronenberg et al. (2018) [57] CHM13 (>65�)a

YRI19240 (>65�)a

2 nonhumansa

16 (SGDP)
29 nonhumans

SVTyper v0.1 – –

Huddleston et al. (2017) [47] CHM1 (62�)a CHM13 (66�)a 30 (1KG, 30�) SMRT-SV 79% 93%

Genotyping rate, the proportion of SVs successfully genotyped, is usually determined by a missing rate threshold and the Hardy-Weinberg hypothesis. Recall rate, the
proportion of the alternative allele presented in at least one haplotype. HGSVC, Human Genome Structural Variation Consortium. GTEx, the Genotype-Tissue Expression
project. 1KG, 1000 Genomes Project. SGDP, Simons Genome Diversity Project. MESA, Multi-Ethnic Study of Atherosclerosis cohort. a Pacbio long-read sequencing. b Nanopore
sequencing. – indicates that the information was not addressed in the paper.
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the core genome present in all strains and the dispensable genome
present in specific strains [66]. Not surprisingly, researchers began
introducing graph-based pan-genomic models to eliminate the ref-
erence bias and successfully scaled up the population size for geno-
typing from a few hundred to thousands of samples [4,32,63–65].
In one of the most extensive scale studies, Beyter et al. generated
high-confidence SV sets discovered from 3,622 Icelanders by nano-
pore sequencing [32]. Combining 133,886 sequence-resolved SVs
with previously discovered SNPs and indels [67], they constructed
an augmented graph with a reference genome backbone using
GraphTyper [68], and the resulting genotypes were utilized to
explore SVs’ impact on diseases and other traits [32]. Using the
same WGS dataset (median coverage 36.9�) [69], Eggertsson
et al. reported that genotyping of 543,939 SVs by GraphTyper
required 4.15 million CPU hours for 49,962 individuals or 483
CPU-hours per sample on average [68]. In contrast to adding
Table 2
An overview of structural variation genotypers based on the linear reference genome.

Tools Input Feature
extraction

STIX [77] SRS RP, SR
muCNV [78] SRS RP, SR, RD
NPSV [79] SRS Realignment features
Nebula [50] SRS Unique and affected k-mers
CNV-JACG [76] SRS RP, SR, RD, and other sequence features
SMRT-SV [12] SRS Realignment features
SV2 [74] SRS RP, SR, RD, HAR
Genome STRiP [80] SRS RP, SP, RD
SVTyper [61] SRS RP, SR
Delly2 [73] SRS RP, SR, RD
CNVnator [62] SRS RP
SVJedi [48] LRS Realignment features
Sniffles [81,82] LRS SR, alignment events
svviz2 [83] LRS Realignment MAPQ

RP, Read pair. SR, split-read. RD, read-depth. HAR, heterozygous allele ration. MAPQ, ma
random forest. MLE, maximum likelihood estimation. SGM, single Gaussian models. BM,
sequencing.
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genetic variations to the reference genome [67], Sirén et al. demon-
strated an alternative strategy to genotype a new sample by trac-
ing haplotype paths through the sequence graph [64]. They
developed Giraffe, a haplotype-aware pangenome mapper that pri-
oritizes alignments under supervision from known haplotypes to
avoid search-space explosion caused by combinations of biologi-
cally unlikely alleles [43,44,49,64,70]. On average, it took about
194 CPU hours to genotype a sample with a median coverage of
20� by the combination of toil-vg [71] and Giraffe [64]. A similar
strategy was used by Ebert et al. to integrate information from k-
mer tables and genetic variation across the input panel haplotypes,
which bypasses the time-consuming sequence-to-graph alignment
and only took about 30 CPU hours per sample on the tested cover-
age of 30� [4,72].

These studies indicate that graph-based genotyping can be
effectively applied to large and diverse cohorts and promises to
Genotyping model Supported SV types

INS DEL DUP INV TRA

– � U U U U

GMM � U U U �
SVM/RF U U � � �
GMM U U � U �
RF � U U � �
SVM U U � � �
SVM � U U � �
GMM � U U � �
BM � U U U U

BM � U U U U

SGM � U U � �
BM U U U U U

BST U U U U U

BM U U U U U

pping quality. GMM, Gaussian mixture models. SVM, Support Vector Machine. RF,
Bayesian model. BST, Binary Search Tree. SRS, short-read sequencing. LRS, long-read
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make an essential contribution to downstream analysis. Taking our
own study as an example, we used Paragraph [39] to genotype a
collection of 38,216 sequence-resolved SVs with a short-read
sequencing dataset comprising 276 Chinese Tibetan and Han sam-
ples [14]. A considerable number of Tibetan-Han stratified SVs and
candidate adaptive genes were inferred from unbiased genotypes,
highlighting the important role of SVs in the evolutionary pro-
cesses of adaptation to the Qinghai-Tibet Plateau [14]. In addition
to the genotypers already applied to population-scale studies
described above, researchers have made great efforts into develop-
ing algorithms to eliminate the reference bias. In the following sec-
tions, we discussed other approaches that employ linear or graph
representations of the alternative allele.
3. Linear representation of the alternative allele

Traditional mapping-based genotypers, such as Delly [73],
SVTyper [61], and SV2 [74], shared similar strategies with the pipe-
line for SV discovery [75]. These tools extract signatures of break-
points from alignments only against the reference genome,
generally including information on RP, SR, and RD, leading to a bias
in favor of the reference allele [43] (Table 2). In addition to the
above alignment features, some researchers extracted more
sequence features near breakpoints to train a Support Vector
Machine (SVM)- or Random Forest (RF)-based classifier [74,76],
expecting to improve the genotyping performance. However, these
tools are not only likely to yield biased genotypes [39] but also
incapable of estimating insertions [75] and are therefore not suit-
able for comprehensive SV studies [22].

In order to minimize the reference allele bias, researchers tried
to perform local realignment around known breakpoints against
the alternative allele sequence [12,48,79,80,83]. Among genotypers
designed for short-read sequencing data, Handsaker et al. proposed
an enhanced version of Genome STRiP back in 2015, a population-
based framework for genotyping SVs by aligning reads against a
library containing alternative alleles [80,84]. Genome STRiP ana-
lyzes the distribution of read-depth by fitting Gaussian mixture
models (GMM) corresponding to the homozygous reference allele,
the homozygous or the heterozygous alternative allele [80]. The
most likely genotype is finally determined by estimating copy
number likelihoods [80]. Notably, Genome STRiP is limited to
genotyping of deletions and duplications. In recent studies, another
two representative tools have implemented this strategy, SMRT-SV
genotyper [12] and NPSV [79]. SMRT-SV is an assembly-based
approach with a linear representation of both the reference and
alternative alleles for each SV [21]. This genotyping method aligns
all short reads against the primary contig together with assembled
alternative sequences per each variant [12], using an alt-aware
manner by BWA-MEM [85]. An SVM-based classifier is trained on
15 features extracted from the alignment and then used to esti-
mate all possible genotypes [12]. In a recent study in 2021, Linder-
Table 3
An overview of graph-based genotypers for structural variation.

Tools Graph construction Graph Indexing strategy

Gramtools [49] NDAG vBWT
Minos [88] NDAG vBWT
toil-vg [71] VG GCSA2, GBWT, XG,snarl
PanGenie [72] DAG k-mer hash table
GraphTyper2 [68] DAG k-mer hash table
Paragraph [39] DAG Path families
BayesTyper [89] VG Variant cluster groups

DAG, directed acyclic graph. NDAG, nested DAG. VG, variation graph. BWT, Burrows–Wh
Hidden Markov Model. GSSW, graph SIMD Smith-Waterman algorithm.
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man et al. proposed NPSV, a simulation-driven approach to
genotyping SVs by automatically creating sample- or variant-
specific classifiers [79]. Instead of using actual data to train a geno-
type classifier as SMRT-SV, NPSV first generates synthetic short-
read data using an SRS simulator [86] and then locally realigns
these reads to the reference and alternate sequences [79]. This
strategy helps generate representative training data for any puta-
tive SVs with all possible genotypes, avoiding the reference bias
at the data source [79]. However, both SMART and NPSV are lim-
ited to SV genotyping of insertions and deletions, and they are
not scalable to larger populations due to time-consuming alt-
aware mapping.
4. Genotyping structural variation in pan-genome graphs

As discussed in the sector of population-scale studies, genotyp-
ing SVs using pan-genome graphs is still at a nascent but promising
stage (Table 3). The main advantage of pan-genomic approaches is
that they can more accurately represent the complex variability of
the genome [22] and improve genotyping of nested SVs in complex
genetic backgrounds [4,64]. However, there is still an urgent need
for efficient tools to construct complex graphs and perform
sequence-to-graph alignments [42–44]. In the following sections,
we summarize the characteristics of graph-based genotypers.
Although Cortex [87] is an early attempt at genotyping SVs using
de Bruijn graphs, it was not discussed in our review because it
was mainly applied to genotyping of small variants. Pan-genomic
tools for graph construction and sequence-to-graph alignment
are listed in Table 4, and these tools can be helpful in combination
with genotypers, as reported by Sirén et al. [64].
4.1. Pan-genome graph construction

Most graph-based genotypers construct pan-genome graphs
based on the directed acyclic graph (DAG). DAG is usually ordered
along the reference genome and represents variants with a bubble
composed of different branches between two vertices [43]. There-
fore, each path in the DAG represents a possible haplotype. Para-
graph [39] and GraphTyper2 [68] are two widely used
genotypers constructing DAGs from a reference genome and
sequence-resolved variants. Both tools extract short reads from
original alignments at breakpoints and perform local mapping to
the variation-aware graph [43], which helps reduce bias toward
the reference genome and improves genotype quality [39,68].
Paragraph enables the representation of clustered SVs in the
sequence graph and supports custom graph structures for genotyp-
ing more complicated events [39]. In addition, GraphTyper2 can
also jointly genotype both small variants and SVs at a population
scale by simultaneously encoding SNPs and indels into the pan-
genome graph [68]. Nevertheless, these joint genotyping models
Sequence-to-Graph
alignment strategy

Genotyping algorithm

Variation-aware backward search Coverage model
Variation-aware backward search Coverage model
SMEM seeds Coverage model
– HMM
Matching k-mers as seeds Coverage model
GSSW Coverage model
Heuristic search Generative Model

eeler transform. vBWT, variation BWT. SMEM, super-maximal exact match. HMM,



Table 4
An overview of tools for graph construction and sequence-to-graph alignment.

Category Tools Graph Output
format

Description Ref

Graph
Construction

seqwish VG GFA A VG building from a set of sequences and alignments between them [96]
Cuttlefish DBG GFA

FASTA
A colored compacted DBG building from a collection of genome references [97,98]

ODGI VG ODGI A suite of tools that implements scalable algorithms [99]
Pandora DAG FASTA A pan-genome graph structure and algorithms for identifying variants [100]
Simplitigs DBG FASTA A compact representation of DBG [101]
Bifrost DBG GFA

FASTA
A parallel algorithm enabling the direct construction of the compacted DBG [102]

libbdsg VG GFA
ODGI

Tools allow for construction and manipulation of genome graphs with dense variation [103]

minigraph VG GFA A graph-based data model to represent multiple genomes [104]
SevenBridges DAG – A computationally graph genome implementation [105]
vg VG VG A toolkit of computational methods for creating and manipulating VG [90]
Wheeler
graphs

DBG DOT A framework for BWT-based data structures [106]

Graph alignment GraphChainer VG GAM
JSON

A algorithm to co-linearly chain a set of seeds in an acyclic VG [107]

BlastFrost DBG GFA
FASTA

Query Bifrost data structure for sequences of interest [108]

A* – ALN
SAM

A seed heuristic enabling fast and optimal sequence-to-graph alignment [109,110]

Giraffe VG VG A pangenome short-read mapper that can map to a collection of haplotypes [64]
GraphAligner VG GAF

GAM
A tool for aligning long reads to genome graphs [91]

SPAligner DBG GPA
FASTA

A tool for aligning long diverged nucleotide and amino acid sequences to assembly graphs [111]

Vargas DAG SAM A heuristic-free algorithm to find the highest-scoring alignment [112]
PaSGAL DAG TSV A parallel algorithm for computing sequence to graph alignments [113]
HISAT2 DBG SAM A tool can align both DNA and RNA sequences using a graph Ferragina Manzini index [114]
V-ALIGN DAG TXT A tool based on dynamic programming that allows gapped alignment directly on the input

graph
[115]

VG, variation graph. DBG, de Bruijn graph. DAG, directed acyclic graph.
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have limitations as they cannot represent nested variants like com-
plex SVs [68].

To genotype complex SVs in variant-dense regions containing a
large number of combinations of all possible alleles, Letcher et al.
applied an algorithm called recursive collapse and cluster (RCC)
implemented by Gramtools and generated a nested DAG consisting
of a succession of locally hierarchical subgraphs [49]. Taking
advantage of the nested data structure, Gramtools helps discover
previously unknown recombination patterns between genetic vari-
ants from diverged backgrounds [49,88]. Gramtools also outputs a
JSON variant call format (jVCF) to address the limitation of storing
densely clustered variants in the standard VCF. Another idea about
the variation graph (VG) was proposed by Garrison et al. in 2018.
They combined a bidirectional sequence graph with paths that
model sequences as walking through the graph [90]. Hickey et al.
presented a genotyping framework toil-vg based on VG and
demonstrated the best performance on actual short-read data for
all SV types [71]. Instead of extracting information from original
alignments, toil-vg directly aligns all short reads to the graph gen-
ome, resulting in unbiased pan-genomic analyses and representa-
tion [43,71]. Besides, toil-vg can build graphs from the alignment
of numerous de novo assemblies instead of variant collections,
leading to better SV genotyping [71].
4.2. Sequence-to-graph alignment and genotyping models

Sequence-to-graph alignment is a fundamental operation for
graph-based genotyping [91]. In general, classical algorithms for
sequence-to-sequence alignment, such as the Smith-Waterman
(SW) algorithm [92], cannot be directly applied to genome graphs.
Nonetheless, Paragraph applies an extended generalization of Far-
rar’s striped SW algorithm [93] to local graph alignment [39,94].
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This implementation extends the recurrence relation and the cor-
responding scoring matrices of dynamic programming across junc-
tions in the local graph [39,94]. Reads aligned to a single graph
location with the best mapping quality score were retained to
genotype breakpoints [39]. A read is considered to support a node
if its alignment overlapped the node by at least 10% of the read
length, and a similar criterion is applied to the definition of sup-
porting paths [39]. Finally, Paragraph uses an expectation–maximi
zation algorithm to estimate genotype likelihood-based allele fre-
quencies based on the realignment coverage of each allele [39].

Other genotypers usually use a heuristic seed-and-extend para-
digm pioneered by BLAST [92]. This paradigm first finds short seed
hits, usually based on practical indexing tools, and then extends
these hits to obtain complete alignments [95]. A pair of matching
k-mers often acts as the seed hit for graph-based genotypers
[68,72,89]. For example, GraphTyper2 constructs a k-mer hashta-
ble by indexing the full text of DAG and then searches for exact
matches with k-mers from the read [68]. The final graph alignment
is obtained by extending the longest seed through paths in the gen-
ome graph [68]. The genotype call also relies on a likelihood max-
imizing approach that aggregates both the original and the
realignment coverage of each allele [39,68]. Considering that
graph-based whole-genome alignment is time-consuming, both
Paragraph and GraphTyper2 restrict the mapping operation to local
variant clusters. However, this strategy is based on the realignment
of reads to local graphs and requires information from original
alignments, which is still disturbed by the reference bias.

In fact, a complete alignment is usually not necessary for geno-
typing of target SVs. Some researchers suggested that a traversal
list of variants supported by each read is sufficient for genotyping
[50,89]. BayesTyper, which is also a k-mer based method, adopts a
kind of pseudo-alignment model [89]. This method compares the
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unbiased distribution of k-mers from sequencing reads to the k-
mer profile along paths representing the most likely haplotypes
[89]. The posterior distribution over all possible genotypes is esti-
mated according to the counts of k-mers in the reads based on a
generative model [89]. However, approaches based solely on the
k-mer counts cannot reliably genotype variants in repetitive
regions because unique k-mers may not exist for the variants
[4,72]. In a recent study, Ebler et al. proposed PanGenie, which
integrates information from k-mer tables and genetic variation
across the input panel haplotypes [72]. They utilized information
from known haplotype sequences to infer genotypes based on
neighboring variants, therefore avoiding the inability to genotype
in the absence of unique k-mers [72]. Since PanGenie and BayesTy-
per bypass the time-consuming alignment step, they are much fas-
ter than the remaining mapping-based methods.
5. Summary and outlook

The rapid development of LRS in recent years has revitalized SV
studies. Taking advantage of LRS technology, researchers have suc-
cessfully conducted large-scale SV studies in diverse populations
worldwide [30–32], yielding a considerable number of novel SVs
and complete gap-closed genome assemblies. However, genotyp-
ing SVs in a large-scale short-read sequencing cohort remains chal-
lenging. Traditional mapping-based genotypers are biased towards
the reference allele [22]. Therefore, researchers have made great
efforts to eliminate the reference bias by representing both the ref-
erence and the alternative allele using a linear or graph genome.
Notably, most recent population-scale studies of SVs have used
pan-genomic models to eliminate reference bias and successfully
scaled up the population size for genotyping from a few hundred
to thousands of samples [4,32,63–65], facilitating other
genotype-based downstream analyses. Recently, the Telomer-to-
Telomere (T2T) Consortium and the Human Pangenome Reference
Consortium have successively announced their exciting progress in
constructing complete and error-free T2T assemblies of all chro-
mosomes as well as full-spectrum genomic variant collections
[116–118], which will further promote the application of pan-
genomic approaches in population genetic studies.

Genotyping SVs using pan-genome graphs is still at a nascent
stage. There is still an urgent need in this field for efficient tools
to construct complex graphs and perform sequence-to-graph
alignments. For example, complex SVs often occur in repetitive
regions and are nested with other small variants. Despite the
potential for reliable genotyping of complex SVs by bidirectional
variation graphs and nested DAGs, complex SVs have not been
comprehensively analyzed in population-scale studies. Little is
known about their contribution to genetic evolution or their inter-
action with other variants. The same problem is faced by mosaic
and low-frequency SVs, which have been reported to be risk factors
for neurological diseases [82,119]. Besides, it remains unclear
whether pan-genomic approaches will becomemainstream in clin-
ical diagnostics. Some researchers argue that graph-based geno-
typing relies on single-base resolution breakpoints, making it
more suitable for studying common variants rather than somatic
or pathogenic variants [120]. In addition, graph-based genotyping
approaches are not entirely mature, with competing implementa-
tions and data formats [22]. There is an urgent need for a bench-
mark to evaluate the genotyping performance of graph-based
genotypers with uniform criteria.
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