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Abstract
Population size is a central parameter for conservation; however, monitoring abun-
dance is often problematic for threatened marine species. Despite substantial in-
vestment in research, many marine species remain data-poor presenting barriers to 
the evaluation of conservation management outcomes and the modeling of future 
solutions. Such is the case for the white shark (Carcharodon carcharias), a highly mo-
bile apex predator for whom recent and substantial population declines have been 
recorded in many globally distributed populations. Here, we estimate the effective 
number of breeders that successfully contribute offspring in one reproductive cycle 
(Nb) to provide a snapshot of recent reproductive effort in an east Australian–New 
Zealand population of white shark. Nb was estimated over four consecutive age co-
horts (2010, 2011, 2012, and 2013) using two genetic estimators (linkage disequilib-
rium; LD and sibship assignment; SA) based on genetic data derived from two types 
of genetic markers (single nucleotide polymorphisms; SNPs and microsatellite loci). 
While estimates of Nb using different marker types produced comparable estimates, 
microsatellite loci were the least precise. The LD and SA estimates of Nb within co-
horts using SNPs were comparable; for example, the 2013 age cohort Nb(SA) was 289 
(95% CI 200–461) and Nb(LD) was 208.5 (95% CI 116.4–712.7). We show that over 
the time period studied, Nb was stable and ranged between 206.1 (SD ± 45.9) and 
252.0 (SD ± 46.7) per year using a combined estimate of Nb(LD+SA) from SNP loci. In 
addition, a simulation approach showed that in this population the effective popula-
tion size (Ne) per generation can be expected to be larger than Nb per reproductive 
cycle. This study demonstrates how breeding population size can be monitored over 
time to provide insight into the effectiveness of recovery and conservation measures 
for the white shark, where the methods described here may be applicable to other 
data-poor species of conservation concern.
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1  | INTRODUC TION

Assessing the size of natural populations is a key objective of moni-
toring programs which are vital for understanding the conservation 
status of species, the regulating effects of biotic and abiotic fac-
tors, and for the assessment of management efforts (Lindenmayer 
et al., 2020). However, for many marine populations there is a lack 
of consistent monitoring programs at appropriate spatial and tempo-
ral scales for conservation and policy needs (Papa et al., 2020). This 
presents a significant problem for chondrichthyans (sharks, skates, 
rays and chimaeras), where more than half of known species are 
characterized by insufficient data and one-quarter are estimated to 
be at risk of extinction (Dulvy et al., 2014). Within the elasmobranchs 
(sharks, skates, and rays), each contributes significantly to connect 
ecosystems and regulate marine food webs (Heupel et al., 2014). 
However, habitat loss and continued pressures on mortality though 
bycatch and targeted fishing have resulted in many populations of 
elasmobranch being depleted at a rate that exceeds their natural re-
covery potential (Worm et al., 2013). Given the significant challenges 
facing elasmobranchs and the importance of their role in regulating 
marine ecosystems, improvements for monitoring changes in natural 
populations are critical.

Monitoring threatened elasmobranch species is particularly chal-
lenging for many reasons. In the case of the white shark, Carcharodon 
carcharias (Linnaeus, 1758), where monitoring is a both a social and 
conservation priority, efforts to evaluate long-term population trends 
have been hampered by issues including detectability [misidentifica-
tion in photo-ID surveys (Burgess et al., 2014), lack of resightings in 
mark-recapture studies (Gore et al., 2016), effects of environment on 
heterogeneity of behavior (Jacoby et al., 2012)] and a lack of catch 
statistics (Roff et al., 2018). The need for alternate methods to index 
shark populations has therefore led to the increasing use of molec-
ular markers to evaluate change and inform management (Blower 
et al., 2012; Bruce et al., 2018; Hillary et al., 2018). In this study, 
we focus on the concept of genetic effective population size (herein 
effective population size—Ne), which can be used to evaluate change 
in abundance from allele frequencies (Schwartz et al., 2007). When 
populations are small, genetic models predict that the evolutionary 
force of genetic drift (stochastic changes in allele frequencies) will 
predominate over other evolutionary forces such as natural selec-
tion, to reduce genetic diversity, population viability, and evolution-
ary potential (Frankham, 1996; Franklin, 1980). The extent to which 
a population is vulnerable to such effects is inversely related to the 
magnitude of Ne, where the effects of drift will occur more slowly 
in populations with larger effective sizes than those with smaller 
effective sizes (Wang, 2005). When a genetic sample contains only 
individuals from a single age cohort (a group of individuals having 
the same age-class), then the estimate of Ne corresponds to the 

effective number of breeders (Nb) which contributed offspring to 
that cohort (Wang et al., 2016; Waples et al., 2013). For long-lived, 
iteroparous species, estimates of Nb are generally considered more 
useful for monitoring as they apply to a single breeding season and 
represent an accessible parameter for monitoring population trends 
at ecological timescales most relevant to conservation and manage-
ment needs (Ovenden et al., 2016; Schwartz et al., 2007; Waples & 
Do, 2008). Past research has confirmed the power and usefulness of 
Nb as a tool to monitor population trends (Antao et al., 2011; Luikart 
et al., 2020; Nunziata & Weisrock, 2018). For instance, quantifying 
changes in Nb over time provides high power to detect declines in 
Nb (Luikart et al., 2020) and has helped to identify factors relevant to 
shaping populations (i.e., management interventions, demographic 
parameters) with successful outcomes reported for populations 
of commercially important bony fishes. Examples include salmon 
(Bacles et al., 2018; Perrier et al., 2016), trout (Ruzzante et al., 2019; 
Whiteley et al., 2013; Wood et al., 2014), snapper (Jones et al., 2019), 
and tuna (Waples et al., 2018). In these examples, both Nb and Ne 
were used to investigate demographic (i.e., variance in reproductive 
success under commercial harvest conditions) and environmental 
(i.e., stream productivity, competition, habitat quality, year-of-the-
young development) effects on long-term population viability, with 
significant implications for management and conservation.

In this study, we trialed a sampling and genotyping protocol 
aimed at estimating Nb over time (four breeding seasons; 2010–
2013) in a population of C. carcharias of conservation concern. 
We focus on the east Australia–New Zealand population (EAP) 
of C. carcharias which, due to patterns of coastal residency and 
site fidelity (Bruce et al., 2019; Spaet et al., 2020), is genetically 
distinct from other identified populations in the North-Pacific, 
South-West Australia, Atlantic, South Africa, and Mediterranean 
(Andreotti et al., 2016; Blower et al., 2012; Gubili et al., 2010; 
O’Leary et al., 2015; Tanaka et al., 2011). The EAP has experienced 
a large (>90%) decline during the 20th century due to targeted 
fishing and mortalities associated with bather protection pro-
grams (Reid et al., 2011; Roff et al., 2018); however, recovery is 
now anticipated due to protection through international conven-
tions and jurisdictional legislation [i.e., International Plan of Action 
for the Conservation and Management of Sharks (FAO, 2000) and 
the Environment Protection and Biodiversity Conservation (EPBC) 
Act of 1999 (EPBC, 1999)]. Previous efforts to detect population 
recovery using historical catch data (Roff et al., 2018) and genetic 
close-kin mark–recapture (Bruce et al., 2018; Hillary et al., 2018) 
found no significant evidence of population growth or recovery 
in the EAP. Updated bather protection programs along parts of 
east coast Australia (i.e., 'Shark Management Alert in Real Time' 
(SMART) drumlines, see Tate et al., 2019), aimed at minimizing 
unfavorable interactions with marine environment users, offer 
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an opportunity for nonlethal tissue sampling and to determine 
the usefulness of this genetic monitoring method in the EAP. 
Our specific objectives were to: (a) use two genetic methodolo-
gies to estimate Nb over time in the EAP [sibship assignment (SA) 
(Wang, 2009) and linkage disequilibrium (LD) (Hill, 1974, p. 197; 
Waples, 2006)]; (b) validate these results using two types of nu-
clear genetic markers (single nucleotide polymorphisms and mi-
crosatellites); (c) investigate Nb/N ratios using published estimates 
of the adult population size (Na); and (d) develop expectations 
for generational Ne in the EAP using life-history information and 
simulations. Our results for the EAP of C. carcahrias suggest that 
Nb has not changed significantly year-to-year and provides insight 
into the effectiveness of recovery and conservation measures fol-
lowing historical declines.

2  | METHODS

2.1 | Samples

To obtain genetic data to estimate Nb in the east coast Australia–
New Zealand population (EAP) of C. carcharias, tissue samples 
(n = 247) were nonlethally collected during 2015 to 2018 from juve-
nile and subadult C. carcharias between Buckley Beach, Narrawallee 
(−35.29873, 150.48331), and Seven Mile Beach, Lennox Head 
(−28.76130, 153.62020) (Figure 1). Individuals were captured, 
restrained, tagged, and released as part of the New South Wales 
(Australia) Shark Management Strategy. Fin clips were collected for 
genetic purposes and fork length (FL) and total length (TL) meas-
urements were taken from each individual. Since migration between 
populations can bias genetic estimates of both Ne and Nb (Macbeth 
et al., 2011), the population of origin for each individual was re-
solved through the inclusion of tissue samples of white sharks col-
lected from other locations (Western Australia n = 3; South Australia 
n = 9; South Africa n = 20; total n including EAP samples = 279, see 
Table S1). All samples were used in the SNP discovery and genotyp-
ing pipeline.

2.2 | Cohort assignment

To group individuals into age cohorts, a year-of-birth was assigned 
to each sample using the year the individual was sampled minus 
the age of the individual in that given year. To estimate the age of 
individuals, we used the von Bertalanffy growth function (VBGF) 
(Supplementary Material S2) to transform the relationship of TL to 
relationships at age using growth parameters specific to the EAP 
(O’Connor, 2011). We considered fork length (FL, defined here as 
the measurement from the tip of the rostrum to the fork in the 
tail over the body) the more accurate measurement at the time of 
sampling. Conversion of FL to TL was achieved by linear regres-
sion based on measurements of study samples using the lm func-
tion in R (O’Connor, 2011). Assumptions of linearity, normality, 

and heteroscedasticity were checked by means of residual and 
quantile plots and the following conversion was used to transform 
measurements:

2.3 | SNP and microsatellite loci datasets

DNA was extracted from all samples (n = 279) using a standard 
salt precipitation procedure. For SNP data, the samples were 
genotyped by DArT P/L laboratory using DArTseqTM technology 
(Kilian et al., 2012). Sequencing steps followed Kilian et al., (2012) 
and were completed using an Illumina HiSeq 2500. Resulting se-
quences were processed using the proprietary DArT analytical 
software, DArTsoft14. DArTsoft14 uses technical sample repli-
cates to optimize its algorithm parameters and ensure scoring con-
sistency (see Georges et al., 2018). Postprocessing of SNPs was 
completed in R (R Core Team, 2018) using the R-Package radia-
tor 0.0.5 (Gosselin, 2017) and custom R-scripts following current 
best practice (O’Leary et al., 2018; Shafer et al., 2017). A two-
stage postprocessing approach was applied to the SNP dataset 
to identify and remove 1) migrants and 2) outlier loci (candidate 
loci under selection, so as to retain only nonselective neutral loci). 
SNP data representing all samples (East Australia, South Africa, 

(1)TL (cm)=6.80+FL (cm) ∗1.07

F I G U R E  1   Map of sampling locations, where 247 EAP samples 
(open circles) were collected along the NSW coast and used to 
determine Nb. Red dots indicate location of named places
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Western Australia, South Australia) were filtered following the 
steps outlined in Table S3.1 (Supplementray Materials S3), and 
subsequently used for sample population assignment and initial 
outlier loci discovery. Strongly divergent individuals create strong 
mixture LD which downwardly bias estimates of Ne(LD) (Waples 
& England, 2011) and may contribute to upward bias in estimates 
using the SA method (Ackerman et al., 2017). To identify diver-
gent individuals, we performed a discriminant analysis of princi-
pal components (DAPC) (Jombart et al., 2010) implemented in the 
R-package adegenet (Jombart et al., 2010). The optimal number of 
discriminant functions to retain was calculated using the function 
xvalDAPC using 80% of the data in the training set, and the number 
of PCs retained in the final DAPC was associated with the low-
est mean squared error. As indicated in Figure S3.1, two samples 
collected from east Australia appeared distinct from other EAP 
samples (subsequently confirmed using tracking data from acous-
tic tagging, Spaet et al., 2020). These samples were removed from 
subsequent analysis. We also performed tests for putitative loci 
under selection which deviate from the assumptions necessary for 
estimating Ne (Waples & England, 2011). We used pcadapt (Luu 
et al., 2017) which identifies outlier loci in a multidimensional 
space (we used k = 3 principal components). We removed loci 
when the q-value (test statistic) was smaller than the false dis-
covery rate (�=0.05). In the second stage of SNP postprocessing, 
we used a dataset (herein Dataset-2) containing all SNP loci ex-
cept those identified as selective outliers and including only sam-
ples representing genotypes of EAP origin only. We then filtered 
Dataset-2 using reproducibility greater than 98%, a minor-allele-
count greater than three, coverage (minimum 5, maximum 25), re-
tained only one SNP per locus and removed individuals missing 
greater than 20% of SNP loci. Loci were further removed where 
Hardy–Weinberg disequilibrium mid-p was less than 0.01𝛼<0. and 
if FIS was greater than or equal to +0.5 or less than or equal to −0.5 
(see Table S3.2). Dataset-2 was then used to make estimates of Nb.

Extracted DNA from 192 EAP samples was further genotyped 
in another laboratory (Stellenbosch University) with nineteen 
species-specific microsatellite loci to provide alternate estimates 
of Nb. Fourteen of the loci were derived from previous studies: 
Ccar1, Ccar13, Ccar6.27x, Ccar9, Iox10, Cca1419, Cca83, Cca1536, 
Cca1273, Cca711, Cca1072, Cca1466, Cca1276, and Cca1226 
(Gubili et al., 2010; O’Leary et al., 2015; Pardini et al., 2001). Five loci 
(CcSA1, CcSA2, CcSA3, CcSA4, and CcSA5) were developed using 
the methods described in Andreotti et al. (2016). Wet laboratory 
genotyping was performed as described by Andreotti et al. (2016), 
and genotype scoring was performed in Geneious v.5.6.5 (©2005–
2012 Biomatters Ltd). Assessment of amplification errors, such as 
large allele drop-out, stuttering, and null alleles, was conducted in 
Microchecker v.2.2.3 (Van Oosterhout et al., 2004). The program 
SHAZA (Macbeth et al., 2011) was used to detect duplicates in the 
dataset. Descriptive statistics, including observed heterozygosity 
(Ho) and expected heterozygosity (He), were calculated using the 
R-package hierfstat (Goudet et al.,2018). Hardy–Weinberg equi-
librium (HWE) was evaluated using an exact test based on 10,000 

Monte Carlo permutations of alleles and implemented in Genepop 
(Rousset, 2008).

2.4 | Estimation of Nb

Two methods were used to estimate Nb from data derived from ei-
ther SNP or microsatellite loci: (a) the linkage disequilibrium method 
(LD) (Hill, 1974; Waples, 2006) and (b) the sibship assignment 
method (SA) (Wang, 2009). Estimates are referred to as Nb(LD) and 
Nb(SA). Broadly, the LD method determines the size of the parental 
generation using a measure of the genetic association (or LD) in a 
given age cohort. In finite populations, random genetic drift leads 
to associations of alleles at different loci. The LD method uses the 
extent of nonrandom association between alleles at different loci 
to estimate genetic Ne and reflects the inbreeding Ne when loci are 
unlinked (Hill, 1981; Waples & Do, 2010). The formulation of the LD 
method uses the observed average disequilibrium between pairs of 
independent (i.e., nonlinked), neutral loci in a sample of individuals 
taken from a single, isolated, randomly mating population. Estimates 
of Nb(LD) are based on the theoretical relationship between r̂2and 
Ne as described in Hill (1981);

Equation 2a from (Waples & Do, 2010)
where r2 is the mean squared correlation of allele frequencies 

at different gene loci adjusted for sampling error (i.e., the observed 
average disequilibrium) and S is the number of individuals sampled. 
We implemented this method using the program NeEstimator v2.1 
(Do et al., 2014). In contrast, the SA method uses the direct rela-
tionship between genetic relatedness and inbreeding Ne, such that 
any two individuals sampled randomly from a population with a 
small Ne will have a higher probability of sharing the same par-
ent or parents (Wang, 2009). The SA method (Wang, 2009) de-
termines the size of the parental generation by estimating the 
probability that dyad relationships are either full- or half-siblings in 
a sample from the same cohort, sharing two, one, or zero parents, 
respectively;

Equation 10 from Wang (2009)
where Q1, Q2, and Q3 are the paternal, maternal half-sibs, and full-

sibs, respectively, N1 and N2 are the number of male and female par-
ents, and � is a measurement of the deviation from Hardy–Weinberg 
proportions in genotype frequencies (Wang, 2009). The SA method 
was implemented in the program COLONY (Wang, 2009).

Both Nb(LD) and Nb(SA) were estimated for the EAP across four 
year-of-birth cohorts (2010, 2011, 2012, 2013) where sample size 
per cohort was greater than 25 individuals. Estimates of Nb were 
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made using either SNP or microsatellite marker data. To estimate 
Nb(LD) with NeEstimator v2.1 (Do et al., 2014), a random mating 
model was specified, rare alleles which upwardly bias estimates 
were excluded using the criterion PCrit= Pcrit0.05 as recommended 
in Waples and Do (2010), and jackknife confidence intervals that ac-
couns for pseudo-replication due to physical linkage and overlapping 
loci pairs were used (Jones et al., 2016; Waples & Do, 2010). To esti-
mate Nb(SA), relatedness coefficients were estimated for individuals 
within each year-of-birth cohort using COLONY v2.0.5.6 (Jones & 
Wang, 2010). COLONY estimates the likelihoods of full-, maternal 
half-, and paternal half-siblings depending on the mating system cho-
sen in the programs settings, which may impact the final estimate of 
Nb(SA). We tested different COLONY parameters to determine any 
effects on the final estimates of Nb(SA) (Table S4.1). Results are pre-
sented for the maximum likelihood with random mating model, with 
male polygamy/female monogamy, no update of allele frequencies, 
medium sibship prior (sibship size per parent k=10, run for 5 replicate 
runs, error rate 0.001.

2.5 | Inference of Nb/Na ratios

To calculate Nb∕Na ratios, we used Na as described in Bruce 
et al., (2018), where Na is the number of adults in the population. 
As C. carcharias has a low intrinsic capacity for population increase, 
low fecundity, and low lifetime variance in reproductive success 
(Bruce, 2008), the Na estimates from Bruce et al. (2018) are assumed 
to apply to the time period corresponding to our study; Na = 750 
with an uncertainty range 470 to 1,030 (Bruce et al., 2018). Our es-
timates of Nb(LD) and Nb(SA) were combined (herein Nb(LD+SA) to 
provide a single value of Nb with which to infer Nb/Na ratios. Nb(LD) 
and Nb(SA) were combined by taking the harmonic mean of the two 
values, weighted by the inverse of their variances as suggested in 
previous studies (see Waples & Do, 2010); see Appendix 1. In our 
study, the differences between the estimates from the LD and SA 
methods were not overly large, so using a combined estimate of Nb 
to determine the Nb/Na ratio would not change the conclusions de-
scribed herein. Furthermore, in our study the SA estimate generally 
has a lower variance and provided a less bias and more precise es-
timate of Ne and therefore contributed more (around 2/3rd) to the 
final combined estimate. We also note that when two methods with 
approximately comparable performance provide an estimate of Ne, 
then the variance of the combined estimate will be smaller than for 
either estimate alone (Waples et al., 2016).

2.6 | Expectations for Ne

To develop expectations for generational Ne in the EAP of C. carcha-
rias, we use a simulation-based approach. This route was taken as 
the assumptions of single-sample genetic estimators of Ne, including 
LD and SA methods used herein, dictate that data used to make es-
timates represent a random sample of a population across an entire 

generation (Hare et al., 2011). Since the white shark is long-lived and 
samples in this study were mostly juvenile or subadults, we instead 
characterize the expected Nb/Ne ratio using simulations based on 
published methods and parameterized using the life-history of white 
shark. This indirectly allowed the inference of an expected Nb/Ne 
ratio to permit a better understanding of inbreeding and implied fit-
ness of the population. We use both deterministic and forward-time 
population simulations following methods described in Waples and 
Antao, (2014), to determine Ne and Nb. First, we implemented the 
discrete-time, deterministic hybrid Felsenstein–Hill method for cal-
culating Ne in iteroparous species (Waples et al., 2011). The model 
was implemented in the software AgeNe (Waples et al., 2011), herein 
Nb(ageNe), and parameterized using life-history information from 
white sharks in the EAP (Supplementray Materials S7). Furthermore, 
since the Felsenstein–Hill method assumes the probability of repro-
duction is not affected by events in previous time periods, we also 
use forward-time population simulations implemented in simuPOP 
(Peng & Kimmel, 2005), to create a single, isolated, randomly mat-
ing population to further characterize the Nb/Ne ratio under two 
intermittent-breeding scenarios as in Waples and Antao (2014). Each 
simulation was parameterized using outputs from AgeNe, including 
total population size and stable age distribution in the population, 
given the specified vital rates and a specified number of offspring 
produced per cycle that survived to age 1 (N1), here N1 = 1,000. 
Each individual was represented by 100 microsatellite-like loci, each 
having 10 possible allelic states, no mutation, and data were tracked 
for 50 reproductive cycles after a burn-in period of 50 cycles. We 
forced a number of females to skip either zero, one, or two cycles 
of breeding (a proportion of females) hypothesized in this species 
(Domeier & Nasby-Lucas, 2013; Mollet & Cailliet, 2002). Intermittent 
or skipped breeding occurs when sexually mature adults skip breed-
ing opportunities (Last & Stevens, ; Shaw & Levin, 2011), in this case 
likely due to the costs of reproduction or prolonged gestation period 
in females (Bruce, 2008). We directly calculated mean (k) and vari-
ance (Vk) lifetime reproductive success, and Ne and Nb directly from 
simulation demographic data (not genetic data) for each reproduc-
tive cycle using Equations 1 and 2 from Waples et al. (2014), where 
presented values represent the arithmetic mean of k, Vk and the 
harmonic means of Ne and Nb calculated across 10 population repli-
cates, herein Ne(demo), Nb(demo).

3  | RESULTS

3.1 | Cohort assignment

Using the relationship between TL and age, we found that one in-
dividual was born in 2005 with various years represented by the 
following number of individuals; 2007 (n = 3), 2008 (n = 6), 2009 
(n = 10), 2010 (n = 30), 2011 (n = 43), 2012 (n = 53), 2013 (n = 67), 
2014 (n = 23), 2015 (n = 9), and 2016 (n = 2). The physical size of 
individuals within age cohorts increased with age (Figure S5.1). The 
range of FL between age cohorts overlapped principally driven by 
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heterogeneous year-of-capture sampling; 2010 (n = 30, 224 cm and 
296 cm FL), 2011 (n = 43, 207 cm and 276 cm FL), 2012 (n = 52, 
187 cm and 255 cm FL), and 2013 (n = 67, 174 cm and 268 cm FL). 
As low sample sizes can bias estimates of Nb using the methods of 
this study, only age cohorts containing greater than 25 samples were 
used (cohorts 2010, 2011, 2012 and 2013).

3.2 | SNP and microsatellite loci data

The DArTsoft14 pipeline delivered 9,841 SNPs across 9,180 loci. The 
final SNP dataset after filtering consisted of 3,668 diallelic SNPs 
consisting of 236 EAP individuals with high-quality SNP genotypes 
(Dataset-2). Nineteen microsatellite loci were successfully geno-
typed across 181 EAP individuals. No evidence of null alleles or 
scoring errors was detected. The genotypic distribution of micros-
atellite genotypes per locus showed three loci did not conform to 
the expectations of Hardy–Weinberg equilibrium using an a = 0.05 
(loci Cca1419, Cca1072, CcSA2). These markers were removed from 
further analysis (LD method only). One locus (CcSA5) was not poly-
morphic (see Table S6.1) and was also excluded. Per individual, 97% 
had no missing loci while the remaining 3% of samples had three or 
less missing loci.

3.3 | Estimates of Nb

Using SNP data, Nb estimates per year-of-birth cohort were similar 
between the LD and SA methods and had overlapping 95% confi-
dence intervals (Table 1). Estimates of Nb(SA) were not sensitive to 

changes in model parameters such as the sibship prior, inbreeding 
settings, error rate, and polygamy settings (Table S4.1). This was 
consistent with the expectations of the SA estimator which becomes 
increasingly independent of the prior with increasing marker infor-
mation and sample size. Although confidence intervals overlapped, 
estimates of Nb(SA) were generally higher than those determined 
from Nb(LD) across all cohorts. The 2011 cohort showed the largest 
difference between estimates; Nb(SA2011) = 344 (95% CI 204–923), 
Nb(LD2011) = 195.1 (95% CI 104–952.9).

Comparing between the SA and LD method using data from mi-
crosatellite loci, estimates of Nb(LDMSAT) were higher than the equiv-
alent estimate of Nb(SAMSAT). The number of estimated full- and 
half-sibships in each cohort sample was high, and pairwise probabili-
ties were low (data not shown) compared to those sibships estimated 
using SNPs. This resulted in Nb(SAMSAT) estimates being substantially 
lower than the equivalent SNP estimate, with the exception of 2011 
Nb(SAMSAT) (Table 1). The Nb(SAMSAT) were the least precise esti-
mates, where all but one cohort (2013) did not return an upper (95% 
CI) estimate.

The ratio Nb/Na was estimated using combined estimates 
of Nb(LD+SA). The SNP-based Nb estimate for the 2010 cohort 
contained at least one infinite upper estimate of Nb, so in this 
case we did not calculate a combined estimate. For cohorts 
2011 to 2013, Nb(LD+SA) ranged from the smallest estimated 
value in 2012, Nb(LD+SA2012) (45.9 SD) to the largest in 2013, 
Nb(LD+SA2013)=252 (46.7 SD) (Table 1). The inferred ratio of Nb/
Na ranged from 0.27 to 0.34; Nb/Na2012 = 0.27 (0.44–0.2) to Nb/
Na2013= 0.34 (0.54–0.24). The intervals (in parentheses) were cal-
culated using the lower and upper uncertainty estimates of Na 
from Bruce et al., (2018).

TA B L E  1   A comparison of empirical annual effective number of breeders (Nb) determined from genetic data (microsatellites—MSAT and 
single nucleotide polymorphisms—SNP) using either the linkage disequilibrium Nb(LD) or sibship assignment Nb(SA) method per year-of-birth 
cohort for the EAP of C. carcharias

Genetic Marker 
Type Measurement 2010 2011 2012 2013

MSAT n 21 33 39 54

Nb (LD) ∞

(82.5-∞)
263.9
(51.4-∞)

128.7
(43.1 −∞)

112.6
(49.3–12934.9)

Nb(SA) 33
(18,74)[7,56]

49
(30,84)[3,95]

51
(36–88)[5,97]

62
(41,96)[17,137]

SNP n 29 42 52 63

Nb(LD) 193.2
(91 - ∞)

195.1
(104.2–952.9)

165.6
(104.2–359.6)

208.5
(116.4–712.7)

Nb(SA) 271
(136–1430)[2,2]

344
(204–923)[4,4]

241
(157–399)[8,6]

289
(200–461)[8,10]

Nb(LD + SA)(±SD) - 233.2(±69.5) 206.1(±45.9) 252.0(±46.7)

Nb∕Naa  - 0.31 0.27 0.34

Lower and upper confidence intervals in braces (lower CI-upper CI) and the number of samples used to make the estimates, n, is reported. The 
standard deviation (±SD) is reported for the combined estimate of Nb(LD+SA) and the number of full- and half-sibling pairs is reported in square 
braces [full-sib, half-sib in square brackets].
aThe ratio Nb/Ne determined using combined estimate, where Na represents the adult population size, estimated for the year 2017 (Bruce 
et al., 2018). 
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The ratio of Nb∕Ne was evaluated using simulations. Using a stan-
dard model implemented in AgeNe yielded estimates of Nb(demo), 
Ne(demo) of 372.7 and 857.2 respectively, and an Nb(demo)/Ne(demo) 
ratio of 0.43. To account for variations in breeding biology, fur-
ther forward-time population simulations in SimuPOP showed the 
equivalent no-skip breeding model closely reflected AgeNe results 
(Nbdemo = 365.46, Nedemo = 860.67), validating the model, while al-
ternate breeding models decreased the Nb/Ne ratio (see Table S7.2).

4  | DISCUSSION

Monitoring Ne can inform management decisions in populations of 
conservation concern, where Nb is analogous to Ne except that it 
represents the effective number of breeders per year rather than per 
generation. Using data from SNP and microsatellite loci and two sin-
gle-sample genetic estimators of effective popultion size, our results 
show the effective breeding population (Nb) of the EAP has remained 
unchanged across four successive years (2010–2013), although we 
caution that these results may not be indicative of a broader tempo-
ral trend. Our study supports existing evidence (Hillary et al., 2018; 
Roff et al., 2018) that the white shark population has not changed 
significantly in size over the years studied herein, despite measures 
implemented to rebuild the population. The white shark recorded 
substantial declines through the 20th century in Australia and New 
Zealand and has since been the subject of legislated protection and 
management interventions targeted toward population recovery 
(i.e., National Plans of Action for the Conservation and Management 
of Sharks Commonwealth of Australia, 2013; EPBC, 1999; Shark 
Advisory Group, 2004). However, monitoring Nb using the methods 
describe herein could assist management and conservation efforts. 
Indeed, as past studies have shown, monitoring Nb for as few as five 
consecutive reproductive cycles could be used to detect change in 
Nb (declines), even in species with long generation intervals (Antao 
et al.,2011; Wang, 2005; Luikart et al., 2020) such as the white shark, 
with implications for both N and Ne in some circumstances. For ex-
ample, if Nb were to decline significantly for multiple reproductive 
cycles, then both Ne and Nc may be affected (Luikart et al., 2020).
Alternatively, if Nb/N ratios are observed to be stable over many 
generations, then it has been suggested that N (or Na) may be in-
ferred from Nb, which would be of use to population monitoring and 
evaluation of conservation and management actions (Luikart et al., 
2020). To this end, we recommend using Nb to track year-to-year 
changes in the effective number of breeders as a timely assessment 
of population status over time to provide insights into the effects 
of current management actions and co-occurrences such as envi-
ronmental changes. As in this study, future tissue samples for Nb 
monitoring could be obtained as part of existing bather protection 
programs (i.e., SMART drumlines; see Tate et al., 2019).

In this study, we used two genetic marker types (SNPs and mi-
crosatellites) and two single-sample genetic estimators of effective 
population size (LD and SA) to estimate Nb. Both estimators showed 
more precision and power when SNPs were used to estimate Nb 

compared to the few microsatellites used in this study. We there-
fore recommend the use of SNPs for the future monitoring of the 
EAP. Although Nb(LD) estimated from both SNP and microsatellite 
were comparable and results reflected differences between ge-
netic marker type similar to those reported in previous studies (e.g., 
Beebee, 2009), here the few microsatellite loci used were unable 
to estimate upper CIs for age cohorts without significant sampling 
effort (>50 samples). Of note, estimates of Nb(LDMSAT) were consis-
tently higher than the equivalent estimates of Nb(SAMSAT). This can 
be attributed to the overestimation of sibship dyads, which can be 
expected to decrease estimates of Nb (Table 1). This has been noted 
in previous studies (Ackerman et al., 2017; Wang, 2009) which have 
demonstrated that false sibships (type I errors) occur with a higher 
frequency compared to false nonsibships (type II errors) when either 
genetic information or true sibship within a sample is insufficient 
(i.e., few loci, low polymorphism, small sample size relative to total 
population size, low inclusion of siblings). Nb estimated using SNPs 
differed between methods such that Nb(LD) was lower compared to 
Nb(SA), although differences were not significant having overlapping 
CIs. Nb(LD) estimated using SNPs showed those cohorts with larger 
numbers of samples (i.e., 2013) provided more precise estimates, a 
result expected given genetic methods for estimating contempo-
rary effective size depend on signals that are proportional to 1/Ne 
(Waples et al., 2014, 2018).

Monitoring studies are often focused on the number of in-
dividuals in a population; however, the relationship between ef-
fective size and population size (i.e., Ne/Na, Nb/N) is important to 
understand since genetic drift results in the loss of neutral genetic 
variation at a rate rate inversely proportional to Ne per genera-
tion, not N (Wright, 1931) and can therefore be useful for exam-
ining how different ecological factors influence genetic variation 
(Nunney, 1996). In this study, the ratio of Nb/Na was approximately 
1/3 of mature adults for a single reproductive cycle, where ma-
ture adults represent different adult age classes. This is somewhat 
comparable to ratios inferred for other Carcharhinidae, includ-
ing C. plumbeus (sandbar shark) in Delaware Bay, North Atlantic, 
which ranges between 0.50 (95% CI 0.45) and 0.63(95% CI 0.57) 
(Portnoy et al., 2009). Since a ratio of Nb/Na applies to a single re-
productive cycle; when ratios are close to 1, we can infer that the 
majority of the adult population contribute to the next generation 
and that the offspring number per adult approaches the standard 
scenario of binomial distribution (Hedgecock, 1994). In contrast, 
when ratios are < 1, we can infer there is some deviation from the 
ideal (Hare et al., 2011). A number of factors will affect this rela-
tionship (Ne/Na, Nb/Na) including fluctuations in population size 
and several important life-history factors that change variance in 
reproductive success (e.g. mating system, generation time, sex dif-
ference including sex ratio, survival, recruitment age). In one case, 
Nb may be expected to be reduced relative to Na if females with 
high fecundity skip reproductive cycles after giving birth, resulting 
in different females breeding in different cycles (Waples & Anato, 
2014). This should decrease both lifetime Vk and Nb, while increas-
ing Ne. The ratio reported herein appears to be consistent with 
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expectations for the breeding behavior of C. carcharias, suspected 
to undergo intermittent breeding (Bruce, 2008). Observations 
suggest the gestation period of C. carcharias females may ap-
proach 18 months from fertilization to parturition (Bruce, 2008; 
Mollet et al., 2000), resulting in the unavailability of a portion of 
adult females to produce offspring each cycle. However, we ca-
veat that Nb/Na ratios determined in this study used estimates of 
Na from best available information from close-kin-mark-recapture 
estimates for the EAP in 2017 (see Bruce et al., 2018). Thus we 
assumed temporal stability of N over time; an assumption which 
would be violated if N has increased (or decreased) over the time 
period to which our Nb estimates apply (2010-2013).

Since neutral genetic variation is lost at a rate of 1/2Ne per 
generation (Wright, 1931), even numerically large populations can 
be at genetic risk if Ne is small (Waples et al., 2018). Although im-
portant, due to sampling restriction (i.e., difficulty sampling across 
a generation as required by estimators) and uncertainty of breeding 
histories, we could not estimate Ne directly nor did we consider the 
linear relationship between Nb and Ne which requires either true or 
estimated Nb/Ne to be quantified (Waples et al., 2013). Blower et al., 
(2012) provided the first genetic estimate of Ne for the EAP using 
6 SSR markers. Finite point-estimates showed effective population 
size was Ne = 380, Pcrit = 0.18 (95% CI = 31 − ∞, n = 62), however, 
as the authors used both juvenile (n = 55) samples and adult sam-
ples (n = 7), this value likely represents something between Nb and 
Ne. Instead in this study, using simulations, we show that Nb maybe 
expected to beless than Ne using life-history information for white 
shark, and that Nb can be expected to be much less than Ne if inter-
mittent breeding were occurring. This aligns with expectations of Ne 
where a small number of offspring, delayed maturation, intermittent 
breeding, and low lifetime variance in fecundity act to increase Ne 
relative to Nb or N (Waples & Antao, 2014). This result is import-
ant as it suggests the study population in the EAP at least exceeds 
the inbreeding avoidance goal (Nb100) (Frankham et al., 2014). Ne 
> 100 (previously the Ne-50 rule) describes the short term goal 
required to avoid inbreeding, which results in excess homozygos-
ity for deleterious and recessive alleles, leading to inbreeding de-
pression and reduced fitness (Frankham et al., 2014). However, in 
relation to the long-term viable population benchmark, Ne 1,000 
(previously Ne > 500) (Frankham et al., 2014) our results are less 
certain, and we caveat that this rule (Ne > 1000) refers to the loss 
of additive genetic variation that may negatively effect adaptation 
in response to changes in selective regimes, not inbreeding effec-
tive size as estimated herein. We suggest any genetic effects of a 
recently and significantly reduced population size in the EAP, such 
as a decline in Ne or loss of heterozygosity, may not be fully realized 
until adequate benchmark studies can be completed (i.e., histori-
cal or ancient DNA). However, genetic bottlenecks in white sharks 
have been recorded elsewhere (O’Leary et al., 2015). Given this, to-
gether with the lack of evidence from other studies to date of an 
expected recovery (except see Department of Primary Industries, 
2019), our results emphasize the importance of continued monitor-
ing, improved protections, and interventions to reduce mortality. 

Indeed, the vulnerability of chondrichthyan fishes to exploitation 
has been comprehensively documented (Hutchings et al., 2012) and 
relative to other marine fish, the intrinsic capacity for population 
increase and rebound potential in white shark is low (Cortés, 2002) 
(i.e., long-lived, late age to maturity, high juvenile survival). In ad-
dition, shark species often travel large distances and use different 
habitats throughout their lives (Fujioka & Halpin, 2014), where they 
may be vulnerable to environmental changes (density, food avail-
ability, climate, illegal fishing). Regrettably, mortalities continue to 
occur in the EAP driven by action taken to mitigate human–shark in-
teractions. During the years 2018–2019, 51 bather protection nets 
were distributed across seven regions of NSW (Australia). Catches 
of white shark and other shark species are only recently increasing 
year-on-year (Department of Primary Industries, 2019) following 
long term declines over 80 years of the bather-protection program 
along the east coast of Australia, which has been lethal for sharks 
despite catch-and-release programs (Roff et al., 2018). The recent 
modeling of the recovery of the North West Atlantic white shark 
population provides a useful principal in this regard; “every fish 
counts” (Bowlby & Gibson, 2020, p.9).

5  | CONCLUSION

We have used genetic data to estimate the size of the effective 
breeding population (Nb) over four consecutive years (2010 to 2013) 
for white sharks in an east Australian–New Zealand population, rep-
resenting an indirect measure of reproductive effort over a relatively 
short temporal period. Our results suggest Nb has remained stable 
over four years and agrees with previous studies that report stability 
of population size in the EAP, where Nb estimates were more precise 
using data from SNP rather than microsatellite loci and estimates 
from two single-sample genetic estimators were similar. However, 
longer time series of data are needed to determine the efficacy of 
past and present management and conservation actions on the ge-
netic constitution of the population. We suggest future monitoring 
using Nb should continue given the availability of nonlethal tissue 
samples from bather protection programs, the ease of genomic data 
collection and analyses, and the complementary nature of Nb and 
Na estimates.
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APPENDIX 1

INVERSE-VARIANCE WEIG HTED ME AN ME THOD AND 
WORKED E X AMPLE
This is a worked example using data from the cohort 2013. This 
weighted mean will give the lowest variance of any weighted mean 
of the values. As with nearly all Ne calculations the harmonic mean 
must be used as the real quantities of interest are proportional to 
1/Ne.

Values
LDNe: 208.5
COLONY: 289
Sample Size: 63

The Variances
Unfortunately, neither COLONY or NeEstimator (Do et al., 2014; 
Jones & Wang, 2010) provides the raw variance figures required; 
however, these can be approximated by working backwards from 
the provided confidence intervals.

COLONY
Colony generates 95% confidence intervals using the following for-
mula [cite]:

where V* is the variance of the estimate of 1/2Ne. Knowing the upper 
and lower bounds of this confidence interval, we can estimate V* as,

or,

where L* and L are the lower confidence bounds in terms of 1/2Ne and 
Ne respectively. An identical argument follows for the upper bounds. 
However, we desire the variance of Ne, which we can approximate 
using a first order Taylor expansion. That is, Var[f(x)] ≈ (f′E[X])2Var[X]. 
Substituting in our particular case,

We also have

via the upper bound. These are now in terms of known values and we 
can estimate Var

[

Ne

]

.

Ne U L Var
[

Ne

]

.

289 – 200 4,134.811506

289 461 – 2,906.636596

Mean 3,520.724051

NE E S TIMATOR

Similar to COLONY Ne Estimator does not provide raw variances, 
and we need to work in terms of the confidence intervals for 
(

r̂
2
−drift

)

 which we will call here r*. The drift term is ~ 1/S, where S 
is the sample size. The 95% confidence interval for r* is explicitly 
normal in the case of the jackknife confidence interval (Jones 
et al., 2016). Thus, V*, the variance of r* is approximated by

where U and L are the upper and lower bounds provided for r*. 
However, again, we wish to have the variance in terms of Ne. Using 
the same approach as for COLONY, we will approximate this using 
Var[f(x)] ≈ (f′E[X])2Var[X]. The true function used to calculate Ne using 

CI:
1
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Ne CI Bound (Ne) CI Bound (r∗) Var
[

Ne

]

208.5 116.4 0.000368638 6,523.337897

208.5 712.7 6.05919E−05 10,252.64749

Mean 8,387.992693

WEIG HTED ME AN AND FINAL VARIANCE
Now we follow the formula for the weighted harmonic mean,

where the weights, wi, sum to 1. In this case, we need to normalize the 
inverse variances to sum to 1.

r∗ =
−69S2+

√

10000S4N2
e
+4761S4−248400S3Ne+1800SN2

e

1800S2N2
e

−1∕S .

−x̂=
1

∑

iwi
1

xi

,

r* can be found in Table 1 in Waples and Do (2008), here we use the 
simpler original form (Equation 1 in Jones et al., 2016 and others) as our 
f (X) for this estimate, that is

Working as before,

However, we still need to obtain U∗ and L∗ the upper and lower 
confidence bounds for r*. This can be achieved by inverting the func-
tion of r* and S from Table 1 in Waples and Do (2008). In this particu-
lar case, we cannot use the simple approximation. In our case, the 
inverted function is

Ne=1
/

3(̂r
2
−drift) =1

/

3(r∗) .

Var
[

Ne

]

≈

[

−1

3(r∗)2

]2

V
∗

Var
[

Ne

]

≈
1

4

1
[

(r∗)4
]

1

9

(

L
∗ − r∗

)2

Var
[

Ne

]

≈
1

36

1
[

(r∗)4
]

(

L
∗ − r∗

)2
≈

1

36

1
[

(r∗)4
]

(

U
∗ − r∗

)2

Ne Method Variance Inverse variance
Normalized inverse-
variance weight 1

Ne

289 COLONY 3,520.724051 0.000284032 0.704357394 0.003460208

208.5 LD 8,387.992693 0.000119218 0.295642606 0.004796163

The final mean estimate is:
1

(0.704357394∙0.003460208)+(0.295642606∙0.004796163)
=259.3917339

The COLONY estimate has a lower variance and thus contributes around 2/3 of the final estimate (70.4%).


