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Simple Summary: DNA methylation is an epigenetic modification of genes which affects corre-
sponding gene expression. During the developmental stage, embryonic stem cells undergo various
epigenetic modifications to produce different specialized cells. DNA methylation appears as one of
the important epigenetic modifications which not only potentiate neuronal development but also
have been sought in various neurodegenerative diseases, such as Alzheimer’s disease. The present
work focuses on the history of DNA methylation, its role in neurodevelopment functions, and how
assessment of DNA hypermethylation and hypomethylation can be utilized for the prognosis of AD
and other neurodegenerative diseases. This review also paves the way for the development of novel
treatment strategies based on targeting DNA methylation in neurodegenerative diseases.

Abstract: DNA methylation, in the mammalian genome, is an epigenetic modification that involves
the transfer of a methyl group on the C5 position of cytosine to derive 5-methylcytosine. The role
of DNA methylation in the development of the nervous system and the progression of neurodegen-
erative diseases such as Alzheimer’s disease has been an interesting research area. Furthermore,
mutations altering DNA methylation affect neurodevelopmental functions and may cause the progres-
sion of several neurodegenerative diseases. Epigenetic modifications in neurodegenerative diseases
are widely studied in different populations to uncover the plausible mechanisms contributing to the
development and progression of the disease and detect novel biomarkers for early prognosis and
future pharmacotherapeutic targets. In this manuscript, we summarize the association of DNA methy-
lation with the pathogenesis of the most common neurodegenerative diseases, such as, Alzheimer’s
disease, Parkinson’s disease, Huntington diseases, and amyotrophic lateral sclerosis, and discuss
the potential of DNA methylation as a potential biomarker and therapeutic tool for neurogenerative
diseases.

Keywords: epigenetic regulation; DNA methylation; genetic markers; histone modification; Alzheimer’s
disease; Parkinson’s disease; Huntington’s disease; amyloid lateral sclerosis
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1. Introduction

Epigenetic modification refers to heritable changes in gene expression that are not
encoded by the DNA sequence [1]. DNA methylation is an inherent epigenetic process in
which DNA methyltransferases move a CH3 group covalently to the C-5 of the cytosine
ring of DNA [2]. DNA methylation occurs at the cytosine in mammalian genetic material.
In embryonic cells, around 25 percent of methylation has been identified in a non-CpG
context.

Even though the brain contains a higher level of DNA methylation than any other
tissue, a low level of 5mC in human genomes is recorded. In general, the methylation of
DNA is mostly found at the CpG dinucleotide; however, in somatic cells, the methylation of
DNA is highly prevalent on the non-CpG dinucleotide framework. Non-CpG methylation
is highly enriched in brain tissue and embryonic stem cells, due to methylation taking
place in a non-CpG context [3]. During zygote development, DNA methylation is normally
detached and then again established in the embryo approximately during the time of
installation [4]. Although several researchers hypothesized that DNA methylation could
affect gene function, it was not until the 1980s that researchers showed that methylation
in DNA has an impact on gene function and mitosis. This epigenetic modification is now
generally accepted as a significant epigenetic factor affecting gene activities [5,6].

DNA methyltransferases (DNMTs) catalyze DNA methylation by transferring a methyl
group from S-adenyl methionine (SAM) to the fifth carbon of a cytosine residue, resulting
in 5mC. Whenever replication of DNA happens, DNA methyltransferase-1 retrieves the
DNA methylation prototype from the parent strands of DNA and transfers it to the newly
synthesized daughter strand [7,8]. Although postmitotic neurons in full-grown mammalian
brains still demonstrate high levels of DNA methyltransferases, this finding indicates that
DNA methyltransferases and epigenetic modification such as methylation in DNA may
participate in new functions in the brain [9].

This is more common in species with heavy DNA methylation patterns. However,
there can also be no repeat methylation, as investigated in the case of the invertebrate
chordate Ciona intestinalis [10]. Despite its long evolutionary history, gene methylation
is still inadequately understood. Epigenetic regulation also helps to mitigate chromatin
disturbance induced by elongating RNA polymerase such as nucleosome displacement [11].
Cytosine-guanine dinucleotides in mammals are methylated on cytosine residues, but
cytosine-guanine dinucleotides in promoters are largely unmethylated. Defects in DNA
methylation become the cause of many diseases. An increased or decreased level of
methylation can result in gene instability [7]. A heritable mechanism for controlling gene
expression is a covalent alteration in the genome and proteins present in histone, which is
mainly present in chromatin. Histone ends are exposed to an amount of covalent alteration
such as acetylation, methylation, phosphorylation, ubiquitination, and sumoylation, all
of which control key cellular processes including gene transcription, replication, as well
as repair [12]. The addition of three methyl groups in histone has been planned as a
condition following DNA methylation, which can be due to interactions between the parts
of these histone methylation systems [7]. Histone lysine methyltransferases, suppressor of
variegation 3-9 homolog-1 and enhancer of Zeste 2 polycomb repressive complex 2 subunits
all perform together and promote their interaction with target promoters [13,14].

CpG islands are stretch of DNA with 500–1500 base pairs with elevated 5′-C-phosphate-
G-3′ density compared to other parts of the gene but are mostly unmethylated. CpG
islands are home to many gene promoters [15]. CpG islands seem to have evolved to
facilitate transcription by controlling the chromatin structure and transcription factor
binding. Nucleosomes are small, packaged sections of DNA that are wrapped around
histone proteins regularly. DNA becomes less permissive for gene expression as it becomes
more closely aligned with histone proteins. CpG islands have fewer nucleosomes than
other DNA stretches, which is one of their most distinguishing characteristics [16,17]. Even
though 50% of CpG islands have established transcription start sites, they are frequently
vacant of common promoter essentials such as TATA boxes [18].
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2. History and Development of DNA Methylation

DNA methylation, mainly in the cytosine and adenine positions, is responsible for
the chromatin structure and dynamics. Out of all epigenetic modifications, methylation,
thiouridylation, and pseudo-uridylation of bases in rRNAs and tRNAs are essential for
survival. The importance of these modifications is in maintaining double-helical pairing
in DNA and preventing mutagenic effects of base modification. They also allow RNA to
recall biochemical diversity which is required for their role by protecting genetic material
in an unmodified state. Only a small set of DNA alterations have entered evolution and
been used to determine biological functions [19].

Mammalian DNA methylation was found almost as soon as DNA was identified as a
source of genetic material [20]. Gerlach et al., 1965, reported that modified cytosine was
identified in the calf thymus [21]. He proposed that such a proportion was 5-methylcytosine
(5mC), since it segregated out cytosine in the same way as thymine segregated from uracil.
He also believed that this modified cytosine occurred spontaneously in DNA. Even though
many researchers hypothesized that methylation of DNA may affect the expression of
genes, it was not until the 1980s that multiple studies showed that methylation of DNA
was involved in the regulation of gene and cell division. DNA methylation is now widely
recognized as an important epigenetic process influencing gene activity when combined
with other promoters. [22].

A number of in silico methods have been developed to determine DNA modification
according to the number of enzymes. X-ray crystallography and biochemical studies were
used to identify such changes [23]. 5hmC and 5-hydroxymethyluracil synthases along
with other enzymes, i.e., DNA base glycosyltransferases, alpha-glucosyltransferase, beta-
glucosyltransferase, protein hydroxylases, and histone demethylases, modify bases in DNA
and are responsible for moiety transfer from one DNA to another. All DNA methylases
belong to monophyletic assemblage, and mainly contain bases in the nucleic acid or amino
acid side chain. An examination of the origins of DNA N6A methylases (and related N4C
methylases) and their predecessors overlooked their existence in eukaryotes [19].

3. Methylation Detection Method

Sodium bisulfite converting and sequencing, the cleavage of DNA by different en-
zymes, and methylated DNA capturing affinity are the methods used to identify DNA
methylation. Methylated DNA immunoprecipitation (Me-DIP), which utilizes a DNA
methyl-specific antibody, and methyl encapsulate, which uses methyl-CpG binding domain
(MBD) proteins, are the two most widely reported DNA affinity capture methods [24].

The high-performance liquid chromatography-ultraviolet (HPLC-UV) technique, which
helps in determining the concentration of deoxycytidine (dC) and methylated cytosines
(5mC) contained in a hydrolyzed sample of DNA, is still used today. However, the method’s
utility is restricted by the necessity for specialist laboratory apparatus and the need for
relatively large amounts of DNA material (3–10 g) to be analyzed [25].

Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) is
another method used to determine methylation status in DNA. In LC-MS/MS, a small
number of samples are required. LC-MS/MS has been verified for identifying methylation
levels ranging from 0.05% to 10% in mammalian DNA, and it can confidently identify
variations among samples. It can even identify samples which have about 0.25 percent of
the total cytosine residues, which equates to 5% differences in global DNA methylation [26].

Because ELISA-based assays have a high risk of considerable changes, they are only
useful for estimating DNA methylation in a crude manner. Nonetheless, they are quick and
simple to use approaches that work well for detecting substantial changes in global DNA
methylation [25]. LINE-1 methylation levels can also be determined using a method that
involves bisulfite conversion of DNA followed by PCR amplification of LINE-1 conservative
regions. Pyrosequencing is used to determine the methylation status of the amplified
fragments, which can resolve discrepancies among samples of DNA as small as 5 percent.
Even though this method only focusses on LINE-1 components and hence only on lean
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CpG sites, it has been proven to accurately reflect overall DNA methylation modification.
The method is particularly well-adapted to the examination of high-throughput cancer
samples because hypomethylation is frequently linked to a poor prognosis. This approach
works best with human DNA, although there are also variations that work with rat and
mouse genomes [27].

Differently methylated DNA can also be detected by amplification fragment length
polymorphism (AFLP) and restriction fragment length polymorphism (RFLP). These meth-
ods have now been replaced by other powerful and more accurate methods. AFLP and
RFLP are inexpensive and quickly access the methylation alteration in DNA samples [28].

The luminometric methylation assay is a technique which combines two DNA restric-
tion digest operations that are run in parallel, followed by pyrosequencing to fill in the
gaps between the digested DNA strands’ projecting ends. The CpG-methylation-sensitive
enzyme HpaII is used in one digesting step, whereas the methylation-insensitive enzyme
MspI is used in the other, cutting at all CCGG sites [29]. Bisulfite sequencing is the “gold
standard” technology in DNA methylation research. Recent DNA sequencing technology
cannot tell the difference between methyl-cytosine and cytosine. The deamination of cyto-
sine into uracil is mediated by bisulfite treatment of DNA, and these transformed residues
are read as thymine by PCR amplification and subsequent Sanger sequencing analysis. Five
methylated cytosine residues, on the other hand, are independent of this change and remain
as cytosine. By comparing the “Sanger sequencing” reads from DNA samples that remain
untreated to the cloned sample after bisulfite treatment, the 5mC can be detected. This
approach may now be expanded to DNA methylation analysis over a complete genome
because of the advent of next-generation sequencing (NGS) technology [30]. Apart from
this array or bead hybridization [31], methylation-specific PCR [32], bead array [33], and
pyrosequencing can be used to determine the methylation status of the gene of interest [25].

4. DNA Methylation in Premature and Mature Brain

The precise timing of de novo methylation and de-methylation in the developing
brain is crucial. Multipotent neural progenitor cells (NPCs) go through neurogenesis
and astrogliogenesis [34]. The addition and removal of a methyl group in the promoter
gene follow the change in neural progenitor cells from neurogenesis to astrogliogenesis
and neuron proliferation and development in the adult brain. [35]. The DNMT family of
enzymes includes DNMT1 and DNMT3A/DNMT3B enzymes. DNMT1 preferentially leads
to methylation of hemi-methylated DNA and further maintains DNA methylation after the
replication of DNA, whilst DNMT3A and DNMT3B cause methylation on non-methylated
and hemi-methylated DNA equally and are considered as de novo methyltransferase.
DNMTs go through significant conformational changes, are capable of oligomerization,
and can self-inhibit, all of which could help to regulate their activity [36].

A double knockout study (lacking both DNMT1 and DNMT3A) revealed their impor-
tance in the regulation of synaptic plasticity and memory formation through maintaining
DNA methylation in neurons [37]. Furthermore, aberrant bdnf gene expression (possibly
through epigenetic modifications) has been observed in several neurological disorders; how-
ever, the inhibition of DNMT resulted in blocking, which was reported to alter bdnf DNA
methylation status in the hippocampus [38,39] and modulate learning and memory [40,41].

DNMT1 in neural progenitor cells are critical for maintaining the methylated sequence
on the glial fibrillary acidic protein promoter throughout mitosis. During the early embry-
onic stage, Gfap gene is methylated; however, at a later stage, it gets demethylated [42].
Methyl CpG binding protein 2 is present in the brainstem and thalamus, which are the
brain’s oldest areas. Methyl CpG binding protein 2 interacts with several protein syn-
thesis inhibitors, including DNMTs, and regulates gene expression [43–45]. Methyl CpG
binding protein 2 is a protein that plays a role in neuronal development, and its loss of
phosphorylation causes an abnormal dendritic arborescent figure, a synaptic role, and
smoothness [46,47]. The schematic representation of DNA methylation and demethylation
is illustrated in Figure 1.
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Figure 1. A systemic representation of DNA methylation and demethylation. By means of the
action of DNA methyltransferases, the methyl group is transferred to the 5th carbon in cytosine.
Generally, DNA methylation is initiated by DNMT3A/3B (de novo pathway) and is maintained
by DNMT1. Most gene expression is suppressed by DNA methylation, which contributes to the
development of neurodegeneration. On the other hand, methylated cytosine turned into cytosine
through an active/passive demethylation process. This cycle regulates the gene expression, while
under certain environmental conditions, abnormality in this cycle may contribute to the development
of neurodegenerative diseases.

Methyl-binding proteins are another type of protein that works with DNA methyla-
tion to control transcription in the CNS [48]. Neuronal activity causes phosphorylation
of MeCP2, which leads to changes in gene expression. Synapse development, synaptic
flexibility, and learning and recall activity are all impaired when MeCP2 phosphorylation
is inhibited. Since phosphorylation is typically a transient alteration, activity-dependent
phosphorylation can, temporarily, release methyl CpG binding protein-2 from the enhancer,
allowing demethylation of the genome pattern. Methyl group addition or deletion may
be to blame for long-term changes in genome number, which is responsible for control-
ling synapse flexibility, learning, and memory [49–51]. The brain is mostly made up of
post-mitotic neurons and glial cells that have small proliferative capacities. DNMT1 and
DNMT3A are both asserted by mature neurons. In both development and illness, DNMT3B
is required for the dynamic programming of epigenetic control. The amino acid sequences
of DNMT3A and DNMT3B are very similar. Immunodeficiency, centromeric instability,
and facial abnormalities syndrome are caused by DNMT3B mutations [52]. This unex-
pected finding prompted researchers to investigate further into the function of active gene
methylation in adult brain post-mitotic neurons.

5. Role of DNA Methylation in Neurological Disorders

Alteration in the methylation pattern of certain genes can modulate neuronal survival
and regeneration, which in turn leads to the progression of neuronal degeneration. A
summary of recent evidence supporting the hyper/hypomethylation of genes in various
neurodegenerative diseases is elaborated in Table 1 and illustrated in Figure 2.
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Table 1. DNA methylation status of different genes in neurodegenerative diseases.

Disease Sample Methylation
(Hyper/Hypo) Experimental Method Gene Ref.

AD Blood Hypermethylation
Bisulphite sequencing PCR

and methylation-specific
PCR are used

SIRT1 [53]

AD
Dorsolateral

prefrontal cortex
tissue

Differently
methylated

CpG sites generated using
a bead assay

SORL1, ABCA7,
HLA-DRB5,

SLC24A4, BIN1.
[54]

AD Hippocampus Hypomethylation
Bisulfite cloning sequencing
of CpG sites in two promoter

regions Prom1 and Prom2

CREB-regulated
transcription factor 1 [55]

AD Blood Hypermethylation
Bisulfite treated DNA was
analyzed by melting curve
analysis-methylation assay

UQCRC1 [56]

AD Hippocampus Hypermethylation
Bisulfite cloning sequencing
and further measured by 5-

hydroxymethycytosine (5hmC)
TREM2 [57]

AD Blood Hypermethylation Dual-luciferase assays OPRM1, OPRL1 [58]

AD Blood Hypomethylation Quantitative bisulfite-PCR
pyrosequencing PICALM [59]

AD Brain Hypermethylation Bisulfite pro-sequencing ANK1 gene [60]
AD Hippocampus Hypermethylation RT-qPCR PLD3 gene [61]

PD
Postmortem human

brain samples
(frontal cortex)

Hypermethylation Illumina Infinium array MRI1, TMEM9 [62]

PD
Postmortem human

brain samples
(frontal cortex)

Hypomethylation Illumina Infinium array GSST1, TUBA3E, KCNH1 [62]
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Table 1. Cont.

Disease Sample Methylation
(Hyper/Hypo) Experimental Method Gene Ref.

PD Brain tissue Hypomethylation
Fluorescence-activated nuclei

sorting and bisulfite
pro-sequencing

CpGs located in
SNCA intron 1 [63]

PD Blood Differently
methylated

Cross-sectional analysis of
blood methylation

SRSF7, ADNP, GDNF,
SYN3, CPLX1,

SNCA, TREM2.
[64]

PD Blood and saliva Altered
methylation Illumina Infinium array

ABCB9, C1orf200, AZU1,
LARS2, PARK2, LRRK2,

APC, AXIN1
[65]

PD Brain Differently
methylated

Genome wide screening and
RNA sequencing

ARFGAP1, DUSP22
promoter, SNCA [66]

PD Leukocytes Hypomethylation Methylation-specific PCR NPAS2 [67]

PD Brain Hypermethylation
Bisulfite sequencing and

micro array gene
expression analysis

PGC1-α [68]

PD Brain Hypomethylation Genome wide methylation CYP2E1 [69]
PD Blood Hypomethylation - NOS2 [70]

PD Leukocytes, Brain Hypermethylation
Bisulfite pyrosequencing and

MAPT promoter
methylation assay

MAPT [71]

PD Brain Hypermethylation Illumina Infinium array FANCC/TNKS2 [72]

HD

Striatal cells carrying
polyglutamine-
expanded HTT

(STHdhQ111/Q111)
and wild-type cells

(STHdhQ7/Q7)

Altered DNA
methylation

mRNA-Seq, ChIP-Seq assay
and Motif Scanning Htt [73]

HD Prefrontal cortex Differently
methylated

Fluorescence-based nuclei
sorting (FACS)-ChIP-seq HES4 [74]

HD
Putamen of HD

patients and
striatum of mice

Differently
methylated

Bisulfite sequencing and
TaqMan PCR ADORA2A [75]

HD Blood Differently
methylated Microarray methylation CLDN16, NXT2, DDC. [76]

HD Blood Differently
methylated

mRNA-Seq, ChIP-Seq assay
and motif scanning

FBXL5, S100P, PRDX1,
COPS7B, SP1, SEC24C,
PDIA6, USP5, GRAP,
POP5, WRB, PCSK7.

[77]

ALS Postmortem spinal
cord tissue Hypomethylation

Bisulfite pyrosequencing,
genome-wide expression

profiling, and RT-PCR

MLC1, CRB1, CTNND2,
FURIN, SLC31A1,
CMTM3, STAT5A,

SRGAP1, LPXN, PLD4,
OBFC2A, TXNIP, PSAP,

SLC35E1, RBM38,
CLEC4A, HMHA1,

PLSCR1, AXL, PHYHD1.

[78]

ALS Postmortem spinal
cord tissue Hypermethylation

Bisulfite pyrosequencing,
genome wide expression

profiling, and RT-PCR

LUM, SLC13A4, GJB2,
TYRP1, CLDN19,

LINGO2, PLEKHA4,
NNAT, TSPAN18, PLCB4,

TMEM139, PNMAL1,
DMBT1, TNFSF10, NNAT,
PCP4, MAB21L2, PEG10,

TMEM139, KCNJ12,
FGF18.

[78]



Biology 2022, 11, 90 8 of 23

5.1. Alzheimer’s Disease

Dementia is a progressive age-related neurodegenerative disease described by pro-
gressive cognitive impairment that affects 35.6 million people in the world and is becoming
a more pressing issue as the population ages [79]. Extracellular amyloid plaques and intra-
cellular neurofibrillary tangles are hallmarks of Alzheimer’s disease (AD). β-secretase and
γ-secretase cleave amyloid precursor protein (APP) sequentially, generating amyloidogenic
Aβ peptides that accumulate in the outer space of the cell to form insoluble Aβ plaques.

Decreased global DNMT1 and 5mC in the temporal cortex and reduced global 5mC
and 5hmC in the hippocampus of AD patients have been reported [80]. In contrast, some
studies support the elevated level of 5mC and 5hmC in the frontal lobe, temporal cortex, and
hippocampus in AD [81,82]. Furthermore, reduced 5mC levels in APP, PSEN1, and SERT1
promotors in the brain and blood of AD patients have been recorded [83,84]. Meanwhile,
a recent study supported a positive correlation between 5mC and 5hmC values in AD
patients [85]. This could be helpful in the differential diagnosis of AD patients from PD
(with lower 5hmC level and unchanged DNMT3A expression). The status of methylation
and demethylation of various genes in the brains and blood of Alzheimer’s patients is
illustrated in Figure 3.
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Figure 3. Differential methylation pattern of various genes in brain and peripheral blood in
Alzheimer’s disease. This image illustrates the alteration in the expression of different genes in
the AD brain and peripheral blood circulation due to the hyper/hypomethylation of DNA. The
genes encoded in light red are specific to the brain region, while the genes encoded in red color are
restricted to peripheral blood circulation. In addition, hypermethylation of the APP gene is reported
as a common gene in the AD brain and peripheral blood circulation.

Important variations in DNA methylation profiles of the APP, microtubule-associated
protein tau, and GSK3B were also discovered, along with PSEN1, beta-secretase 1 precursor,
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or apolipoprotein E. Many studies have reported genetic variants linked to enhanced AD
susceptibility, but do not limit many other promoters. Almost 28 gene locations are linked
with AD, and while little is known about bridging integrator-1 function in AD pathogenesis,
it may have a considerable impact on tau pathology, amyloid precursor protein endocytosis,
and inflammation in neurons [86–89].

Most of the AD studies performed to date have mostly considered a gene-directed
analysis; thus, the methylation of promoter genes of AD (especially APP) has been widely
explored. As mutant APP genes pose a risk factor for AD, it is apparent that epigenetic
modifications of the APP promoter leading to enhanced gene expression are also risk
factors for AD. West and colleagues reported hypomethylation of the APP promoter in
AD patients [90]. Meanwhile, some contrasting studies rejected these findings, suggesting
this as an outcome of larger epigenetic modification rather than a specific alteration in
methylation [83].

Furthermore, the expression of cortical PSEN1 appeared stable during embryonic
development, while upregulated levels have been reported in AD patients. The cortical
PSEN1 expression in rodents appears to be tightly regulated by histone modification
at various stages of neuronal development. Generally, the PSEN1 gene remains partly
methylated and suppressed after development, while the hypomethylation of PSEN1 is
reportedly associated with its elevated expression in the AD population [91].

In DNA, when hydrogen is replaced with a hydroxyl group, it is also related to
regulating gene expression, although its mechanism is still unclear. In comparison to
the moderately constant tissue distribution of 5mC, 5hmC has a wide range of tissue
distribution. This is common in the brain, with the cerebral cortex having the largest
proportion of 5hmC compared to other parts of the brain [92]. The thromboxane A2 receptor
and Sorbin SH3 domain containing 3 (Sorbs3) genes were found to be highly methylated in
Alzheimer’s disease. The thromboxane A2 receptor regulates protein synthesis factors such
as cyclic adenosine monophosphate response-element binding protein (CREB), which are
concerned with neuronal plasticity, protection, and long-term memory development. In
the temporal cortex of Alzheimer’s patients, Sorbin SH3 domain containing 3 was found to
be highly methylated [93].

This reduction in the methylation level of CREB-regulated transcription factor 1 was
found in the hippocampus of AD patients when compared with controls, and this methy-
lation within CREB-regulated transcription factor 1 was inversely connected with phos-
phorylation in tau expression [94]. Inflammation of neurons is linked to AD. Evidence
also revealed that interleukin-1 and interleukin-6 expression levels increase in Alzheimer’s
disease, but in the late stages of Alzheimer’s, their levels return to normal [95].

It is also understood that the peripheral blood is also an indicator for AD. Brain-
derived neurotrophic factor is responsible for controlling neuronal endurance, division,
and flexibility [96,97]. Brain-derived neurotrophic factor is also a key factor in AD. Its
level is higher in the peripheral blood of AD patients than in normal controls. Importantly,
the percent methylation of specific CpG sites within the brain-derived neurotrophic factor
promoter suggests that methylation of the brain-derived neurotrophic factor promoter is
associated with clinical manifestations of AD [98,99].

One study also suggested a role for gene expression in AD. H3K4me3 and H3K27ac are
responsible for gene alteration. Increased expression of genes causes alterations in immune
responses, while decreased expression of genes causes impairment in the learning process.
The histone marker H4K16ac causes an alteration in the chromosome which connects it
with DNA damage and aging in neurodegenerative diseases. The amount of H4K16a in
the aged brain decreases due to the aged brain’s inability to regulate it, which results in
changes in brain function [100,101]. An in vitro study on AD found that methylation levels
in the 2′,5′-oligoadenylate (2-5A) synthetase gene were reduced [102].

Changes in the methylation levels of SORL1, ABCA7, HLA-DRB5, SLC24A4, and
BIN1 also contribute to AD [103]. Hypermethylation of the UQCRC1 gene is responsible
for inflammation and oxidative stress in AD [104]. An increase in DNA methylation
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in TREM2 was also reported, which causes alteration in AD biomarker TREM2 mRNA
expression [105]. Hyper methylation of OPRM1 and OPRL1 genes in AD patients has
also been reported in many studies that demonstrate the role of opioid receptors in the
diagnosis of AD [106]. A decrease in the methylation level of the PICALM gene leads to
an alteration in the cognitive behavior of AD patients [107]. The ANK1 gene’s elevated
methylation profile demonstrated its role in AD [108]. OTX gene methylation changes also
lead to AD [101].

Apart from this, DNA hydroxymethylation is also one of the epigenetic mechanisms
that lead to the progression of the disease. As discussed above, hypermethylation of the
ANK1 gene leads to AD. Hypo-hydroxymethylation of the ANK1 gene is also one of the
factors related to AD. Hypermethylation of the PLD3 gene also plays a role in AD [109].
In the 5xFAD mouse model, as well as in the 3xTg-AD mouse model, changes in DNA
methylation and hydroxymethylation patterns in genes were observed. These models
proved that a reduction in hydroxymethylation also plays an important role in AD [110].
Hydroxy methylation of genes is also related to cognitive behavior and memory impairment.
Hydroxy methylation of the DNA sequence gives rise to 5-hydroxymethycytosine, which
is present in large amounts in the brain and plays a role in neurodevelopment. DNA
hydroxymethylation in the TREM2 gene was found to be increased in AD patients. Different
hydroxymethylated regions can be the reason for neuritic plaques and neurofibrillary
tangles. Alterations in DNA patterns in the prefrontal cortex cause neurogenesis [111,112].
Levels of 5-hydroxymethylcytosine were also found to be elevated in mitochondria, which
also suggested its role in AD [113].

5.2. Parkinson Disease

In the elderly population, Parkinson’s disease (PD) is the most widespread disease
caused by the degeneration of neurons, mainly dopaminergic neurons. In post-mortem
brains, Lewy bodies, irregular protein aggregates contained inside nerve cells, and gradual
depletion of dopamine neurons present in the substantia nigra have been discovered [114].
In the last few years, complete hereditary screening of Parkinson’s disease families has
sought to detect mutations linked to the disease, which will provide a better understanding
of the actual mechanisms involved in the disease. Several gene locations that are associated
with familial Parkinson’s disease, such as Parkinson’s disease (PARK 1-15) and other genes,
have been identified through genetic studies. Other genes linked to sporadic PD have been
identified, including leucine-rich repeat kinase-2, alpha-synuclein, microtubule-associated
protein tau, and encoding for the lysosomal enzyme glucocerebrosidase [115,116].

Alpha-synuclein aggregation leads to Lewy body expansion, a characteristic of
PD [117,118]. DNA methylation has been projected as a possible means for the deregulation
of alpha-synuclein in PD [119]. The use of a DNA methylation inhibitor reduced CpG-2
methylation while significantly raising alpha-synuclein mRNA and protein levels. The
addition of a methyl group, at least at the intrinsic CpG-2 island, has been shown in recent
studies to regulate alpha-synuclein gene action [120].

One study also claimed that alterations in methyl group addition levels in alpha-
synuclein take place in many parts of the brain. Both the addition and removal of methyl
groups were found in the promoter gene region as well as in intron 1 of different Lewy body
disease/PD levels [121]. Other studies would be required to overcome these doubts about
the validity of DNA methyl group removal at the alpha-synuclein intron 1 concerning PD,
given the inconsistencies. So, this DNA methylation modification may act as a biomarker
for Lewy body-related diseases rather than a particular biomarker for PD [122,123].

Apart from SNCA, beta-synuclein (SNCB) also plays a major role in PD. In vitro, SNCB
prevents the formation of alpha-synuclein fibril aggregation, suggesting that it may help in
protecting neurons that are prone to degeneration [124]. The promoter of the beta-synuclein
gene was originally found to be unmethylated in the brain. Bisulfite sequencing of the
beta-synuclein promoter revealed no 5mC along the cytosine phosphate guanine island in
four uncontaminated disperse Lewy body pathology cases [125].
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Peptidyl arginine aminases (PADs) also play a role in PD, and their promoter is found
to have a reduced methylation level in the brain, but it is the opposite in white matter. Other
than alpha-synuclein, some genes such as ubiquitin carboxyl-terminal hydrolase isozyme L1
(UCHL1) promoter, ATP13A2 promoter, Parkin (PARK2) gene, and other clock genes such
as period circadian regulator (PER1), period circadian regulator-2, cryptochrome circadian
regulator-1, cryptochrome circadian Regulator-2, neuronal PAS domain protein 2 (NPAS2),
and brain and muscle ARNT-like 1 (BMAL1) have also been measured in genomic DNA
isolated from PD patients to check their role in PD. Mutations in the ATP13A2 promoter and
PARK2 are related to PD. However, in the case of the UCHL1 promoter, ATP13A2 promoter,
and PARK2, there were no variations in 5′-C-phosphate-G-3′ methylation percentages
between PD cases and control groups [126–130]. DNA methylation was found in the
cryptochrome circadian regulator 1 and neuronal PAS domain protein 2 promoters, but not
in other gene promoters studied [131].

The microtubule-associated protein tau (MAPT) gene is associated genetically with
PD. In MAPT, the H1 haplotype had more DNA methylation than the H2 haplotype (this
haplotype was linked appreciably with PD). The MAPT gene was found to have increased
methyl group levels in the cerebellum, but not in the putamen of PD patients [132–134].

In the CpG-1 and CpG-2 islands of PARK7, there is no methylation in both the PD
and the control groups, where the PGC-1 promoter is highly methylated [135,136]. When
investigated, single CpG sites of both Fanconi anemia complementation group C (FANCC)
and tankyrase 2 (TNKS2) showed differences in methylation patterns in the PD and control
groups. Another study revealed that about 20 genes were found to have DNA methylation
differences in PD patients [137].

A comparative analysis of DNA methylation studies in the brain and blood of PD
patients suggested alteration in their DNA expression. KCTD5, VAV2, MOG, TRIM10,
HLA-DQA1, ARHGEF10, GFPT2, HLA-DRB5, TMEM9, MRI1, MAPT, HLA-DRB6, LASS3,
GSTTP2, GSTTP were found to be hypermethylated, and DNAJA3, JAKMIP3, FRK, LRRC27,
DMBX1, LGALS7, FOXK1, APBA1, MAGI2, SLC25A24, GSTT1, MYOM2, ME 886, TUBA3E,
TMCO3 genes were hypomethylated in the brains and blood of PD patients [138].

Recent evidence elaborating DNA methylation of different genes in AD and PD is
presented mentioned in Table 2.

Table 2. Recent evidence supporting the role of DNA methylation in Alzheimer’s and Parkinson’s
disease.

Methylation
of DNA

Gene/Target/Pathway
Involved Effect Model Experimental

Method Outcomes Ref.

5-mC B3GALT4, ZADH2 Decrease AD and healthy
patients

Rey Auditory Verbal
Learning Test

(RAVLT), Trail Making
Test Part B (TMT-B),
INNOTEST assays,
and Triplex assay

Hypomethylation of
B3GALT4, ZADH2
associated with the
level of AB and tau

in CSF

[139]

5-mC HOXA3, GSTP1,
CXXC1-3, BIN1 Increase AD and healthy

patients

Laser-assisted
microdissection and

Infinium DNA
Methylation

450K analysis

504 DMCs and
237 DMRs were
identified and

increased in the
5mC pyramidal
layer, which is
associated with
oxidative stress

[140]
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Table 2. Cont.

Methylation
of DNA

Gene/Target/Pathway
Involved Effect Model Experimental

Method Outcomes Ref.

5-mC KIAA056 Decrease NFT pathology
stages I-IV

Bisulfite sequencing
and Infinium Human

Methylation
450 BeadChip

Downregulation of
5mC in KIAA056

and in NFT
pathology cases

[141]

5-mC ANKRD30B, ANK1,
Cell adhesion Increase

AD and
neurotypical

patients

Genome-wide DNA
methylation, mRNA
expression profiling,

functional enrichment
analysis, and
differential

methylation of genes

856 DMCs were
identified along

with a correlation
between 5-mC and

gene expression

[142]

5-mC WNT5B, ANK1,
ARD5B

Increase
and

decrease
AD patients

Illumina Infinium
Human Methylation

450K microarray

Increased 5-mC
level in WNT5B,

ANK1, and
decreased in

ARD5Bz

[143]

5-mC
Amyloid

neuropathy and
neurogenesis

Decrease AD and healthy
patients

RNA sequencing,
aging analysis, gene

annotation, and
enrichment analysis

Identification of
1224 DMRs,

enhancement in the
DCSAML1 gene

which targets
BACE1

[144]

5-mC - Decrease AD and healthy
patients Immunohistochemistry

Downregulation of
5-mC and negative
correlation between
5mC and amyloid

plaque level

[145]

5-mC - Increase
AD patients

and preclinical
samples

Immunohistochemistry

Upregulation of
5-mC and

hippocampus gyrus
in both clinical and

preclinical cases

[146]

5-mC - Increase
Early and

late-onset AD
patients

Immunohistochemistry

Upregulation of
5mC in middle

frontal gyrus and
middle temporal

gyrus in AD patients
and shows a

positive correlation
with AD biomarkers

[147]

5-mC AS3MT, WTI,
TBX15 Decrease

AD with
psychosis and

without
psychosis
patients

Immunohistochemistry

Decrease level of
AS3MT, WTI, TBX15
gene associated with

AD patients

[148]

5-mC - Decrease Early and late
AD patients Immunohistochemistry

Genetic
dysregulation may

be occurring in
astrocytes and

NF-positive
pyramidal neurons

in AD

[149]
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Table 2. Cont.

Methylation
of DNA

Gene/Target/Pathway
Involved Effect Model Experimental

Method Outcomes Ref.

IL-1β
Promoters IL-1β Decrease

BALB/c mice
(3–4- and 18–20-

month-old)

LPS-induced
neuroinflammation

and Quantitative PCR
(qPCR)

Microglial
transferred to M1

phenotype
which causes

neuroinflammation
and neuronal
cell damages

[150]

SNCA
Promoters SNCA Decrease Healthy and PD

patients qPCR

Aggregation of
a-syn, neuronal

damage of DA, and
neuroinflammation

is triggered by
activating glial cells

[151]

PGC-1α
Promoters PGC-1α Increase

Human brain of
PD and healthy

patients

Bisulfite sequencing,
Microarray gene

expression analysis,
ELISA analysis

Up-regulation of
neuroinflammation,
ER stress, epigenetic

modification, and
ROS production

[152]

TNF-α
Promoters TNF-alpha Decrease PD and healthy

patients
Bisulfite PCR and

sequencing

SNpc cells could
underlie the

increased
susceptibility of
dopaminergic

neurons to TNF-
alpha-mediated
inflammatory

reactions.

[153]

NOS2
Promoters NOS2 Decrease PD and healthy

patients Qiagen’s Assay

Down-regulation of
NO production to

deactivate the
microglial

[154]

5.3. Huntington Disease

Huntington’s disease (HD) is caused by a CAG repeat mutation in the huntingtin gene.
Huntingtin is a disease protein that has been established to affect a variety of epigenetic
markers, such as histone modifications, and mainly DNA methylation [155]. Huntingtin
(Htt), a protein with an enlarged glutamine domain, is prearranged by the mutant Htt
gene. The specific mechanism by which the mutant huntingtin protein causes degeneration
of neurons is unidentified [156]. Many interactions with certain transcription factors are
involved, such as meddling with protein synthesis mechanisms and modifications of his-
tones after protein synthesis. The mutant Htt has a large influence on gene expression, by
pushing chromatin towards a thicker form [157,158]. Changes in DNA methylation have
been associated with Htt protein expression in a variety of HD model systems, and in the
human HD brain, according to numerous studies. Cedric Ng and his coworkers revealed
differential methylation in DNA patterns in STHdhQ111 cells compared to WTQ7 cells
of mice by using condensed representation bisulfite sequencing to check DNA methyla-
tion [77]. Transgenic mice had decreased levels of 5-hydroxymethylcytosine in the striatum
and brain compared to controls [159]. One study claimed that the hairy enhancer of split-4
(HES4) gene promoter has a major site-specific DNA methylation modification in HD
patients [160].

In the putamen of HD patients and the striatum of R6/1 and R6/2 mice, 5-methylcytidine-
5′-monophosphate and 5-hydroxymethylcytosine contents were detected in the 5′ un-
translated region (5′UTR) region of the adenosine receptor gene-A2A (ADORA2A). The
pathological drop in adenosine A2a receptor expression levels seen in HD is linked to the
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abnormal methylation patterns of the adenosine receptor gene A2a [161]. Growth arrest
and DNA-damage-45a (Gadd45a) expression were shown to be lower in the striatum of
animals and muscle of transgenic mice, while growth arrest and the expression of DNA-
damage-45g, a member of a group of genes whose transcript levels are increased following
stressful growth arrest conditions, were found to be elevated in HD STHdhQ111 cells.
Finally, one more investigation revealed that ring finger protein 4, another gene associated
with DNA demethylation, was expressed differently in HD mice [162].

One study also suggested that altered DNA methylation profiles of CLDN16, DDC,
and NXT2 also play a role in the progression of the disease [163]. Twelve genes—FBXL5,
S100P, PRDX1, COPS7B, SP1, SEC24C, PDIA6, USP5, GRAP, POP5, WRB, and PCSK7—were
also found to be differently methylated in HD patients’ blood. Sox2, Pax6, and Nes genes
were found to have increased methylation levels, which tends to reduce their expression
and result in impaired neurogenesis [73,164].

5.4. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease. Motor neurons
in the motor cortex, brain stem, and spinal cord degenerate in this condition. Oxidative
stress, glutamate excitotoxicity, impaired axonal transport, neurotrophic deprivation, neu-
roinflammation, apoptosis, altered protein turnover, and mitochondrial dysfunction are the
mechanisms involved in the pathogenesis of ALS. Changes in the immune system, more
physical activity, exposure to toxins, and dietary factors can also lead to the progression
of this disease [165]. Alteration of DNA methylation sequences also plays a role in ALS.
Elevated levels of 5-methylcytosine participate in disease pathology. This is due to the
increased activity of DNMTs [166].

Increased levels of 5-hydroxymethylcytocise lead to aging and a rise in oxidative
stress [167]. Methylation changes influence immune-related genes, i.e., TREM2, chemokine
(C-C motif) receptor1/RANTES receptor (CCR1), SLC11A1, the transmembrane receptor
C-type lectin domain family 4 member A isoform 1 (CLEC4A), and the IgE receptor
(FCER1G). All these genes are elevated in ALS and cause an increase in the number of
immune cells [168,169].

STAT5A and C/EBPB are transcription factors that activate other genes such as inter-
leukin 6, which are responsible for the pathogenesis of ALS and neurodegeneration [170].
Changes in gene expression of Slit-Robo Rho GTPase activating protein 1 (SRGAP1),
Crumbs homolog 1 (CRB1), MSX2, MLC1, CTNND2, AXL, RUNX3, NNAT, and NRN1
cause neurodegeneration. Crumbs homolog 1 was found to be hypomethylated and respon-
sible for intellectual disability and neurodegeneration in ALS patients [171–173]. Scientists
also reported a modest overlap of four concordant epigeneses; Purkinje cell protein 4
(PCP4), catenin (CTNNAL1), fibroblast growth factor 18 (FGF18), and flavin-containing
monooxygenase 1 (FMO1) [164]. Mutations in SOD1, FUS, TARDBP, and C9orf72 cause
oxidative stress in ALS [173].

Mitochondria are the powerhouses of the cell. Alterations in mitochondria can also be
related to ALS. Mito-epigenetics assesses the DNA methylation and DNA hydroxymethy-
lation levels in mitochondria. One study also proved the role of mitochondria in ALS by
demonstrating that mitochondrial DNA methylation patterns are altered in the skeletal
muscles and spinal cord of ALS patients [173]. D-loop hypomethylation in SOD1 carriers
could be related to a rise in mtDNA methylation, which gives rise to an increase in mtDNA
methylation that causes an increase in oxidative stress. SODI is an antioxidant enzyme. A
mutation in this enzyme causes ALS disease.

6. Targeting DNA Methylation in Management of AD and Other Neurodegenerative
Diseases

Identifying DNA methylation in peripheral blood and brain samples could be a
promising biomarker for diagnosing AD. In this regard, the hypermethylated APP gene
appears as a promising biomarker for AD prognosis. Based upon these observations,
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several researchers have carried out some preliminary studies which support the assertion
that targeting DNMT could be beneficial in halting amyloid pathology and other neurode-
generative diseases. Some of the corresponding studies are presented in Table 3 and are
elaborated herewith.

Table 3. Recent advances in the management of AD and other neurogenerative diseases by targeting
DNA methylation.

Neurodegenerative
Disease Drug Class of Drug Inference Reference

AD

Epigallocatechin gallate,
epigallocatechin 3-gallate,

tea catechin, tea vigo,
catechin deriv.,

DNMT inhibitors
Improve memory, prevent

cell death in Aβ-treated
neurons, Aβ aggregation.

[174]

AD Vitamin B6, folate, Folacin;
Pteroylglutamic acid SAMe methyl donors Attenuate homocystine level [174]

PD 5-Aza-2′-Deoxycytidine DNMTs inhibitor

Upregulate tyrosine
hydroxylase, dopamine

production, and
alpha-synuclein expression

[175]

HD decitabine and FdCyd DNMTs inhibitors Restore expression of Bndf [176]

ALS RG108 DNMTs inhibitors
Block DNA methylation

accumulation in
motor neurons

[177]

Epigallocatechin gallate, epigallocatechin 3-gallate, tea catechin, and catechin deriva-
tives are example DNMTs inhibitors that have proven their role in the treatment of AD.
Epigallocatechin-3-gallate (EGCG) prevents misfolded proteins from undergoing fibril-
lation and protects from cell death in Aβ-treated neurons. Etanercept also helps to treat
AD by modulating the immune system. Neurodegeneration medications include 5-aza-2′-
deoxycytidine (decitabine) and 5-azacytidine (azacitidine), as well as the small molecules
hydralazine and procainamide [174].

Wang et al., 2013, tested 5-aza-2′-deoxycytidine (5-aza-dC), a DNMT inhibitor, in
the treatment of Parkinson’s disease. The scientist reported that 5-aza-dC induced CpG
demethylation in the promoter and upregulated transcriptional levels of the α-synuclein
gene. 5-aza-dC has been demonstrated to increase the expression of tyrosine hydroxylase
dopamine production and alpha-synuclein expression. [175]. In general, if levodopa
is shown to work via an epigenetic pathway, existing treatments should be reassessed
to elucidate fresh epigenetic characteristics and develop innovative and more targeted
drugs [178]. Vitamin B, folic acid, and SAMe are the main methylation storage compounds
submitted to clinical trials for the treatment of neurodegenerative diseases [174]. Folate
and vitamin B6 are also prescribed by a doctor to treat elevated levels of homocysteine,
which is a known risk factor for AD [174].

Pan et al., 2016, proved that decitabine and FdCyd, DNMT inhibitors, can attenuate
neurotoxicity in HD patients. DNMT inhibition leads to the restoration of the expression of
Bndf and can be used as a therapeutic target for treatment [176].

5-aza-cytidine (5-azaC), 5-aza-2-deoxycytidine (5-azadC, decitabine), zebularine, and
RG108 are drugs that inhibit DNA methylation and can be used in the improvement of ALS.
RG108 blocks the methylation in motor neurons and causes improvement in disease [177].

7. Conclusions

This review summarizes those epigenetic modifications that are responsible for many
genes’ functions in the body. Studies have investigated the relationship between DNA
methylation of genes and their level in the pathology of neurodegenerative diseases.
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DNA methylation influences the pathophysiology of age-related disease, aging, and de-
mentia [179,180], Modifications in chromatin organization, transcriptional changes, and
a variety of neurological illnesses and diseases are all linked to abnormal methylation
changes [181]. In AD, the DNA methylation of genes such as amyloid precursor protein,
PSEN1, MAPT, apolipoprotein E, presenilin-1, beta-secretase 1 precursor, or apolipopro-
tein E, Sorbin SH3 domain containing 3 (Sorbs3) and BDNF was found to be altered in
three parts of the brain. Based on the above-mentioned points, it may be proposed the
identification of DNA methylation in peripheral blood and brain samples could provide
valuable insights for AD diagnosis. Furthermore, designing suitable DNA methylation
promotors or inhibitors could provide a novel target for the management of AD and other
neurodegenerative diseases.
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