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Abstract
In this study, we investigated the role of intercellular adhesion molecule-2 (ICAM2) in the

testis. ICAM2 is a cell adhesion protein having important roles in cell migration, especially

during inflammation when leukocytes cross the endothelium. Herein, we showed ICAM2 to

be expressed by germ and Sertoli cells in the rat testis. When a monospecific antibody was

used for immunolocalization experiments, ICAM2 was found to surround the heads of

elongating/elongated spermatids in all stages of the seminiferous epithelial cycle. To

determine whether ICAM2 is a constituent of apical ectoplasmic specialization (ES),

co-immunoprecipitation and dual immunofluorescence staining were performed.

Interestingly, ICAM2 was found to associate with b1-integrin, nectin-3, afadin, Src,

proline-rich tyrosine kinase 2, annexin II, and actin. Following CdCl2 treatment, ICAM2 was

found to be upregulated during restructuring of the seminiferous epithelium, with round

spermatids becoming increasingly immunoreactive for ICAM2 by 6–16 h. Interestingly, there

was a loss in the binding of ICAM2 to actin during CdCl2-induced germ cell loss, suggesting

that a loss of ICAM2–actin interactions might have facilitated junction restructuring. Taken

collectively, these results illustrate that ICAM2 plays an important role in apical ES dynamics

during spermatogenesis.
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Introduction
Spermatogenesis is a complex process that culminates in

the production and release of step 19 spermatids in the

rat, and it involves germ cell development, germ cell

adhesion, and germ cell migration (de Kretser & Kerr

1988, O’Donnell et al. 2006, 2011). Previous studies from

this and other laboratories have described many

proteins and signaling cascades that are critical for

many aspects of spermatogenesis (Vigodner 2011, Walker

2011, Yeh et al. 2011, Cheng & Mruk 2012). For instance,

Sertoli–germ cell adhesion is known to be facilitated by
several members of the cadherin superfamily, including

both classical and desmosomal cadherins (Goossens &

van Roy 2005, Lie et al. 2011). Intercellular adhesion

molecules (ICAMs) comprise another superfamily of

adhesion and signaling proteins expressed by different

cell types (i.e. endothelial and epithelial cells, platelets,

lymphocytes, and monocytes) that are known to mediate

homo- and heterophilic interactions. Of these, ICAM2 is

a well-studied protein possessing an extracellular

domain, a transmembrane domain, and a cytoplasmic
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domain (Staunton et al. 1989). Initially described as a

receptor for lymphocyte function-associated antigen-1

(LFA1, a b2 integrin), ICAM2 is known to be critical for

cell adhesion and cell movement. Indeed, its loss

disrupted leukocyte transmigration in vitro and in vivo

(Gerwin et al. 1999, Huang et al. 2006, Porter & Hall

2009). Other studies have shown ICAM2 to associate

with the actin cytoskeleton by binding various proteins

such as a-actinin (Heiska et al. 1996), ezrin (Helander

et al. 1996), radixin (Hamada et al. 2001), and moesin

(Yonemura et al. 1998). Interestingly, ICAM2 clustering

was found to trigger tyrosine phosphorylation of ezrin,

thereby recruiting phosphoinositide 3-kinase (PI3-K) to

the plasma membrane and activating the PI3-K/AKT

pathway (Perez et al. 2002), which is known to regulate

cell proliferation and cell survival (Datta et al. 1999,

Foukas et al. 2010). ICAM2 loss was also found to

increase apoptosis in endothelial cells cultured in the

absence of serum or in the presence of Fas antibody or

staurosporine (Huang et al. 2005). Taken collectively,

these results illustrate that ICAM2 is a multifunctional

protein. Presently, it is not entirely clear whether ICAM2

plays a role in spermatogenesis. A previous study using

Sertoli cells isolated from mouse testes has reported

ICAM2 to be undetectable under basal conditions and

uninducible by cytokines (i.e. interleukin-1, tumor

necrosis factor a, and interferon g) or lipopolysaccharide

when assessed by flow cytometry (Riccioli et al. 1995).

Also, Icam2 expression was undetectable in 2- and

10-week mouse testes when examined by RT-PCR

(Wakayama et al. 2009). Herein, we re-examine the

presence of ICAM2 in the rat testis, and we describe

three key findings. First, we report that Icam2 is

expressed by germ and Sertoli cells, localizing to contact

sites between elongating/elongated spermatids and Ser-

toli cells (i.e. the apical ectoplasmic specialization (ES)).

The apical ES is a testis-specific anchoring junction

whose function is constituted by several proteins, many

of which are normally found within the focal contact

such as a6b1 integrin, phosphorylated focal adhesion

kinase (FAK), and vinculin (Grove et al. 1990, Palombi

et al. 1992, Siu et al. 2003). Secondly, administration of

CdCl2, an environmental toxicant, was found to disrupt

apical ES-mediated adhesion and increase the steady-

state level of ICAM2 in adult rats. Finally, ICAM2 was

shown to bind actin in the control testis, an association

that was abolished following CdCl2 treatment. Taken

collectively, these results illustrate that ICAM2 plays an

important role at the apical ES in the seminiferous

epithelium of the rat testis.
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Materials and methods

Animals

Male Sprague Dawley rats (adults at 300–325 g b.w.; pups

at 10–35 days of age) were purchased from Charles River

Laboratories (Kingston, NY, USA). Guidelines issued by the

Institutional Animal Care and Use Committee of The

Rockefeller University were strictly followed throughout

this study (protocol numbers 09-016 and 12-506).

Treatment of rats with CdCl2

CdCl2 was used to induce the sloughing of germ cells from

the seminiferous epithelium (Setchell & Waites 1970,

Wong et al. 2004, Siu et al. 2009b, Elkin et al. 2010). In

brief, rats (300–325 g b.w.; nZ3–6 animals per time point)

received a single dose of CdCl2 (3 mg/kg b.w., prepared in

0.89% NaCl (w/v)) by i.p. injection. Control rats (nZ3–6)

were left untreated (Grima & Cheng 2000, Wong et al.

2004). Upon completion of this experiment, CdCl2-

treated animals were treated as biohazard waste and

disposed of as directed by The Rockefeller University.

The use of CdCl2 was covered by both protocol numbers

listed above.
Isolation and culture of testicular cells

Seminiferous tubules were isolated from adult rat testes

by an enzymatic approach using 0.05% collagenase (w/v)

in DMEM/F-12 (Sigma–Aldrich; Zwain & Cheng 1994).

Seminiferous tubules were pelleted at 700 g, sonicated

in lysis buffer, cleared by centrifugation, and stored at

K80 8C until used. Sertoli cells were isolated from testes

of 20-day-old rats (Cheng et al. 1986, Mruk et al. 2003)

and cultured in DMEM/F-12 containing 10 mg/ml

insulin, 5 mg/ml human transferrin, 2.5 ng/ml epidermal

growth factor, and 5 mg/ml bacitracin at high density

(0.5!106 cells/cm2) on Matrigel (BD Biosciences, San Jose,

CA, USA)-coated 12-well plates. Sertoli cells were then

incubated at 35 8C in a humidified atmosphere of

95% (v/v) air and 5% CO2 (v/v). Two days after being

isolated, Sertoli cells were treated with a hypotonic buffer

(20 mM Tris, pH 7.4, at 22 8C) for 2.5 min to lyse residual

germ cells, yielding Sertoli cells with a purity of w98%

(Galdieri et al. 1981). Sertoli cells were then cultured for an

additional 2 days and subsequently terminated for the

extraction of RNA or the preparation of cell lysates. Sertoli

cell-conditioned medium (SCCM) was also collected and

stored at K20 8C until used (Cheng & Bardin 1987, Mruk

et al. 1998). For Sertoli–germ cell cocultures, Sertoli cells
Published by Bioscientifica Ltd.
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were seeded at low density (0.05!106 cells/cm2) on

Matrigel-coated glass coverslips or 100 mm dishes and

cultured as described above. Four days after plating Sertoli

cells, germ cells were isolated from 90-day-old rat testes

by a mechanical procedure using sequential filtrations

through nylon filters of decreasing pore size (Aravindan

et al. 1996) and added onto the Sertoli cell epithelium

at a Sertoli:germ cell ratio of w1:3. Cocultures were

maintained for up to 2 days in order to facilitate the

assembly of stable Sertoli–germ cell junctions in DMEM/

F-12 supplemented with 6 mM sodium lactate, 2 mM

sodium pyruvate, and the aforementioned factors. There-

after, cocultures were processed for immunoblotting or

immunofluorescence staining. The first time point (i.e. 0 h)

was obtained by harvesting Sertoli cells in lysis buffer

(10 mM Tris, 0.15 M NaCl, 1% NP-40 (v/v), and 10%

glycerol (v/v), pH 7.4, at 22 8C containing protease and

phosphatase inhibitor cocktails at a 1:100 dilution; Sigma–

Aldrich) and immediately combining Sertoli cells with

freshly isolated germ cells so that the ratio of Sertoli:germ

cells was w1:3. The control consisted of culturing Sertoli

cells alone without the addition of germ cells.
Table 1 Antibodies used in this report

Antibody Host species Vendor

ICAM2 Rabbit Santa Cruz Biotechnology

Goat Santa Cruz Biotechnology
Actin Goat Santa Cruz Biotechnology
Testin Rabbit Cheng Lab (Cheng et al. 1989
Occludin Rabbit Invitrogen
N-Cadherin Rabbit Santa Cruz Biotechnology
Nectin-3 Rabbit Santa Cruz Biotechnology

Goat Santa Cruz Biotechnology
Afadin Rabbit Sigma–Aldrich
b1-Integrin Rabbit Santa Cruz Biotechnology
Laminin g3 Rabbit Cheng Lab (Yan & Cheng 200
Src Mouse Santa Cruz Biotechnology
FAK Rabbit Millipore
Pyk2 Rabbit Santa Cruz Biotechnology
Annexin II Rabbit Santa Cruz Biotechnology
a-Tubulin Mouse Santa Cruz Biotechnology
ICAM1 Rabbit Novus Biologicals
Claudin-11 Rabbit Invitrogen
JAM-A Rabbit Invitrogen
CAR Rabbit Santa Cruz Biotechnology
b-Catenin Rabbit Invitrogen
a6-Integrin Mouse Santa Cruz Biotechnology
Desmoglein-2 Rabbit Santa Cruz Biotechnology
Desmocollin-3 Rabbit Santa Cruz Biotechnology
Connexin 43 Rabbit Cell Signaling Technology
p-FAK-Y397 Rabbit Invitrogen
p-FAK-Y576 Rabbit Millipore
p-Src-Y419 Mouse Millipore
p-Src-Y530 Rabbit Abcam

IB, immunoblotting; IF, immunofluorescence; IHC, immunohistochemistry; IP, im
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RT-PCR

Total RNA was extracted with TRIzol reagent (Invitrogen)

by following the manufacturer’s instructions. RT-PCR was

performed as described earlier (Xiao et al. 2011). The

primer pairs (Gene Link, Hawthorne, NY, USA) used for

the amplification of Icam2 (GenBank accession

number NM_001007725) and S16 (GenBank accession

number X17665) were as follows: 5 0-TTACTTTGCCATTT-

CACTTGTTCG-3 0 (Icam2 sense, nucleotides 665–688),

5 0-CCATCTGGTTGTCTTGCCTTATTT-30 (Icam2 antisense,

nucleotides 1047–1070), 5 0-TCCGCTGCAGTCCGTT-

CAAGTCTT-3 0 (S16 sense, nucleotides 67–90), and

50-GCCAAACTTCTTGGATTCGCAGCG-30 (S16 antisense,

nucleotides 428–451). PCR was conducted with an initial

denaturation at 95 8C for 2 min, followed by 30 cycles with

the following parameters: denaturation at 95 8C for 1 min,

annealing at 55.9 8C for 1 min, and extension at 72 8C for

1 min. A final extension step at 72 8C for 5 min was also

incorporated into PCR cycling conditions. The authen-

ticity of the Icam2 PCR product was verified by Sanger

DNA sequencing (GENEWIZ, South Plainfield, NJ, USA).
Catalog number Application(s)/dilution(s)

sc-7933 IB (1:200), IF (1:100),
IHC (1:100), IP (2 mg)

sc-31049 IF (1:100)
sc-1616 IB (1:200)

) IB (1:200)
71-1500 IB (1:250)
sc-7939 IB (1:200)
sc-28637 IB (1:200)
sc-14806 IF (1:50)
A0349 IB (1:500)
sc-8978 IB (1:300), IF (1:100)

6) IB (1:100)
sc-8056 IB (1:200)
06-543 IB (1:1000)
sc-9019 IB (1:200)
sc-9061 IB (1:200)
sc-5286 IB (1:200)
NB100-81977 IB (1:500)
36-4500 IB (1:250)
36-1700 IB (1:300)
sc-15405 IB (1:200)
71-2700 IB (1:250)
sc-59970 IB (1:300)
sc-20115 IB (1:200)
sc-48751 IB (1:200)
3512 IB (1:200)
44-625G IB (1:1000)
07-157 IB (1:1000)
05-677 IB (1:1000)
ab4817 IB (1:1000)

munoprecipitation.

Published by Bioscientifica Ltd.

http://www.joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-12-0434


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Research X XIAO and others ICAM2 in the testis 216 :1 76
Co-immunoprecipitation and immunoblotting

Testis, seminiferous tubule, and Sertoli and germ cell

lysates were prepared in lysis buffer. For each reaction,

w800 mg protein was incubated with 2 mg anti-ICAM2 IgG

(Table 1), and co-immunoprecipitation (co-IP) was per-

formed as described previously (Xiao et al. 2011). There-

after, immunoprecipitated proteins were separated by

SDS–PAGE and transferred onto a nitrocellulose mem-

brane for immunoblotting (Table 1). Proteins were

visualized by ECL (Mruk & Cheng 2011a), and images

were captured with a Fujifilm LAS-4000 mini imaging

system as earlier described (Xiao et al. 2011). Saturated

images were not included in the final statistical analysis.

Immunohistochemistry and immunofluorescence staining

Seven micrometer-thick frozen cross sections were ob-

tained from adult rat testes, mounted onto poly-L-lysine-

coated microscope slides (Polysciences, Warrington,

PA, USA), and fixed in either Bouin’s fixative or 4% para-

formaldehyde (w/v) in PBS (10 mM NaH2PO4, 0.15 M

NaCl, pH 7.4, at 22 8C) as described previously (Xiao et al.

2011). Immunohistochemistry was performed on frozen

sections using the SuperPicTure Polymer Detection kit

(Invitrogen) and by following the manufacturer’s instruc-

tions (Table 1). Sections were permeabilized with 0.1%

Triton-X100 (v/v), blocked with 10% normal donkey

serum (v/v) in PBS, and incubated with primary antibody

(Table 1). The color reaction was developed using

3-amino-9-ethylcarbazole, which yielded a brownish

immunoreactive signal. Immunofluorescence staining

was performed on frozen sections as described previously

(Xiao et al. 2011). An Alexa Fluor 555 secondary antibody

(donkey anti-rabbit IgG; Invitrogen) was used to detect

ICAM2, and an Alexa Fluor 488 secondary antibody

(donkey anti-goat IgG; Invitrogen) was used to detect

b1-integrin and nectin-3. All sections processed for

immunofluorescence staining were mounted with

ProLong Gold antifade reagent containing 4 0,6-diami-

dino-2-phenylindole (DAPI, Invitrogen). Images were

captured with an Olympus BX61 microscope and Micro-

Suite Five software (V1224; Olympus America, Melville,

NY, USA). Images were analyzed with Photoshop CS3

Extended software (Adobe Systems).

General methods

Protein concentration was determined using a DC protein

assay kit (Bio-Rad Laboratories) and microplate reader

(model 680, Bio-Rad Laboratories) with BSA as a standard.
http://www.joe.endocrinology-journals.org
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F-actin was stained using frozen testis cross sections as

described previously (Sarkar et al. 2008, Kopera et al. 2009,

Mruk & Lau 2009).
Statistical analyses

All experiments were conducted in triplicate, and

each experiment was repeated at least three times.

Statistical analyses were performed with GB-STAT software

(V7.0, Dynamic Microsystems, Silver Spring, MD, USA).

P!0.05 was taken as statistically significant.
Results

Level of ICAM2 during testis development and its

expression by germ and Sertoli cells

To set the stage for this study, the steady-state level of

ICAM2 was examined in developing testes by immuno-

blotting (Fig. 1A). When data points were individually

compared against the level of ICAM2 in the 10-day

postnatal testis, significant decreases were noted from

12 to 90 days of age (Fig. 1B). Thereafter, Icam2 expression

in the adult rat testis (90 days of age) and germ and Sertoli

cells was examined by RT-PCR (Fig. 1C) and immuno-

blotting (Fig. 1D and Table 1). By both methods, ICAM2

was present in the adult testis, germ (isolated from 90-day-

old testes and harvested immediately), and Sertoli

(isolated from 20-day-old testes and cultured for 4 days)

cells. The purity of germ cells was assessed by immuno-

blotting to determine whether these cells were immuno-

reactive for testin, a Sertoli and Leydig cell protein (Cheng

et al. 1989, Zong et al. 1992). Testin was present in testis

and Sertoli cell lysates, as well as in SCCM, but not in germ

cell lysate as previously reported (Fig. 1D; Cheng et al.

1989, Zong et al. 1992). This illustrated that germ cell

isolations were of negligible Sertoli and Leydig cell

contamination. Based on these results, Icam2 expression

was higher in Sertoli vs germ cells (Fig. 1E). We emphasize

that cells were isolated from testes at two different

developmental stages. The reason for this is that it is

difficult to isolate highly pure Sertoli cells (relative purity

w85%) from the adult rat testis (Li et al. 2001, Anway et al.

2003, Lui et al. 2003), and it is equally difficult to isolate

highly pure germ cells from 20-day-old testes. Never-

theless, Sertoli cells isolated from 20-day-old testes were

included in this analysis because they had ceased to divide

and were differentiated (Orth 1982). They also mimicked

Sertoli cells isolated from adult rat testes both morpho-

logically and functionally (Li et al. 2001, Lui et al. 2003).
Published by Bioscientifica Ltd.
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We also emphasize that freshly isolated germ cells were

used in this analysis. This is because germ cell viability

cannot be extended in culture. Next, the localization of

ICAM2 was investigated in the adult testis. ICAM2
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Figure 1

Steady-state ICAM2 level decreases in the developing rat testis and its

presence in germ and Sertoli cells. Lysates obtained from 10-, 12-, 15-, 20-,

25-, 35-, and 90-day-old testes were used for immunoblotting experiments

(A, w50 mg protein/lane). Actin was used as an internal control. Histogram

(B) summarizing immunoblotting results. Each ICAM2 data point was

normalized against its corresponding actin data point and then against

‘postnatal day 10’ which was arbitrarily set at 1. Each bar represents

meanGS.D. of three independent experiments. **P!0.01 (Student’s t-test).

RT-PCR (C) and immunoblotting (D, w50 mg protein/lane) experiments

showing ICAM2 in the 90-day-old testis (T), germ (GC), and Sertoli cells (SC).

S16 and actin were used as internal controls. Germ cell purity was assessed

using testin as a marker for an immunoblotting experiment (D). SCCM was

used as a positive control. Histogram (E) summarizing immunoblotting

results. Each ICAM2 data point was normalized against its corresponding

actin data point and then against ‘testis’, whichwas arbitrarily set at 1. Each
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localized largely to sites adjacent to elongating spermatids

(Fig. 1F). In early and late stages of the seminiferous

epithelial cycle, ICAM2 staining was diffuse, surrounding

both concave and convex sides of spermatid heads.
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Immunofluorescence staining was performed on 7 mm-thick frozen testis

cross sections with anti-ICAM2 IgG (F, Table 1). Boxed areas (F, a, b, c, d, e,

and f) correspond to magnified images that are shown to the right of

each low magnification image. Dashed lines (F, a, b, c, d, e, and f) mark

the periphery of seminiferous tubules. Stages of the seminiferous

epithelial cycle are denoted as Roman numerals (F). DAPI was used to

visualize nuclei (F, a, b, c, d, e, and f). Bar (F, a; also applies to b, c, d, e,

and f)Z40 mm; bar (F, first upper left inset; also applies to all other

insets)Z10 mm. An immunoblotting experiment showing the monospeci-

ficity of the ICAM2 antibody in seminiferous tubule (ST, w100 mg protein)

lysate (F, far-right panel). Full colour version of this figure available via

http://dx.doi.org/10.1530/JOE-12-0434.

Published by Bioscientifica Ltd.

http://dx.doi.org/10.1530/JOE-12-0434
http://www.joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-12-0434


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Research X XIAO and others ICAM2 in the testis 216 :1 78
At some stages such as at stages XI and XII, ICAM2 was far

removed from the proximity of the spermatid head,

illustrating that ICAM2 was present within Sertoli cells.

Before spermiation, however, ICAM2 staining was very

discrete, concentrating largely to the convex side of

spermatid heads (Fig. 1F). A weak ICAM2 immunoreactive
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Figure 2

ICAM2 is a constituent protein of the apical ES. Sertoli–germ cell

cocultures were terminated at different time points, and lysates were used

for immunoblotting experiments (A, upper panel). The control consisted

of culturing Sertoli cells alone without the addition of germ cells

(A, bottom of top panel). Actin was used as an internal control. Histogram

(A, bottom panel) summarizing immunoblotting results from Sertoli–germ

cell cocultures. Each ICAM2 data point was normalized against its

corresponding actin data point and then against ‘0 h’, which was arbitrarily

set at 1. Each bar represents meanGS.D. of three independent experiments.

**P!0.01 (Student’s t-test). Immunofluorescence staining was performed

using Sertoli–germ cell cocultures (B, a, b, and c). Schematic illustration

(B, d) summarizing results. Bar (B, a; also applies to b and c)Z10 mm. SC,

Sertoli cell; Sp, spermatid. Co-IP and immunoblotting (IB)

experiments showing structural interactions with ICAM2 when testis
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signal was also found to associate with round spermatids

in some stages, but no immunoreactive signal was found

at the blood–testis barrier (BTB) whose function is

constituted by tight junctions (TJs), basal ESs, desmo-

somes, and gap junctions (GJs; Mruk & Cheng 2010,

Cheng & Mruk 2012). Finally, the monospecificity of
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used for immunoblotting only. For the negative control (Kve Ctrl), rabbit

IgG was used in place of anti-ICAM2 IgG. C, positive co-IP result;

K, negative co-IP result. IgG heavy (IgGH, 50 kDa) and light (IgGL, 23 kDa)

chains served as indicators of equal protein processing. The ability of

anti-ICAM2 IgG to pull down interacting proteins was confirmed using

anti-ICAM2 IgG for both co-IP and immunoblotting. Dual immunofluores-

cence staining was performed on 7 mm-thick frozen testis cross sections

with anti-ICAM2 and anti-b1-integrin IgGs (D, Table 1). DAPI was used to

visualize nuclei (D). Bar (D, far-left panel; also applies to middle and

far-right panels)Z20 mm. Full colour version of this figure available via

http://dx.doi.org/10.1530/JOE-12-0434.
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the ICAM2 antibody was assessed by immunoblotting

(Fig. 1F, right). A predominant 55 kDa protein was

observed in seminiferous tubule lysate by SDS–PAGE,

and these results are in agreement with the previously

published reports on human and murine ICAM2

(Nortamo et al. 1991, Xu et al. 1996).
ICAM2 is a constituent protein of the apical ES,

co-immunoprecipitating and co-localizing with

b1-integrin, nectin-3, and F-actin

Sertoli–germ cell cocultures were subsequently used for

immunoblotting (Fig. 2A) and immunofluorescence

staining (Fig. 2B). When compared with Sertoli cells

cultured alone, the steady-state level of ICAM2 increased

4–24 h after the addition of germ cells to Sertoli cells

(Fig. 2A), and its localization concentrated to the convex

side of spermatid heads (Fig. 2B). These data, together

with Fig. 1, suggested that ICAM2 may be a constituent

protein of the apical ES, which is the only anchoring

device present between elongating/elongated spermatids

and Sertoli cells (Russell 1977, Mruk & Cheng 2004, Vogl

et al. 2008). To investigate this, co-IP experiments were

performed to determine whether ICAM2 interacts

structurally with apical ES proteins (Fig. 2C). ICAM2

was shown to associate with b1-integrin, nectin-3, and
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Figure 3

ICAM2 co-localizes with nectin-3 and F-actin in the seminiferous epithelium

of the rat testis. Dual immunofluorescence staining was performed on

7 mm-thick frozen testis cross sections with anti-ICAM2 and anti-nectin-3

IgGs (A) or with anti-ICAM2 IgG and Oregon Green 488 phalloidin (B).

Orange arrowheads point to areas of co-localization (A and B).
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afadin but not with laminin g3 (apical ES proteins). In

addition, ICAM2 did not associate with occludin (a TJ

protein) and N-cadherin (a basal ES protein), and these

results are in agreement with the lack of ICAM2

immunoreactivity at the BTB (Fig. 1). These experiments

also showed ICAM2 to associate with Src and proline-

rich tyrosine kinase 2 (Pyk2), nonreceptor tyrosine

kinases (Fig. 2C). Moreover, previous studies have

shown ICAM2 to associate with several actin-binding

proteins (Heiska et al. 1996, 1998, Yonemura et al. 1998,

Yoon et al. 2008). Here, we showed ICAM2 to interact

with annexin II and actin (Fig. 2C). Annexin II is a Ca2C-

dependent phospholipid binding protein with functions

in membrane stabilization, junction dynamics, and

cytoskeletal organization (Gerke & Moss 2002). IgG

heavy and light chains served as indicators of equal

protein processing. The association of ICAM2 with

b1-integrin was confirmed by dual immunofluorescence

staining when these two proteins co-localized to the

convex side of spermatid heads during stage VII of the

seminiferous epithelial cycle (Fig. 2D).

To corroborate results shown in Figs 1 and 2, ICAM2

was also co-stained with either nectin-3 or F-actin (Fig. 3).

Nectin-3 is a Ca2C-independent immunoglobulin-

like molecule that facilitates apical ES-based adhesion.

It is expressed by elongating/elongated spermatids where
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Stages of the seminiferous epithelial cycle are denoted as Roman

numerals (A and B). DAPI was used to visualize nuclei (A and B). Bar

(A, upper left panel; also applies to all other panels)Z20 mm; bar

(B, upper left panel; also applies to all other panels)Z20 mm. Full colour

version of this figure available via http://dx.doi.org/10.1530/JOE-12-0434.
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Figure 4

ICAM2, Src, and annexin II increase during CdCl2-induced testis damage.

Immunoblotting experiments showing changes in the levels of several

proteins (A). Proteins whose levels increased following CdCl2 treatment are

labeled as bold. Actin was used as an internal control. Histograms (B)

summarizing immunoblotting results. Each data point was normalized

against its corresponding actin data point and then against ‘0 h’, which was

arbitrarily set at 1. Each bar represents meanGS.D. of nZ3–6 rats. *P!0.05;

**P!0.01 (Student’s t-test). ND, not detected
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it associates heterotypically with Sertoli cell nectin-2

(Ozaki-Kuroda et al. 2002). Interestingly, ICAM2

was shown to co-localize partially with nectin-3 in

spermatids (Fig. 3A). However, there were more areas

where co-localization between ICAM2 and nectin-3

was not evident, and this staining likely corresponded

to the presence of ICAM2 within Sertoli cells. ICAM2 also
http://www.joe.endocrinology-journals.org
DOI: 10.1530/JOE-12-0434
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co-localized partially with F-actin throughout the

seminiferous epithelial cycle, except at stages VII and

VIII when red (ICAM2) and green (F-actin) signals did not

merge into an orange sigal (Fig. 3B). DAPI was used to

assist in the staging of seminiferous tubules. Taken

collectively, these data demonstrate that ICAM2 is an

apical ES protein.
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ICAM2 is upregulated during CdCl2-induced germ cell loss

Previous studies have shown CdCl2 to induce germ cell

sloughing from the seminiferous epithelium, as well as

BTB disruption (Setchell & Waites 1970, Wong et al. 2004,

Siu et al. 2009b, Elkin et al. 2010). Moreover, there was

evidence of interstitial edema and hemorrhage, as well as

testicular weight loss, necrosis, atrophy, and calcification

(Chiquone 1964, Zielinska-Psuja et al. 1976, Selypes et al.

1992). Following i.p. injection of a single dose of CdCl2 to

adult rats, immunoblotting was used to examine the levels

of several proteins that are representative of TJ, ES,
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Figure 5

ICAM2 is upregulated in germ cells following CdCl2 treatment. Immuno-

histochemistry (a, b, c, d, e, f, g, and h) and immunofluorescence staining

(i, j, k, l, m, n, o, p, and q) were performed on 7 mm-thick frozen testis cross

sections obtained from control (Ctrl) and CdCl2-treated rats with anti-

ICAM2 IgG. Boxed areas (a, b, c, i, j, k, and l) correspond to magnified

images that are shown to the right of each lowmagnification image.White

arrowheads (f, g, and h) point to immunoreactive ICAM2 at the apical ES.
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desmosome, and GJ function (Fig. 4). Interestingly, the

levels of only three proteins increased within 6–16 h of

CdCl2 treatment, which coincided with germ cell slough-

ing from the seminiferous epithelium. These proteins

were ICAM2, annexin II, and Src with annexin II

exhibiting the highest fold changes. The levels of virtually

all proteins decreased by 48 h, including the levels of

ICAM2, annexin II, and Src (Fig. 4). In this regard, it is

worth noting that many of these proteins are expressed by

both Sertoli and germ cells. Thus, their downregulation at

48 h when testes were devoid of most germ cells may be
i)

j)

)

l)

)

(q)

(p)

(o)

(n)

VI–VII

VI–VII

VI

Dashed lines (i, j, k, l, and m) mark the periphery of seminiferous tubules.

Stages of the seminiferous epithelial cycle are denoted as Roman numerals

(a, b, c, i, j, and k). DAPIwas used to visualize nuclei (i, j, k, l,m, n, o, p, andq).

Bar (a, also applies to b, c, d, and e)Z70 mm; bar (f, also applies to g, h, n, o, p,

and q)Z10 mm;bar (i, also applies to j, k, l, andm)Z40 mm. Full colour version

of this figure available via http://dx.doi.org/10.1530/JOE-12-0434.
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the result of changes in cell-to-cell ratios within the

seminiferous epithelium.

Because ICAM2 was one of the few proteins to increase

following administration of CdCl2, its localization was

investigated in testes from treated and untreated rats. The

goal of this experiment was to determine whether there

were any changes in the localization of ICAM2 during

CdCl2-induced restructuring of the seminiferous epi-

thelium. In line with the results shown in Fig. 1, ICAM2

localized to elongating/elongated spermatids in the

untreated testis (Fig. 5). However, an increase in immuno-

reactive ICAM2 was noted by 6–16 h of CdCl2 treatment. It

is also worth noting that round spermatids became

increasingly immunoreactive for ICAM2 by 6–16 h of

CdCl2 treatment when compared with the untreated testis,

which may have contributed to the increase in ICAM2

detected by immunoblotting (Fig. 4). By 24–48 h, the

seminiferous epithelium was depleted of most germ cells,

and ICAM2 immunoreactivity was nearly lost (Fig. 5).
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Figure 6

CdCl2-induced testis restructuring disrupts ICAM2–actin interactions. For

co-IP experiments (A), w800 mg testis (T) lysate from CdCl2-untreated and

treated rats was incubated with anti-ICAM2 IgG, followed by immuno-

blotting (IB) with an actin antibody (Table 1). Actin was used as an internal

control. Histogram (B) summarizing co-IP and immunoblotting results. The

relative association of ICAM2 with actin at 0 h was arbitrarily set at 1. Each

bar represents meanGS.D. of three independent experiments. *P!0.01

(Student’s t-test). ND, not detected.
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CdCl2-induced restructuring of the seminiferous

epithelium results in the loss of ICAM2–actin

interactions

As shown in Fig. 3B, ICAM2 co-localized partially with

F-actin at the apical ES throughout the seminiferous

epithelial cycle, except at stages VII and VIII when red

(ICAM2) and green (F-actin) signals did not merge into an

orange signal. These results suggested that dissociation of

ICAM2 from actin may be critical for the restructuring of

cell junctions and for the subsequent release of spermato-

zoa at spermiation. As CdCl2 is known to trigger germ cell

sloughing from the seminiferous epithelium, we aimed to

assess ICAM2–actin interactions with this model as well.

Interestingly, there was a loss in the binding of ICAM2 to

actin by 16–48 h when anti-ICAM2 IgG was used for co-IP

(Fig. 6). These results are significant because the steady-

state level of ICAM2 increased following CdCl2 treatment

(Fig. 4), illustrating that the loss in protein–protein

interactions was not likely the result of changes in cell–

cell ratios.

Discussion

In this study, we describe three key findings. First, we

report that germ and Sertoli cells expressed Icam2 and

that ICAM2 localized to elongating/elongated spermatid

and Sertoli cell contact sites known as the apical ES, a

testis-specific cell junction (Fig. 7). Based on co-IP and

immunofluorescence results, ICAM2 was concluded not to

be a constituent protein of the BTB. Secondly, we report

that ICAM2 was upregulated following administration of

CdCl2 and that round spermatids became increasingly

immunoreactive for ICAM2 during restructuring of

the seminiferous epithelium. Finally, we report that

CdCl2-induced restructuring of the seminiferous epi-

thelium involved a loss of ICAM2–actin interactions.

Based on immunofluorescence results, this loss in

ICAM2–actin interactions may also facilitate spermiation

in the normal testis. Previous studies using other in vitro

and in vivo models have shown ICAM2, an integral

membrane protein, to play an important role in cell

adhesion and cell movement (Li et al. 1993, Woodfin et al.

2009). In the seminiferous epithelium, ICAM2 staining

surrounded the heads of elongating/elongated spermatids.

Before spermiation, however, ICAM2 staining became

very discrete, concentrating to the convex side of

spermatid heads at the site of the apical ES. While this

staining pattern may be related to the adhesion of germ

cells to Sertoli cells, it may also be related to the

restructuring of the apical ES, which occurs before
Published by Bioscientifica Ltd.
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Figure 7

Schematic illustration summarizing ICAM2 interactions at the apical ES in

the seminiferous epithelium of the rat testis. During spermatogenesis,

elongating/elongated spermatids (blue) remain attached to Sertoli cells

(green) via apical ESs. The apical ES is a tripartite adhesive structure

composed of many structural (e.g. b1-integrin, nectin-3), scaffolding

(e.g. afadin), and signaling (e.g. Src) proteins, supported by bundles of

F-actin and outlined by cisternae of endoplasmic reticulum. Based on co-IP

and/or dual immunofluorescence staining results (Figs 2, 3, and 6), we

concluded ICAM2 to be a constituent protein of the apical ES, associating

with b1-integrin, nectin-3, afadin, Src, Pyk2, annexin II, and actin.

Moreover, ICAM2 failed to co-localize with F-actin at stages VII and VIII of

the seminiferous epithelial cycle (Fig. 3), suggesting that disruption of

ICAM2–actin interactions may facilitate restructuring of the apical ES. For

the sake of simplicity, we depict within a single dimensional plane three

spermatids at different stages of development, although this does not

accurately represent the organization of the seminiferous epithelium

in vivo. Also, only proteins interacting with ICAM2 are shown in this

schematic illustration; other apical ES proteins are not shown. Full colour

version of this figure available via http://dx.doi.org/10.1530/JOE-12-0434.
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spermiation (Russell 1977, 1993, Russell & Peterson 1985).

These results were corroborated by dual immunofluores-

cence staining when ICAM2 was found to co-localize

partially with b1-integrin and nectin-3, as well as with

F-actin. In the testis, b1-integrin is present both at the

apical ES and at the BTB, whereas nectin-3 is present only

at the apical ES (Ozaki-Kuroda et al. 2002, Cheng et al.

2011). Furthermore, nectin-3 is expressed only by sperma-

tids (Ozaki-Kuroda et al. 2002, Takai & Nakanishi 2003).
http://www.joe.endocrinology-journals.org
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Taken together with results from co-IP experiments, which

showed ICAM2 to bind b1-integrin and nectin-3, ICAM2

appears to function in the adhesion of late-stage sperma-

tids to Sertoli cells, and its role as a cell adhesion protein is

in agreement with other studies.

In this study, ICAM2 was also found to bind annexin II.

Annexin II, a member of the annexin family of proteins,

is known to bind negatively charged phospholipids such

as phosphatidylinositol 4,5-bisphosphate found in cellular
Published by Bioscientifica Ltd.
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membranes in a Ca2C-dependent manner (Gerke & Moss

2002, Gerke et al. 2005). Annexin II has diverse roles in

different epithelial and endothelial cells, and it is known

to be present in Sertoli cells (Dreier et al. 1998). For

instance, it can function in membrane domain stabil-

ization, ion transport, endocytosis, cell proliferation,

signal transduction, junction dynamics, and cytoskeletal

organization (Gerke & Moss 2002, Gerke et al. 2005). In

each of these Ca2C-regulated processes, annexins are

believed to bring together or ‘bridge’ several cytoplasmic

proteins, thereby assembling multi-protein complexes

that are required for normal cell function. Thus, the

adhesive role of ICAM2 is further supported by its

interaction with annexin II. It is possible that annexin II

is helping to bridge ICAM2 to actin-binding proteins such

as ezrin in the control testis. It is also possible that Src is

phosphorylating proteins within this protein complex as

annexin II is known to be a substrate of v-Src (Haynes &

Moss 2009). This may result in clustering of ICAM2 and in

additional changes in protein–protein interactions,

thereby triggering signaling cascades that control cell

adhesion and cell movement in the testis.

Herein, we show that ICAM2 was upregulated and that

ICAM2 associated strongly with round spermatids

following administration of CdCl2, an environmental

toxicant known to induce germ cell sloughing from the

seminiferous epithelium (Setchell & Waites 1970,

Wong et al. 2004, Siu et al. 2009b, Elkin et al. 2010).

This in vivo model was used because environmental

toxicants can affect spermatogenesis and contribute to

subfertility/infertility (Siu et al. 2009a, Mruk & Cheng

2011b, Lagos-Cabre & Moreno 2012). Annexin II and

Src, which were shown to bind ICAM2, also increased

following administration of CdCl2. As annexin II is known

to link the cytoskeleton to the plasma membrane and to

be involved in membrane dynamics, its role may be to

facilitate the displacement of ICAM2 away from the cell

surface (i.e. endocytosis) and to contribute to junction

restructuring. It is also possible that these three proteins

increased because they assemble into a functional multi-

protein complex. Nevertheless, ICAM2 may prove to be an

excellent marker of testicular dysfunction in future studies

because any deviation from its normal expression and/or

localization pattern appears to disrupt cell–cell interactions.

Interestingly, ICAM2 did not co-localize with F-actin at

stages VI and VII of the seminiferous epithelial cycle,

suggesting that dissociation of ICAM2 from actin may be

critical for the restructuring of cell junctions and for the

subsequent release of spermatozoa at spermiation. These

results were corroborated when testis lysates were used
http://www.joe.endocrinology-journals.org
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from CdCl2-treated rats for co-IP experiments. This

mechanism of junction restructuring may also involve

protein endocytosis as ICAM2 would no longer be linked to

its scaffold. At this point, it is worth noting that ICAM2 is

not the only ICAM expressed by the testis. ICAM1 is also

expressed by this organ but its primary role is in BTB

dynamics (Xiao et al. 2012). Regardless, ICAM1 was also

found to localize to the apical ES, suggesting that it too may

be important in Sertoli–spermatid adhesion. While Icam2

null mice were found to be fertile (Gerwin et al. 1999), it is

possible that other proteins such as ICAM1 may have

compensated for its loss offunction or that ICAM2 is simply

dispensable for Sertoli–spermatid adhesion. It is also

possible that a loss of Icam2 may not have significantly

affected existing protein–protein interactions at the apical

ES so that germ cell adhesion and spermatogenesis

remained unaffected. Future studies will likely provide

further insight on the role of ICAM2 in the testis.
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