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Abstract
Blood vessels expand via sprouting angiogenesis, and this process involves numerous endothelial cell behaviors, such as 
collective migration, proliferation, cell–cell junction rearrangements, and anastomosis and lumen formation. Subsequently, 
blood vessels remodel to form a hierarchical network that circulates blood and delivers oxygen and nutrients to tissue. Dur-
ing this time, endothelial cells become quiescent and form a barrier between blood and tissues that regulates transport of 
liquids and solutes. Bone morphogenetic protein (BMP) signaling regulates both proangiogenic and homeostatic endothelial 
cell behaviors as blood vessels form and mature. Almost 30 years ago, human pedigrees linked BMP signaling to diseases 
associated with blood vessel hemorrhage and shunts, and recent work greatly expanded our knowledge of the players and 
the effects of vascular BMP signaling. Despite these gains, there remain paradoxes and questions, especially with respect 
to how and where the different and opposing BMP signaling outputs are regulated. This review examines endothelial cell 
BMP signaling in vitro and in vivo and discusses the paradox of BMP signals that both destabilize and stabilize endothelial 
cell behaviors.
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Abbreviations
BMP  Bone morphogenetic protein
VEGF  Vascular endothelial growth factor
TGFβ  Transforming growth factor β
HHT  Hereditary hemorrhagic telangiectasia
ALK  Activin-like kinase
ENG  Endoglin
AVM  Arteriovenous malformation
AV  Atrioventricular
EndoMT  Endothelial-to-mesenchymal transition
E10.5  Embryonic day 10.5
P5  Postnatal day 5

R-SMAD  Receptor-mediated SMAD
Co-SMAD  Common SMAD
i-SMAD  Inhibitory SMAD
PAH  Pulmonary arterial hypertension
MGP  Matrix Gla protein
BMPER  BMP endothelial cell precursor-derived 

regulator
HUVEC  Human umbilical vein endothelial cells

Introduction and historical links

Blood vessels form during embryonic development in 
response to signals that originate from developing tissues 
and organs, and many of these same pathways remain 
engaged as blood vessels remodel and transition to homeo-
stasis. Among these signaling pathways are some dedicated 
to vessel formation and maintenance, while other pathways 
are also utilized in multiple developmental programs. BMP 
(bone morphogenetic protein) is an example of a signal that 
is used iteratively throughout metazoan development. Our 
understanding of how BMP signaling affects vascular devel-
opment and function initially lagged behind that of signals 
more dedicated to blood vessel functions such as VEGFA, 
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as rigorous examination of BMP pathway function in vivo 
required the ability to manipulate signaling both spatially 
and temporally. An understanding of vascular BMP signal-
ing has proven particularly elusive, as numerous pathway 
components show complex and context-dependent vascular 
phenotypes when manipulated. For example, global genetic 
deletion of BMP/TGFβ pathway components in mice yielded 
complex phenotypes, suggesting an important role for the 
TGFβ superfamily (that includes BMP) in cardiovascular 
development, but early lethality and the co-occurrence of 
both cardiac and vascular defects made these phenotypes 
difficult to interpret [1]. These complex in vivo phenotypes 
in turn make interpretation of in vitro outputs with cultured 
endothelial cells challenging and have stymied the genera-
tion of unifying principles. However, clear links between 
human cardiovascular disease and BMP signaling com-
pel further understanding of vascular BMP signaling, and 
recently several concepts regarding BMP pathway function 
in the vasculature have emerged.

The BMP pathway is part of the larger transforming 
growth factor β (TGF β) pathway family, first identified as 
regulators of wing patterning in Drosophila via invertebrate 
Decapentaplegic (DPP) [2, 3]. BMP provides ventralizing 
cues that contribute to setting up the dorsal–ventral body 
axis prior to and during gastrulation, and loss of BMP sign-
aling at this stage dorsalizes embryos, preventing further 
development [4]. BMP also regulates aspects of bone differ-
entiation later in development, and differentiation of several 
cell types from stem cells [5, 6]. These non-vascular studies 
indicate that BMP signaling is used in diverse developmen-
tal processes. Additionally, BMP signaling often integrates 
with other signaling pathways, such as VEGFA, Wnt, FGF, 
and Notch, in complex patterns of pathway crosstalk.

Evidence that BMP signaling regulates vascular develop-
ment and function initially came from two lines of experi-
mental evidence. First, cell-based studies showed that 
endothelial cells migrate and proliferate in response to BMP 
signals [7]. These early studies were only possible once con-
ditions for the culture and propagation of endothelial cells 
in vitro were established by Gimbrone and colleagues [8]. 
Second, early analysis of human families where a vascu-
lar disease called Hereditary Hemorrhagic Telangiectasia 
(HHT) segregated showed clear linkage to the BMP pathway 
genes ALK1 (HHT2) and endoglin (ENG, HHT1) [9, 10]. 
This disease is characterized by several vascular defects, 
including hemorrhage, nose-bleeds, and arteriovenous 
shunts or malformations (AVMs). Further analysis of human 
genetic data linked another pathway component, SMAD4, 
to HHT [11], and numerous mouse genetic models of gene 
disruption recapitulate aspects of the human defects (see 
below), firmly linking BMP signaling to vascular function. 
Nevertheless, a unified model describing BMP function in 
blood vessels is lacking, and mounting evidence indicates 

that BMP signaling has versatile and often opposing out-
comes in the vasculature that depend on numerous variables 
both intrinsic and extrinsic to the pathway. For example, in 
some contexts, BMP signaling is proangiogenic and pro-
motes blood vessel sprouting, while in other contexts, BMP 
signaling is homeostatic, and promotes blood vessel quies-
cence. Although BMP signals affect several vascular cell 
types, the nexus of BMP signaling integration for proangio-
genic vs. homeostatic outputs are the endothelial cells that 
line all blood vessels and regulate vessel network expansion 
during development and barrier function in adults.

This review will describe the BMP pathway components 
most relevant to blood vessel development and function (for 
more comprehensive pathway reviews see [12–15]). Because 
the endothelial cell is the first and often primary cell type in 
the vascular response to BMP signaling inputs, this review 
will focus on BMP signaling effects on endothelial cells. 
The effects of TGFβ/BMP signaling on non-endothelial 
vascular cells such as smooth muscle cells are discussed 
in [16, 17]. Although canonical TGFβ signaling is impor-
tant for endothelial cell behaviors [18], here we focus on 
signaling initiated by BMP ligands and transduced by BMP 
receptor complexes, since much of the versatility in vascular 
responses results from the differential responses of endothe-
lial cells to BMP signaling inputs. Finally, BMP signaling 
activates both canonical pathways (described below) that 
result in nuclear translocation of phosphorylated effec-
tors called SMADs and changes in gene transcription, and 
non-canonical pathways that signal independent of SMAD 
effectors. In this review, we primarily focus on the effects 
of canonical BMP signaling, which are strongly associated 
with vascular phenotypes.

Chapter 1: BMP signaling in blood vessels—
the players

Overview

Canonical BMP signaling occurs via a core set of molecu-
lar events in all cell types (Fig. 1) (for in-depth reviews of 
vascular BMP and TGFβ signaling, see [1, 19–22]). Briefly, 
secreted BMP ligands form dimers that bind to heterote-
trameric receptor complexes in the cell membrane; these 
receptor complexes contain both Type I and Type II ser-
ine–threonine kinase BMP receptors. Upon ligand binding, 
Type II receptors phosphorylate and activate Type I recep-
tors in the same complex, then Type I receptors phosphoryl-
ate cytoplasmic proteins called Receptor-mediated SMADs 
(R-SMADs, SMAD1/5/8) that interact with the intracellular 
domain of the Type I receptor. Phosphorylated R-SMADs 
are released from the receptor complex and next bind to the 
Common SMAD (Co-SMAD, SMAD4) in the cytoplasm. 
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SMAD4 acts as a chaperone to translocate the R-SMAD/
Co-SMAD complexes to the nucleus, where they transcrip-
tionally regulate target genes.

Co-receptors (sometimes called Type III receptors), such 
as betaglycan and endoglin (ENG), are membrane-localized 
BMP pathway components that lack intrinsic kinase activ-
ity but instead enhance signaling via receptor interactions. 
Two inhibitory SMADs (i-SMADs), SMAD6 and SMAD7, 
negatively regulate BMP signaling in a cell-intrinsic man-
ner, likely through interactions with Type I receptors and 
the R-SMADs. BMPER (BMP endothelial cell precursor-
derived regulator, also called Crossveinless-2) is another 
cell-intrinsic BMP pathway regulator that acts both nega-
tively and positively on BMP signaling, depending on the 
context. Other negative regulators of BMP signaling are 
primarily cell-extrinsic, including Noggin, Chordin, Fol-
listatin, and Gremlin; these antagonists primarily bind BMP 
ligands in the extracellular space, preventing their binding 
to receptors.

BMP signaling is complex, as several different ligands, 
receptors, and co-receptors are often involved, even in a sin-
gle cell type. Although the binding preferences of different 
BMP ligands for receptor complexes are thought to primarily 
result from differences in the Type I receptors, these data 
are largely derived from biochemical experiments in vitro, 

and how these preferences translate to in vivo situations 
is unclear. It is also not well-understood how co-receptors 
influence ligand binding to surface receptors, how compe-
tition among different BMP receptor complexes plays out 
in cells, and how ligands are presented to receptors (i.e., 
homodimers vs. heterodimers). This variety and complexity 
likely contribute to the disparate cellular phenotypes that 
confound generation of simple molecular models of BMP 
function. BMP signaling complexity is even more relevant in 
the endothelial cells of blood vessels, where canonical BMP 
signaling as described above leads to opposite cellular phe-
notypes—either proangiogenic or homeostatic (anti-angio-
genic) cell behaviors, in ways that are poorly understood. 
Below we describe the BMP pathway components thought 
to be most relevant to BMP signaling in endothelial cells.

BMP ligands involved in endothelial cell function

Numerous BMP ligands share a general structure (Fig. 2A) 
but differ in their receptor-binding preferences [23]). Here 
we focus on BMP2, BMP4, BMP6, BMP9, and BMP10, as 
they interact most strongly with Type I receptors that initi-
ate signaling in endothelial cells. Various vascular develop-
mental defects were found in mouse and zebrafish embryos 
lacking Bmp9 and/or Bmp10 [24–30]; however, the roles of 
BMP4 and BMP6 in embryonic vascular development are 
less clear, as mice lacking Bmp4 failed to differentiate meso-
derm and died shortly after gastrulation, while mice globally 
lacking Bmp6 were viable with mild metabolic abnormalities 
[31–33].

BMP ligands primarily signal to endothelial cells in a 
paracrine manner, although some ligands circulate at physio-
logical levels in the bloodstream, while others are expressed 
by endothelial cells and may provide autocrine signaling 
[34]. BMP ligands regulate signaling by their concentra-
tion, bioavailability, and activity. Local availability of some 
BMP ligands to endothelial cells in vivo, such as BMP2, 
BMP4 and BMP6, is restricted by binding to the extracel-
lular matrix, which limits diffusion and blocks access to 
receptors [35], and by interactions with secreted antagonists 
[36]. Although many BMP ligands are detected in serum, 
only BMP9 and BMP10 were found at levels suggesting a 
primary endocrine route to endothelial cells via the blood-
stream. BMP10 is produced early in mouse development 
(E8.75) by cardiomyocytes, and in humans, adult expres-
sion is restricted to the heart with lower levels in the liver 
[37–39], while BMP9 is produced by the liver in humans and 
animal models [30, 39–41]. Both BMP9 and BMP10 have 
relatively high circulating levels in blood (~ 0.5–15 ng/mL) 
in both humans and mice [24, 28, 41–45], indicating that 
they are delivered to endothelial cells via the bloodstream. 
BMP2, BMP4, and BMP6 serum levels are much lower (pg/
mL–low ng/mL range) [43, 46, 47] and are expressed in 

Fig. 1  Overview of the Canonical BMP Signaling Pathway. BMP 
ligand dimers bind Type I receptors with the help of Co-receptors. 
The ligand-bound Type I receptors form a heterotetrameric receptor 
complex with Type II receptors. The Type II receptor phosphoryl-
ates and activates the Type I receptor, which then phosphorylates the 
R-SMAD and changes it to an active conformation that complexes 
with the Co-SMAD and translocates into the nucleus to regulate tran-
scription. i-SMADs negatively regulate this pathway at several points
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Fig. 2  Structure of BMP Pathway Components. Comparison of the 
structures of different components used in endothelial cell BMP 
signaling, highlighting important functional domains. A BMP ligand 
monomers have a pro-domain and a mature domain. Ligands often 
pair to make homodimers, although heterodimers have been reported. 
B Type I receptors share a ligand-binding domain with a hydropho-
bic residue on ALK2, 3, and 6, but not ALK1. They are phospho-
rylated by Type II receptors on their GS domain. Their active site is 
in the Ser–Thr kinase domain on the C-terminal end of the protein. 
This domain also contains the L45 loop that binds the R-SMAD L3 
loop. C Type II receptors have a similar structure to Type I recep-
tors but lack the GS domain and some contain a long C-terminal tail 

important for non-canonical signaling. D BMP Co-Receptor endog-
lin (ENG) dimerizes through a disulfide bridge in its ZP domain and 
binds ligands in the Orphan Domain 1. Betaglycan (BG) is a mono-
mer that wraps around its ligand with both Orphan Domains and the 
N-terminal region of its ZP domain. Both co-receptors have short 
transmembrane domains with no signaling functionality. E–G All 
SMADs contain an MH2 domain with an L3 loop capable of binding 
the L45 loop on Type I receptors, connected to an MH1 domain (or 
MH1-like domain in i-SMADs) by a linker region. R-SMADs main-
tain an inactive, folded conformation until they are phosphorylated on 
the SSXS motif within their MH2 domain by Type I receptors
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a temporally and spatially regulated manner developmen-
tally [32, 48], indicating paracrine interactions that affect 
endothelial cell behaviors. Interestingly, BMP2 and BMP4 
mRNA and protein are also expressed in endothelial cells, 
suggesting autocrine or paracrine vascular effects that have 
not been well-explored [49–55]. Although most work has 
characterized BMP ligand homodimers that initiate signal-
ing, heterodimers also exist and may be relevant in some 
places; for example, BMP9/BMP10 heterodimers that signal 
through ALK1 are found in mouse and human blood and 
may be the main entity activating ALK1 signaling in vitro 
[39, 44].

Endothelial cell BMP type I receptors

Type I BMP receptors are membrane-localized serine/
threonine kinases that share significant overall homology. 
However, these receptors diverge substantially in their 
ligand-binding domains, leading to different affinities for 
BMP ligands and potentially different signaling outcomes. 
Type I receptors have non-redundant functions in endothe-
lial cells, as evidenced by in vitro studies and the different 
vascular phenotypes of mouse loss-of-function mutations 
for the Type I receptors (see Table 1) [56]. It is likely that, 
along with ligand availability, differential expression of the 
Type I receptors is a major component of the heterogene-
ous responses of endothelial cells to BMP signaling inputs. 
The Type I BMP receptors most important for endothelial 
cell signaling are ALK1 (ACVRL1), ALK2 (ACVR1), 
and ALK3 (BMPRIA), based on both their expression in 
endothelial cells and the vascular defects that occur upon 
deletion in animal models [34] (see Table 1). ALK1 is the 
most highly expressed endothelial cell Type 1 receptor 
in vitro [57] and is broadly expressed in endothelial cells 
throughout mouse development; endothelial cell ALK1 
expression is diminished and becomes largely restricted 
to the lungs in adult mice [54, 58]. In human primary 
endothelial cells, ALK3 is expressed at significantly lower 
levels than ALK1 and ALK2 [52, 53, 57]. Single cell RNA 
sequencing of adult mouse endothelial cells from different 
vascular beds detected the highest ALK3 levels in coronary 
vessels, with low to undetectable levels elsewhere [54]. 
ALK2 is broadly expressed in human endothelial cells, and 
single cell RNA sequencing displayed low but widespread 
expression of ALK2 in both arterial and venous endothelial 
cells from different tissues of adult mice [54, 59]. ALK6 
(BMPR1B) is also expressed in endothelial cells, but levels 
are low and there is no obvious loss-of-function vascular 
phenotype [60, 61]. Type I receptors consist of an extracel-
lular ligand-binding domain, a membrane-spanning domain, 
a glycine/serine-rich (GS) domain, and a serine–threonine 
kinase domain (Fig. 2B). The GS domain is the site of 

phosphorylation by Type II receptors, activating the kinase 
domain that is functionally responsible for phosphorylating 
R-SMADs.

While the Type I receptors share general structures 
and downstream targets, small differences in their protein 
sequence contribute to differential ligand affinity. These 
receptors are most similar in the kinase domain and can 
be grouped by their homology (as measured by amino acid 
similarity) in this region: ALK1/ALK2 share 88%, and 
ALK3/ALK6 share 95% kinase domain amino acid homol-
ogy, while all other Type 1 receptor pairings exhibit between 
77 and 79% homology. Similarly, ALK1/ALK2 share the 
high homology in the GS domain (87%), while ALK3/ALK6 
share only 54% GS domain homology. The BMP Type 1 
receptors are the least homologous in the ligand-binding 
domain, with any two ALKs sharing merely 22–34% homol-
ogy, although this divergence most often leads to binding 
preferences rather than rigorous ligand–receptor binding 
partners. The amino acid residues that differ in the ligand-
binding domain of the ALKs create changes in the ligand-
receptor interfaces that facilitate different stabilizing inter-
actions [62].

Type I receptors provide significant selectivity for ligand 
binding in the heterotetrameric complex with Type II recep-
tors [63–67]. Current thinking describes two major BMP 
signaling axes in endothelial cells that produce different phe-
notypic outputs: ALK1 binds BMP9 and BMP10 to signal 
homeostatic or anti-angiogenic BMP signaling, while ALK2 
and ALK3 binding to BMP2, 4 and/or 6 facilitates proangio-
genic signaling. Structural modeling reveals that the contact 
area between BMP ligands and Type 1 receptors is extensive 
and hydrophobic, although it lacks perfect surface comple-
mentarity, which may contribute to some promiscuity of 
interactions between ligands and receptors [68]. ALK1 was 
originally considered an orphan receptor or part of a com-
plex with TGFβR2 to transduce TGFβ1 signals; however, it 
is now well characterized as a binding partner for BMP9 and 
BMP10, although it also binds TGFβ1 in endothelial cells 
[69, 70]. ALK1 interactions with BMP9/10 have remarkably 
high binding affinity (in the picomolar range) compared to 
the other BMP ligand/Type I receptor pairs that have affini-
ties in the nanomolar range [71, 72]. ALK2 primarily binds 
BMP6, but it also binds BMP9 with lower affinity than 
BMP9-ALK1 binding [73, 74]. ALK3 is a demonstrated 
binding partner of BMP2, BMP4, and BMP6 [68, 75, 76].

Endothelial cell BMP type II receptors

BMP Type II receptors are transmembrane serine/threonine 
kinases that efficiently phosphorylate Type I receptors once 
the heterotetrameric receptor–ligand complex is formed. 
They are structurally related to Type I receptors in that they 
include an N-terminal extracellular ligand-binding domain, 
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Table 1  BMP pathway gene deletion: animal model phenotypes

Gene Global deletion phenotype*
(mouse except where stated zebrafish)

Endothelial cell-selective deletion phenotype
(mouse except where stated zebrafish)

Bmp2 Embryo: Lethal (E7.5–10.5); Failed closure of pro-
amniotic canal; malformed amnion/chorion, cardiac 
development defects [232]

Adult (Tie2-Cre): Hemochromatosis (serum and tissue iron over-
load), ↓ spleen iron [33, 233]

Adult (Cdh5-Cre): Viable; no vascular phenotype reported [234, 
235]

Bmp4 Embryo: Lethal (E6.5-E9.5); Defective mesoderm dif-
ferentiation and blood island formation [31]

Adult (Cdh5-CreERT2) (Excised at 6–8weeks and challenged with 
thioglycolate): Diminished leukocyte infiltration in acute inflam-
mation [146]

Bmp6 Embryo: (Late gestation) ossification delay [236]
Adult: Viable, fertile, no overt defects, normal ossifica-

tion in pups/adults [236]
Adult: Hemochromatosis (serum and tissue iron over-

load), ↓spleen iron [32, 33]

Adult (Tie2-Cre): Hemochromatosis (serum and tissue iron over-
load), ↓ spleen iron [32, 33]

Bmp9 Late Embryo/Neonate: Disrupted lymphatic develop-
ment (↑ LEC proliferation/enlarged lymph vessels, ↓ 
lymphatic valves) [25, 26]

Post-Natal Retina: Viable; Normal vascular development. 
With BMP10 neutralizing antibody: ↑ vascular density 
and ↓ vascular expansion [24, 28]

Zebrafish embryo (morpholino): Venous remodeling 
defects [27]

Zebrafish embryo (mutant): Viable; no overt phenotype 
[30]

N/A

Bmp10 Embryo: Lethal (E10.0–10.5); ↓ cardiomyocyte prolifera-
tion (arrested cardiogenesis), ventricular hypoplasia, 
↓ ventricular trabeculae (impaired trabeculation), 
abnormal endocardial cushion development, severely 
impaired cardiac function and circulation, vascular 
impairment [37]. Developmental arrest at E10.5, 
enlarged pericardium, AVM (DA and CV dilated and 
fused into single continuous channel), yolk sac: no 
vitelline vessels and stalled primary capillary plexus 
development [28]

Zebrafish embryo (morpholino bmp10 + bmp10-like dou-
ble KD): AVMs in midbrain and hindbrain; enlarged 
cranial basal communicating artery [29]

Zebrafish embryo (mutant, bmp10 + bmp10-like double 
KO): Lethal high-flow cranial AVMs [30]

Zebrafish juvenile/adult (mutant bmp10): Premature 
death, abdominal edema, enlarged/hemorrhagic skin 
blood vessels, disorganized liver vasculature, high-
output heart failure [30]

N/A

Bmpr2 Embryo: Lethal (< E9.5); Pre-gastrulation developmental 
arrest, lack primitive streak and mesoderm [87]

Embryo: (Mox2-Cre) Gastrulation and mesoderm 
defects, cardiac defects including double-outlet right 
ventricle (DORV), ventricular septal defect (VSD), AV 
cushion defects, thickened valve leaflets [237]

Adult (Bmpr2+/−): ↑ mean arterial pressure and pul-
monary vascular resistance; thickened muscularized 
pulmonary artery walls; ↑ alveolar-capillary units; mild 
pulmonary hypertension; impaired pulmonary vascular 
remodeling [171]

Adult (Bmpr2+/−;ApoE−/−): Accelerated atherosclerosis 
and ↑ endothelial inflammation in arteries [221]

Embryo (Tie2-Cre): AV cushion defects (atrial septal defect, mem-
branous VSD, thickened valve leaflets) [237]

Neonate (Tie2-Cre): Lethal (~ P7); Abnormal AV cushion remod-
eling, thickened semilunar valve formation [237]

Post-Natal Retina (Cdh5-CreERT2): ↓ radial expansion, ↓ vascular 
density, and ↓ sprouting at angiogenic front [59]

Adult (Alk1-Cre-L1, pulmonary EC): Predisposition to develop 
PAH (elevated right ventricular systolic pressure (RVSP)) associ-
ated with right ventricular hypertrophy and ↑ number and wall 
thickness of distal pulmonary arteries [172]. ↑ leaky pulmonary 
vessels, ↑ leukocyte infiltration into lungs [173]

Adult (Tie2-rtTA x  TetO7-Bmpr2delx4): ↑ RVSP; muscularization 
of small vessels; thrombosis, ↑ inflammatory cells, ↑ proliferating 
cells, moderate ↑ in apoptotic cells [238]

Adult (Scl-CreERT, general EC): RVSP under hypoxic conditions 
(measure of PAH) [83]
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Table 1  (Continued)

Gene Global deletion phenotype*
(mouse except where stated zebrafish)

Endothelial cell-selective deletion phenotype
(mouse except where stated zebrafish)

Alk1 Embryo: Lethal (E10.5); Excessive capillary plexus 
fusion; impaired yolk-sac/embryonic vascular develop-
ment; large vessel dilation; VSMC differentiation and 
recruitment defects [218]. AVMs between DA and CV 
by E8.5, and in multiple areas by E9.5 [191]

Post-Natal Retina (Rosa26-CreER): (Excised at P3) 
Extensive, fully dilated AVMs at P5 [184]

Neonate (Rosa26-CreERT2): ↑ density, ↑ # filopodia, 
and ↑ diameter of lymphatic vessels of various tissues. 
Blood vessels not assessed [26]

Adult (Rosa26-CreER): Sex-dependent lethality 
9–21 days post-excision. ↓ weight and hemoglobin lev-
els, ↑ hemorrhage and anemia, enlarged heart, dilated 
pulmonary arteries and veins, AVMs in gastrointestinal 
tract, uterus, and wounded skin [184, 219]

Zebrafish embryo (mutant alk1y6): Dilated high-flow 
cranial AVMs, ↑ number of endothelial cells in cranial 
vessels due to directed arterial EC migration [193]. 
Edema in head, pericardium, and yolk sac [194]

Zebrafish embryo (morpholino alk1): Cerebral AVMs by 
24 hpf, high-output heart failure by 3–4 dpf [196]

**Embryo (Alk1-Cre-L1, pulmonary EC): Lethal (E17.5); AVMs 
and dilated/tortuous vitelline arteries in E16.5 extraembryonic 
vasculature, and AVMs in E17.5 lung vasculature [239]

**Neonate (Alk1-Cre-L1, pulmonary EC): Lethal (P5); Dilated, 
disorganized, tortuous blood vessels causing hemorrhage in brain/
lung/small intestine. AVM shunts in brain and lungs [219]

Neonate (Cdh5-CreERT2): Lethal ≤ 48 h following excision. Pulmo-
nary hemorrhage, AVMs in pial vessels and GI tract [166, 168]

Post-Natal Retina (Cdh5-CreERT2): Venous enlargement, vascular 
hyperbranching, ↑ vascular density, ↑ filopodia density, ↑ EC 
proliferation, AVMs, loss of arterial identity, ↓ pericyte coverage, 
↓ pSMAD1/5/8 activity, ↓ endoglin expression [59, 166–168]

Adult (Cdh5-CreERT2): Severe GI bleeding due to fragile 
microvessels in cecum villi, ↓ oxygen saturation due to hemor-
rhage, ↓ hematocrit and hemoglobin levels) [168]

Adult (Scl-CreERT general EC): Lethal ~ 2 weeks following exci-
sion. AVM shunts (tortuous, enlarged vessels) in ear, GI tract, 
and skin wound areas. Severe cecal hemorrhage, fatal anemia. No 
effect on lymphatic vessels [227]

Overexpression (Alk1-Cre-L1, Scl-CreERT, and RosaCreER): No 
pathological symptoms alone. Suppressed formation of AVMs 
in postnatal retinas and adult wounded skin in Alk1iECKO and 
EngiECKO mice [192]

Alk2 Embryo: Lethal (< E9.5); Defects in mesoderm forma-
tion & gastrulation (abnormally thickened primitive 
streak, arrested development at late streak stage) [240, 
241]. Arrested at early gastrulation stage, abnormal 
visceral endoderm morphology and severe disruption 
of mesoderm formation [242]

Embryo (Tie2-Cre): ↓ endocardial cushion size at E10.5, defects in 
heart septation and valve formation at E14.5, failure to undergo 
EndoMT [243]

Post-Natal Retina (Cdh5-CreERT2): ↓ radial expansion and vascular 
density [59]

Alk3 Embryo: Lethal (< E9.5); No mesoderm formation, no 
gastrulation, thickened epiblast layer [244]

Zebrafish embryo (morpholino, alk3a/b): ↓ Ephb4 
expression, only one axial vessel present, lack of proper 
blood circulation [185]

Adult (Alk3+/−): Normal, viable, fertile [244]

Embryo (Flk1-Cre): Lethal (E10.5–11.5); Defects in vessel 
remodeling and smooth muscle cell formation/recruitment, severe 
abdominal hemorrhage, AV canal endocardial cushion defects (↓ 
proliferation), anemic yolk sacs [226]

Embryo (Tie1-Cre): Lethal (E11.5–12.5); Internal hemorrhage, ↓ 
mesenchymal AV cushion cells at E9.5–10.5, impaired EMT in 
AV canal [245]

Embryo (Tie2-Cre): Lethal (E10.5); Severe growth retardation, lack 
of venous vessels, ↓ SMCs around dorsal aorta [185]

Embryo (Dll4in3-Cre, arterial EC): No overt phenotypes [185]
Post-Natal Retina (Cdh5-CreERT2): ↓ radial expansion, ↓ vascular 

density, ↓ sprouting at the angiogenic front [59]
Alk6 Embryo: Failure of metacarpals to segment, ↓ cell prolif-

eration and ↑ cell death in digit regions [246]
Neonate: Defects in appendicular skeleton (impaired 

chondrogenesis in proximal and middle phalanges 
region) [61]

Adult: Viable; Defects in appendicular skeleton [61, 
246]. Fertilization difficulty, irregular estrous cycle 
[247]

N/A
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Table 1  (Continued)

Gene Global deletion phenotype*
(mouse except where stated zebrafish)

Endothelial cell-selective deletion phenotype
(mouse except where stated zebrafish)

Smad1/5/9 Embryo (Smad1−/−): Lethal (E9.5); Impaired allantois 
formation, lack of placenta, disorganized vessels, lack 
of embryonic circulation [248, 249]

Embryo (Smad5−/−): Lethal (E9.5–11.5); Impaired vas-
culogenesis and hematopoiesis, disorganized yolk sac 
vasculature, edema, hemorrhage in amnion, exterior-
ized heart, failure to close mid/hindgut and neural tubes 
[250]. Vascular development defects: enlarged blood 
vessels, fewer vascular smooth muscle cells, ↑ apopto-
sis of mesenchymal cells [251]

Embryo (Smad9−/−): No overt defects; adults viable and 
fertile [252]

Embryo (Smad1+/−;Smad5+/−): Lethal (E10.5); Impaired 
allantois morphogenesis, cardiac looping, and primor-
dial germ cell specification [252]

Zebrafish embryo (morpholino, smad1/5): ↓ Ephb4 
expression [185]

Adult (Smad9LacZ−/−, aged 11.5 months): Lung vascular 
remodeling defects (media hyperplasia with vessel 
occlusion and plexiform lesions). A subset of mutants 
developed pulmonary adenomas. Heterozygotes: simi-
lar but milder phenotypes at a lower prevalence [253]

Embryo (Smad1f/f; Smad5f/f; Tie2-Cre): Lethal (E10.5); Severe 
vascular hemorrhage and edema, normal vasculogenesis but 
impaired angiogenesis, ↓ Dll4/Notch signaling, ↑ tip-cell-like 
cells (at expense of stalk cells) in E9.5 hindbrain and dorsal aorta 
but ↓ anastomoses of sprouts [228]. Spontaneous vascular shunt 
formation (AVM-like) between heart and dorsal aorta in yolk sacs 
at E9.25 [212]

Post-Natal Retina (Cdh5-CreERT2): AVMs in high flow areas, 
↓ functional tip cells at angiogenic front, ↑ vascular density in 
plexus, ↓ vessel regression, aberrant vascular loop formation [165]

Smad4 Embryo: Lethal (E6.5–8.5); Arrested growth before 
gastrulation due to ↓ cell proliferation, no mesoderm 
formation, abnormal visceral endoderm [254, 255]

Embryo (Rosa-CreER): (Excised at E10.5) Disrupted 
arterial development, dilated coronary arteries, ↑ arte-
rial EC size and proliferation. (Excised at E15.5) no 
change in vessel diameter [217]

Neonate (Rosa-CreER): (Excised at P1) Lethal by P8, 
GI hemorrhage, dilated and tortuous AVMs in brain, 
intestine, nose, and retina [184]

Post-Natal Retina (Rosa-CreER): (Excised at P1) AVM 
formation, aberrant smooth muscle actin staining, ↓ 
radial expansion [184]

Adult (Rosa-CreER): Lethal ≤ 6 days of excision. 
↓ weight and hemoglobin levels, GI hemorrhage, 
enlarged stomach/intestine/cecum, dilated and tortuous 
AVMs along GI tract and wounded skin [184]

Embryo (Flk1-Cre): Lethal (E9.5–10.5); ↓ hematopoietic colonies 
[226]

Embryo (Tie2-Cre): Lethal (E9.5–10.5); Growth retardation, defects 
in vessel sprouting and remodeling, collapsed dorsal aortas, 
enlarged hearts with ↓ trabeculae, failed endocardial cushion 
formation, lack of Ephb4 expression and absence of cardinal vein 
[185, 256]

Embryo (Cdh5-CreERT2): (Excised at E9.5) Lethal (E13.5); Defec-
tive vein morphology, ↓ Ephb4 expression [185]

Embryo (Dll4in3-Cre, arterial EC): No overt phenotypes in embryos 
before E13.5, but lethal between E13.5 and P5 [185]

Embryo (Apj-CreER, venous-derived EC): (Excised at E10.5) 
Dilated coronary arteries [217]

Neonate (Cdh5-CreERT2): Lethal 4–8 days following excision. 
Defective lung vasculature and lung hemorrhage causing respira-
tory distress, AVMs in pial vessels and GI tract [166]

Post-Natal Retina (Cdh5-CreERT2): AVM formation (in 82% of 
mutants), angiogenic defects, arteriovenous identity issues, ↑ 
artery/vein diameter, ↑ EC proliferation and size, altered mural 
cell coverage, ↓ Vegfr2 expression [183]. AVMs, ↑ vascular 
density and branchpoints at vascular front, ↑ EC proliferation in 
branching plexus, arteriovenous identity defects [166]

Smad6 Background-dependent, variable late-embryonic/perina-
tal lethality [257, 258]

Embryo: Hemorrhage under skin [145]. Axial and appen-
dicular skeletal defects [258]

Neonate: Hyperplastic endocardial cushions, variable 
valve and outflow tract septation defects[257]. Domed 
skulls and short snouts [258]

Post-Natal Retina: ↑ sprouting at the vascular front, ↑ 
density in branching plexus, disorganized EC junction 
markers [145]

Adult: Ossification around outflow tracts of heart [257]

N/A
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a membrane-spanning α-helical domain, and a C-terminal 
cytoplasmic portion that includes the kinase domain [77] 
(Fig.  2C). However, Type II receptors also differ from 
Type I receptors in the cytoplasmic domain—they lack a 
GS domain and BMPR2 has a long carboxy-terminal tail 
[78]. Mutations in the BMPR2 tail disrupt SMAD-mediated 
signaling but activate non-canonical BMP pathways, such 
as p38, MAPK and ERK, in a ligand-independent manner. 
These non-canonical pathways are also activated by BMP4 
ligand binding [79, 80]. The Type II receptor kinase domain 
is constitutively active; however, it is blocked from prema-
turely phosphorylating Type I receptors by the FK506-bind-
ing protein 12 (FKBP12). FKBP12 binds Type I receptor 
GS domains and blocks the active conformation, which is 
required for Type II receptor phosphorylation of the Type 
I receptor [81–83]. Release of FKBP12 from the Type I 

receptor requires an intact and functional Type II receptor 
kinase domain [84].

The BMP arm of the TGFβ superfamily has three Type 
II receptors, BMPR2, ACVR2A (ActRII) and ACVR2B 
(ActRIIB); of these, BMPR2 is thought to be most relevant 
to endothelial cell signaling, although ACVR2A functions to 
balance BMP and TGFβ signaling in pulmonary endothelial 
cells [85]. BMPR2 is the main Type II receptor involved 
in heterotetramers with ALK1 and ALK2 [86], and it is 
more highly expressed in adult mouse endothelial cells than 
the other BMP Type II receptors [54]. In mouse embryos, 
whole-mount in situ hybridization revealed that BMPR2 and 
ACVR2B had nearly ubiquitous expression in embryonic 
and extraembryonic tissues between E6.5 and 7.5, while 
ACVR2A expression was not detected [87]. BMPR2 expres-
sion was moderately widespread at E9.0–10.5, with highest 
expression levels in the AV canal, outflow tract, and limb 

Table 1  (Continued)

Gene Global deletion phenotype*
(mouse except where stated zebrafish)

Endothelial cell-selective deletion phenotype
(mouse except where stated zebrafish)

Smad7 Embryo: Significant postnatal lethality with cardiac 
defects: VSD, non-compaction; outflow tract (may 
result from elevated TFGb signaling) [259]

Adult: small size, abnormal ECG, thin ventricular wall 
[259]

N/A

Endoglin Embryo: Lethal (E10.0–11.5); Defective yolk sac 
vasculogenesis, embryonic angiogenesis, and vascular 
smooth muscle cell development; hemorrhage in yolk 
sac and embryo, cardiac malformations (enlarged 
ventricles and outflow tracts), cardiac cushion defects 
(failure to undergo EMT), delayed maturation of major 
vessels, severe anemia and ↓ red blood cell count 
[260–262]

Adult (Rosa-CreER): ↓ weight and hemoglobin levels, 
GI hemorrhage, dilated and tortuous AVMs along GI 
tract and wounded skin [184]. AVM formation in brain 
following local VEGF stimulation [263]

Adult (Eng+/−): Viable and fertile. Background-
dependent and variable penetrance of telangiectases 
and dilated/tortuous vessels in skin, low frequency of 
AVMs [261, 262]

Zebrafish embryo (mutant engmu130): ↓ blood flow 
through ISVs, altered blood vessel diameters bypassing 
smaller ISVs to shunt through large arteries and veins, 
↑ blood vessel pruning [220]

Zebrafish adult (mutant engmu130): Survive to adulthood. 
Multiple vascular malformations, dilated/tortuous 
vessels in head, ↑ artery and vein diameter, but ↑ EC 
numbers in veins only [220]

Neonate (Cdh5-CreERT2): (Excised at P1) AVMs and ↑ tip cells in 
brain [169]

Post-Natal Retina (Cdh5-CreERT2): Vascular hypersprouting, 
delayed capillary remodeling, severe AVM formation (20% of 
those were bleeding AVMs), αSMA expression no longer follows 
arteries specifically and is found on veins too, ↑ vessel branching 
at periphery, enlarged veins, ↑ EC proliferation [169, 170]

Post-Natal Retina (Apj-CreERT2): AVMs in proximal and distal 
retina [264]

Adult (Cdh5-CreERT2): ↓ angiogenesis and venomegaly (matrigel 
plug assay) [170]

Adult (Scl-CreERT, general EC): Dilated/tortuous vessels and arte-
riovenous shunts in wounded skin [227]

Adult (Sm22α-Cre): Lethal ~ 6 weeks of age. AVM formation in 
brain, spinal cord, and intestines, hemorrhage in some brain and 
spinal cord lesions [263]

E10.5 embryonic day 10.5, P5 postnatal day 5, LEC lymphatic endothelial cells, AVM arteriovenous malformation, DA dorsal aorta, CV cardinal 
vein, DORV double-outlet right ventricle, VSD ventricular septal defect, AV atrioventricular, PAH pulmonary arterial hypertension, RVSP right 
ventricular systolic pressure, VSMC/SMC (vascular) smooth muscle cell, hpf/dpf hours (days) post-fertilization, GI gastrointestinal, EC endothe-
lial cell, EndoMT endothelial-to-mesenchymal transition, EMT epithelial-to-mesenchymal transition
*Global mutant phenotypes may not be discussed in the text, but are included in Table 1 for comparison to endothelial-specific mutant pheno-
types
**Divergent timing of similar phenotypes in Alk1f/f;Alk1-Cre-L1 mice attributed to different Cre-mediated recombination efficiencies
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buds and lower expression in the lungs; expression was not 
detected in the atria and ventricles of the heart [48].

Endothelial cell BMP co‑receptors

BMP co-receptors, also called Type III receptors, enhance 
the responses of receptor complexes to BMP ligands. Co-
receptors have an extensive extracellular domain that inter-
acts with and modulates the affinity of BMP ligands for Type 
I and II receptors, but they lack a substantial intracellular 
domain and do not signal on their own (Fig. 2D). Molecular 
and genetic data support that endoglin (ENG) functions in 
endothelial cells. Betaglycan (BG), which presents TGFβ 
to its Type II receptor, is also implicated in some aspects of 
endothelial BMP signaling via interactions with BMP2 and 
BMP4 to promote ligand binding to ALK3/6; thus, betagly-
can may influence BMP signaling, although this has not 
been directly tested in endothelial cells [88]. These receptors 
share homology in transmembrane and cytoplasmic domains 
but diverge in the extracellular domains involved in recep-
tor binding. Both receptors bind TGFβ1 and TGFβ3, while 
only betaglycan binds TGFβ2 [89, 90]. Betaglycan is co-
expressed with ENG on human microvascular endothelial 
cells, where it binds TGFβ1-3 [91].

ENG strongly binds BMP9 and ALK1, potentiating BMP 
signaling through ALK1 [70, 73, 92, 93]. The interaction of 
ENG with BMP9-ALK1 signaling is especially important 
for flow-mediated responses of endothelial cells (see below). 
The BMP9 binding site for ENG overlaps its binding site 
for Type II receptors, implying that ENG does not remain in 
the receptor complex but is displaced once BMP9 binds the 
Type II receptor [94]. Structural studies indicate that ENG 
binds BMP9 in a manner analogous to an antibody binding 
an antigen: membrane-bound ENG is a dimer with two arms 
connected by a disulfide bridge that opens to engage BMP9 
[95, 96] (Fig. 2D).

A soluble form of ENG (sENG) is produced in some 
situations. Matrix metalloproteinases can cleave the extra-
cellular domain, producing sENG which downregulates 
pro-angiogenic proteins in human and mouse endothelial 
cells and inhibits angiogenesis, sprouting, and tube for-
mation [94, 97, 98]. sENG has been proposed to act as a 
trap for BMP9 before it engages with surface ALK1 [94]. 
However, a recent study demonstrated sENG circulates as 
a monomer, and its binding with BMP9 does not inhibit 
BMP9 signaling, although it is most efficient in the pres-
ence of endogenous membrane-bound ENG [99]. Circu-
lating sENG levels are elevated in pregnant women with 
pre-eclampsia [100], and ENG levels directly correlate with 
the severity of pre-eclampsia. Moreover, overexpression of 
sENG increases microvascular permeability in mice and pro-
motes pre-eclampsia symptoms in pregnant rats [101], sug-
gesting that circulating sENG contributes to pre-eclampsia. 

Paradoxically, anti-endoglin antibodies effectively block 
tumor angiogenesis while producing telangiectasias and vas-
cular overgrowths as side effects [102–104]. Taken together, 
these findings suggest complex roles for ENG in angiogen-
esis and homeostatic barrier function in various contexts.

BMP effectors in endothelial cells

After BMP ligands bind receptors on endothelial cells, 
canonical BMP signaling proceeds via phosphorylation of 
effector R-SMADs; phosphorylation changes R-SMAD con-
formation and allows for binding to the Co-SMAD, SMAD4. 
The R-SMADs involved in BMP signaling include SMAD1, 
5, and 9 (SMAD9 was formerly referred to as SMAD8) 
[105]. The R-SMADs are highly homologous to each other, 
sharing over 96% amino acid similarity in their functional 
domains, and are thought to act redundantly in canonical 
BMP signaling (Fig. 2E). The R-SMADS and Co-SMAD 
share an N-terminal MH1 domain responsible for DNA 
binding, followed by a proline-rich linker region that con-
nects to a C-terminal domain called MH2 (Fig. 2E, F). The 
MH2 domain mediates receptor recognition, nuclear import, 
and SMAD oligomerization.

SMAD4 is the common effector SMAD of both BMP 
and TGFβ signaling, and it transduces both proangiogenic 
and homeostatic BMP signaling in endothelial cells. The 
MH1 and MH2 domains of SMAD4 are highly homolo-
gous to those of the R-SMADs (Fig. 2E, F). The SMAD4 
MH2 domain recognizes and binds the MH2 domain of two 
R-SMAD proteins to create a heterotrimer that enters the 
nucleus and binds DNA [106]. Bulk RNA sequencing of 
primary human endothelial cells found SMAD4 expressed 
in endothelial cells isolated from the aorta, coronary arteries, 
and umbilical artery and vein, and expression was higher in 
fresh than cultured cells [52, 53].

Canonical BMP signaling converges on signaling through 
the same R- and Co-SMADs, and despite their high homol-
ogy, this signaling results in variable endothelial cell 
responses that are context-dependent, likely affected by the 
type and level of available BMP ligands, the expressed BMP 
receptors, and impacts from blood flow. For example, both 
the proangiogenic effects of BMP2 and the homeostatic 
effects of BMP9 increase nuclear pSMAD1/5/9 in endothe-
lial cells, which is indicative of canonical BMP signaling. 
The mechanisms causing differences in endothelial cell 
signaling outcomes through these same R- and Co-SMADs 
remain to be elucidated.

BMP antagonists and endothelial cells

BMP pathway antagonists are found both within endothe-
lial cells and in the intercellular milieu. Inhibitory SMADs 
(i-SMADs: SMAD6 and SMAD7) are a class of SMADs 
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that negatively regulate BMP signaling in a cell-intrinsic 
manner; SMAD6 is relatively selective for BMP signal-
ing in its effects, while SMAD7 is thought to more broadly 
affect BMP/TGFβ signaling [19, 107]. Both i-SMADs are 
expressed in human endothelial cells, particularly in the 
aorta and freshly harvested umbilical endothelial cells 
[52, 53]. BMP signaling through SMAD1/5 upregulates 
expression of SMAD6 and SMAD7, which creates a nega-
tive feedback loop for the BMP signaling pathway [108]. 
SMAD6 expression is also upregulated by Notch signal-
ing in endothelial cells [109, 110]. SMAD6 and SMAD7 
can regulate BMP signaling in several ways. They contain 
a conserved MH2 domain that allows for competition with 
R-SMADs to bind Type I receptors or co-SMADs, thus 
blocking productive canonical BMP signaling (Fig. 2G) 
[111]. In non-endothelial cells, SMAD6 interacts strongly 
with ALK3 and ALK6 to inhibit BMP signaling while 
SMAD7 effectively blocks  BMP signaling initiated by 
ALK1, ALK2, ALK3, and ALK6 [112]. SMAD6 also 
recruits SMURF1, an E3 ubiquitin ligase, to degrade 
R-SMADs and BMP Type I receptors [113]. SMURF1 regu-
lates BMP signaling by directly binding SMAD1, SMAD5, 
and SMAD6 or SMAD7, as they all contain the PPXY target 
sequence that binds the WW2 domain on SMURF1 [114]. 
SMAD6 may also function in the nucleus, where it binds 
transcription factors like Homeobox (Hox) C-8 and pre-
vents Hox–SMAD1 interactions [115, 116]. i-SMADs do 
not have a conserved MH1 domain, but their N-terminal 
domains determine subcellular localization and regulate 
nuclear export [117, 118]. SMAD6 and SMAD7 are also 
regulated via methylation on N-terminal arginine residues 
that influence their binding to BMP receptors and their abil-
ity to block BMP signaling [119, 120].

As with other aspects of BMP signaling, the context and 
concentration of an antagonist may alter outcomes. For 
example, BMPER is synthesized in endothelial cells and 
secreted into the extracellular matrix, where it binds BMP 
ligands to regulate their function. Its role as either agonist or 
antagonist of vascular BMP signaling is dose-dependent: at 
low concentrations, BMPER promoted sprouting and vessel 
formation, while at high concentrations it repressed these 
activities [121–123]. In vivo in mice and in vitro in human 
umbilical vein endothelial cells (HUVEC), reduced Bmper 
levels decreased endothelial cell barrier function, further 
cementing its role as an endothelial regulator [124].

Further fine-tuning of BMP signaling is achieved through 
extracellular antagonists, including Chordin, Noggin, Grem-
lin, and MGP (matrix gamma-carboxyglutamate protein). 
These proteins are secreted by non-endothelial cells in tis-
sues, and in general they bind BMP ligands and prevent 
ligand access to BMP receptors (for a thorough review on 
BMP antagonist structure and binding to BMP ligands and 
receptors, see [125]). Chordin binds and inhibits BMP4, 

while Noggin and Gremlin bind and inhibit BMP2, BMP4, 
and BMP7 [36, 126–128]. Of note, a single lysine residue 
in BMP6 not present in BMP2 or BMP7 confers resistance 
to binding and inhibition by Noggin [129], and BMP9 and 
BMP10 are also resistant to Noggin inhibition [130]. MGP 
is an extracellular effector that binds BMP2 and BMP4 and 
is active in the vasculature [131, 132]. Like BMPER, MGP 
has biphasic effects, as it acts in a concentration-dependent 
manner as either an agonist or antagonist to BMP signaling 
in a feedback loop proposed to involve TGFβ activation of 
ALK1 [133].

Chapter 2: BMP signaling in endothelial cell 
behaviors

Tissues cannot survive without a proper supply of oxygen 
and nutrients. The formation of a mature vascular network 
is complex and includes numerous processes, such as vascu-
logenesis, sprouting angiogenesis, branching, lumenization, 
remodeling and homeostasis [134, 135]. Vasculogenesis is 
the de novo formation of new blood vessels from precur-
sor cells called angioblasts, and angiogenesis is the forma-
tion of new vessel conduits via sprouting and migration of 
endothelial cells from pre-existing vessels, with subsequent 
anastomosis (connection) and lumenization [136]. Remod-
eling involves loss of some conduits while others increase in 
diameter to eventually form a hierarchical vascular network 
that sets the final pattern of vessels. As organs mature and 
vascular remodeling diminishes, endothelial cells become 
homeostatic—they stop proliferating, align in the direction 
of blood flow, and set up a barrier that regulates blood-tissue 
exchange of oxygen and nutrients. These processes involve 
complex endothelial cell behaviors. For example, sprout-
ing angiogenesis requires that endothelial cells perform a 
variety of acrobatics: activation of cell–cell adherens junc-
tions, collective migration, proliferation, polarization in both 
proximal–distal and apical-basal axes, lumen formation, 
and extracellular matrix deposition. Homeostasis involves 
repression of the cell cycle (called quiescence), cytoskeletal 
rearrangements, and junction stabilization. Tight regulation 
of these cellular processes is important, and dysregulated 
blood vessel growth is often lethal during development, 
while ectopic overstimulated blood vessel growth is a hall-
mark of cancer and chronic inflammation [137–142]. Open 
questions include understanding how endothelial cells coor-
dinate the numerous cellular behaviors involved in angio-
genesis, and how sprouting endothelial cells transition from 
active sprouting to remodeling to a quiescent phenotype 
once sprouting angiogenesis is complete.
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Chapter 2.1: BMP and sprouting 
angiogenesis

BMP pathway members have been implicated in each of the 
steps required for new blood vessel formation. Numerous 
cell-based assays in two or three dimensions have assessed 
BMP signaling involvement in specific endothelial cell 
behaviors and overall sprouting. These assays recapitulate 
aspects of the complex in vivo expansion of vessel networks 
in experimentally tractable systems that are often better 
suited to identification of specific effects, and for unraveling 
mechanisms and epistatic relationships.

Endothelial cell junction destabilization

A first step in sprouting angiogenesis involves dynamic 
rearrangement of endothelial cell–cell adherens junctions. 
Angiogenic sprouting proceeds by a form of collective 
migration, whereby endothelial cells maintain connections 
with other endothelial cells, but remodel junctions to change 
spatial relationships as sprouting proceeds [143]. Endothe-
lial cell adherens junctions utilize VE-cadherin molecules 
on two different cells to form homophilic interactions at the 
cell membrane. Adherens junctions are modified through 
changes in the expression, phosphorylation, and internali-
zation of VE-cadherin, and these changes alter the spa-
tial relationship of endothelial cells to their neighbors as 
sprouts form, elongate and lumenize (for a thorough review 
of endothelial cell adherens junctions, see [144]). BMP 
ligands that are considered proangiogenic have destabilizing 
effects on adherens junctions (Fig. 3). For example, BMP6 
enhanced sprouting in HUVEC in a 3D angiogenesis assay 
[109], and this sprouting was associated with phosphoryla-
tion and internalization of VE-cadherin [86, 145]. BMP4 
also destabilized endothelial cell junctions: increasing 
BMP4 concentration decreased overall VE-cadherin pro-
tein expression in HUVEC and disrupted adherens junction 
patterning, while reducing BMP4 via siRNA knockdown 
increased VE-cadherin RNA expression [146]. BMP4 also 
affects leukocyte transmigration through an endothelial cell 
monolayer, a process important in inflammation; excess 
BMP4 stimulated transmigration while BMP4 knockdown 
had the opposite effect [146].

Angiogenic sprouting

Tip cells are defined as the endothelial cells at the front of a 
sprout, and they guide sprout extension, usually by extend-
ing filopodia that sense the micro-environment [147]. Stalk 
cells are the endothelial cells found behind the tip cells, and 
they are characterized by collective migration behind the 
leading edge, higher proliferative capacity, and apical-basal 

polarization to form lumens [134, 148]. Nascent sprouts 
elongate through collective migration of polarized tip cells, 
and through proliferation of endothelial stalk cells, which 
trail behind the migratory tip cells [149, 150]. Tip cells are 
polarized in the proximal–distal axis, and they continuously 
rearrange with surrounding stalk cells in a dynamic competi-
tion; evidence for this exchange was seen ex vivo in aortic 
rings and in vitro in embryoid bodies, and there is evidence 
that this relationship holds in vivo in the postnatal retina 
[149, 151]. This dynamic behavior is regulated in part by 
VEGFA signaling that influences levels of Notch signaling 
[151]. The BMP signaling pathway is also important in the 
balance between tip and stalk cells in angiogenic sprouts. 
Notch signaling induced expression of the BMP inhibitor 
SMAD6 in endothelial cells to alter their responsiveness to 
proangiogenic BMP ligands, so that stalk cells had repressed 
responsiveness to BMP2 and BMP6 [109]. Another study 
also found that BMP2 and BMP6 increased overall sprout-
ing in vitro, and this effect was linked to the Type I receptor 
ALK3, while ALK2 repressed sprout formation [57].

Fig. 3  Proangiogenic vs. Homeostatic Activities of BMP Signal-
ing. Pro-angiogenic activities of endothelial cells include junction 
destabilization, migration, proliferation, and vessel branching, while 
homeostatic activities include strengthened junctions, barrier func-
tion, maintenance of vessel caliber, and vascular pruning, regression, 
and remodeling. BMP2, BMP4, and BMP6 have clear pro-angiogenic 
effects while ENG, BMP9, BMP10, and ALK1 have mostly home-
ostatic effects on endothelial cells. However, there is overlap in the 
effects of the other endothelial BMP components, including ALK2, 
ALK3, BMPR2, SMAD1/5/8, SMAD4, and SMAD6 that indicate a 
mixture of pro-angiogenic and homeostatic contributions that may be 
context-dependent
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Endothelial cell behaviors linked to sprouting angio-
genesis are often studied in vivo using the early postnatal 
retina [147], without the confounding phenotypes often 
found in the embryo proper. Although this vascular bed is 
one example of vascular sprouting and the phenotypes are 
likely to be context-dependent, it is amenable to rigorous 
quantification of endothelial cell behaviors and thus pro-
vides useful information. The vascular plexus initiates at 
birth via outward migration from the centrally located optic 
nerve in a planar manner, and during the first postnatal week 
the angiogenic front of this network is a spatially defined 
locale of new sprouting that can be measured [152]. In the 
postnatal retina, endothelial cell-selective genetic deletion 
of BMP pathway components reveals a proangiogenic role 
for signaling through Alk2/3 and Bmpr2. Alk2, Alk3 and 
Bmpr2 enhance vascular density, and Alk3 and Bmpr2 aug-
ment endothelial cell sprouting at the vascular front, while 
Alk1 prevents excessive vessel density at the front [59]. 
Gain-of-function experiments reveal that embryonic blood 
vessels respond to BMP signals with angiogenic responses. 
For example, induced overexpression of bmp2b in zebrafish 
embryos caused ectopic sprouting from the axial vein but not 
the dorsal aorta [55], and BMP4 overexpression along the 
notochord induced ectopic formation of a vascular plexus 
in a normally avascular area of the embryo [153]. However, 
the overall effects of most loss-of-function BMP pathway 
manipulations on sprouting angiogenesis in vivo are mild, 
and the physiological relevance of gain-of-function experi-
ments is unclear.

How BMP9/10 and ALK1 affect angiogenic sprout-
ing is complex. Early experiments involving the BMP9/
ALK1 signaling axis demonstrated increased proliferation 
and migration of mouse endothelial cells upon stimula-
tion with TGFβ or BMP9 or expression of constitutively 
active ALK1 [154, 155]. These results contrast with other 
reports that BMP9/ALK1 regulates vascular homeostasis 
by actively inhibiting endothelial cell migration, prolifera-
tion, and sprouting [59, 70, 73, 156–159]. Discrepancies in 
endothelial cell responses to BMP9/ALK1 signaling may 
result from different ligand concentrations, effects of uni-
dentified serum-derived factors, or the presence/absence of 
flow forces. As with many aspects of BMP signaling, BMP9/
ALK1 effects on endothelial cells are highly context-depend-
ent, underscoring the importance of careful experimental 
design and analysis.

Many studies investigate proangiogenic BMP signaling 
in cultured primary endothelial cells. The phenotypes of 
genetic manipulations in animal models are complex, and 
they suggest overall that BMP signaling does not produce a 
strong unilateral proangiogenic signal in vivo, but rather a 
balance between proangiogenic and homeostatic BMP sign-
aling that is important for formation and function of blood 
vessels. We posit that BMP signaling outputs differentially 

affect sprouting angiogenesis in vitro vs. in vivo because of a 
unique role for BMP signaling downstream of flow-mediated 
mechanotransduction in vascular endothelial cells. In this 
scenario, the outputs documented for proangiogenic signal-
ing in vitro provide a picture of the potential of endothelial 
cells to respond to proangiogenic signals. This is impor-
tant because pathological situations may tip the balance to 
a proangiogenic phenotype in vivo that is more than just 
the absence of a homeostatic signal—for example, BMP 
ligands are often elevated in tumors [160] and accompanied 
by excessive ectopic angiogenesis.

Why is BMP signaling not more prominent in vascular 
sprouting in vivo? This might reflect the fact that the com-
ponents of proangiogenic BMP signaling are used iteratively 
during development in numerous tissues and organs. As 
discussed, BMP signaling is important for a wide variety 
of critical developmental processes, including embryonic 
patterning, lung morphogenesis, and bone formation. It is 
conceivable that the lack of specialization of this pathway, 
especially in comparison to pathways such as VEGFA whose 
expression and effects are much more tissue-restricted, 
makes it a difficult pathway to co-op purely for angiogen-
esis except in certain contexts. It might also result from the 
evolutionary addition of a BMP signaling module that func-
tions in homeostasis in endothelial cells. Since embryonic 
vessels in vivo likely balance proangiogenic sprouting with 
homeostatic outputs, and BMP-induced homeostasis appears 
to be dominant under normal developmental conditions, this 
suggests that proangiogenic BMP signaling is not active 
developmentally in the vasculature, or that proangiogenic 
and homeostatic BMP signaling balance in complex ways 
in vivo.

Chapter 2.2: BMP signaling in vascular 
patterning

Vascular remodeling

Once a primitive vascular plexus forms via sprouting angio-
genesis, flow-mediated signals lead to vessel remodeling. 
This involves the pruning of unnecessary conduits, regres-
sion of vessels no longer under flow, and expansion of other 
vessels to accommodate increased flow, sometimes with 
additional recruitment of smooth muscle cells and fibro-
blasts [161, 162]. In many vascular beds the endothelial cells 
in pruned vessels do not undergo cell death, but rather they 
migrate to vessels experiencing flow and contribute to their 
expansion [163, 164].

The increased vascular density induced by concurrent 
endothelial cell-selective deletion of both Smad1 and Smad5 
in the postnatal retina was accompanied by reduced ves-
sel regression [165]. Similarly, endothelial cell-selective 
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deletion of Smad4 in postnatal retinas increased vascular 
density and branchpoints, although this was attributed to 
increased endothelial cell proliferation [166]. Since impaired 
vascular regression is a hallmark of defective vascular 
remodeling, these findings suggest that Smad4 and Smad1/
Smad5 function is important in remodeling to form a hier-
archically branched vasculature. It should be noted that 
SMAD4 is common to both the TGFβ and BMP signaling 
pathways, while SMAD1/5 signals predominantly down-
stream of the BMP signaling arm, although the similarity 
in the deletion phenotypes suggests that BMP signaling 
regulates vascular remodeling in the early postnatal retina. 
Endothelial cell-selective deletion of Alk1 in postnatal reti-
nas also caused vascular hyper-branching and an increase 
in filopodial density, indicating that ALK1 is important for 
vascular pruning and regression [59, 167, 168]. Endothe-
lial cell-selective deletion of Eng, a co-receptor of ALK1 
in transducing endothelial cell flow-mediated responses, 
caused a similar hyper-proliferative vascular phenotype in 
retinas: veins were enlarged due to increased endothelial cell 
proliferation and peripheral vessel branching was increased 
[169, 170]. Taken together, these studies indicate that BMP 
signaling affects vascular remodeling during developmental 
angiogenesis in complex ways.

Vessel remodeling also occurs in pathologies. For 
example, Pulmonary Arterial Hypertension (PAH) results 
in abnormal vascular remodeling and hypertension and is 
linked to BMPR2 mutations in patients, and mice lacking 
one copy of Bmpr2 had mild pulmonary hypertension and 
impaired pulmonary vascular remodeling under hypoxic 
conditions, a phenotype reminiscent of human PAH [171]. 
Moreover, embryonic deletion of Bmpr2 using an ALK1-
L1-Cre driver that is expressed in E9.5 extraembryonic 
vessels and is predominant in E13.5 lung endothelial cells, 
resulted in a predisposition for adult mice to develop PAH 
[172, 173]. BMP9 is also implicated in PAH, via both muta-
tions (GDF2) associated with PAH patients and animal stud-
ies [174, 175]. These studies implicate BMP signaling in 
pulmonary vascular remodeling, although the underlying 
mechanisms are not well understood.

Arteriovenous identity

Arteries and veins have different functions, and they main-
tain unique identities to form a circuit delivering oxygenated 
blood to peripheral tissues and returning deoxygenated blood 
to the heart. Differences between arteries and veins include 
vessel-specific gene expression, the composition and thick-
ness of surrounding mural cells and extracellular matrix, 
and vessel diameter (for detailed reviews see [176–179]). 
Hemodynamic forces reinforce arteriovenous differentiation, 
which during development is genetically initiated prior to 
the onset of blood flow. This is exemplified in live imaging 

of chick embryo yolk sacs, where expression of arterial 
markers was flow-regulated [180], and in mouse embryos 
where Notch1 signaling, an important factor in determin-
ing arteriovenous identity, became elevated and localized 
to arteries with the onset of flow [181]. Although the initial 
artery–vein determination in early development closely coin-
cides with endothelial cell differentiation and may involve 
BMP signaling in complex ways, BMP is also important in 
the subsequent flow-regulated maintenance of artery–vein 
identity. For example, postnatal deletion of Eng in endothe-
lial cells led to ectopic expression of the smooth muscle 
marker αSMA on retinal veins, consistent with loss of arte-
riovenous identity [169]. Notch signaling also rescued loss 
of the arterial marker EphrinB2 downstream of ALK1 loss 
in endothelial cells [182]. Postnatal endothelial cell deletion 
of Smad4 also led to arteriovenous identity perturbations in 
retinal vessels, while earlier deletion caused dysfunctional 
venous structures with reduced venous marker expression in 
embryos [166, 183–185]. Endothelial cell-selective deletion 
of Alk3 developmentally resulted in stunted embryos that 
made arteries but not veins; the early lethality suggests that 
the deletion affects primary artery–vein identity rather than 
flow-mediated maintenance of artery–vein identity [185].

Arteriovenous malformations/HHT

Arteriovenous malformations (AVMs) are aberrant connec-
tions between arteries and veins that shunt blood directly 
between the large vessels, bypassing normal capillary beds. 
The exact mechanisms of AVM formation are still unknown, 
but AVMs are associated with dysregulation of all the func-
tions discussed above: vascular remodeling, vessel caliber, 
endothelial barrier function, and arteriovenous identity. Evi-
dence supports a multi-hit model of AVM formation that 
involves both genetic and environmental changes. First, het-
erozygosity for various BMP pathway components is fol-
lowed by mosaic loss-of-heterozygosity to generate patches 
of mutant endothelial cells in the vasculature [186]. Along 
with the genetic lesion in a predisposed (heterozygous) back-
ground, an environmental disturbance that causes increased 
angiogenesis and/or inflammation in the context of altered 
shear stress and blood flow patterns is necessary to gen-
erate an AVM [187]. Mutations in ENG, ALK1, SMAD4 
and GDF2 (Bmp9) are linked to human diseases involving 
AVM formation [9, 11, 27, 188, 189]. Such diseases include 
Hereditary Hemorrhagic Telangiectasia (HHT), where the 
resulting AVMs are prone to vessel wall fragility; this fragil-
ity leads to hemorrhage, which can be fatal if located in the 
brain, liver, or lungs [190].

AVM formation is a hallmark of mutations in BMP 
pathway genes in mice as well, although not all BMP muta-
tions lead to AVMs, and AVM formation is not exclusive 
to BMP pathway mutations (i.e., Notch) (see Table 1 and 
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[190]). Endothelial cell-selective Eng deletion in postnatal 
retinas led to 70% of animals developing AVMs, and 20% 
of these AVMs led to significant bleeding [169]. Moreover, 
in a neonatal retina model of HHT1 in mice lacking endog-
enous ENG, sENG treatment reduces AVM incidence, which 
indicates that sENG may enhance BMP9/10 signaling in the 
absence of membrane-bound ENG [97]. Loss of Alk1 either 
globally in embryos or postnatally in endothelial cells led 
to AVM formation, and in retinas the AVMs formed only in 
areas of high blood flow [166–168, 191]. Over-expression 
of Alk1 in adult mice did not obviously perturb the vascu-
lature but prevented AVM formation caused by endothe-
lial cell loss of Alk1 in retinas and wounded skin [192]. In 
zebrafish, mutant alk1 loss-of-function embryos developed 
dilated high-flow cranial AVMs [193–195]. Additionally, 
alk1 disruption via morpholino knockdown led to cerebral 
AVM formation and dilated cranial vessels [196]. Neonatal 
Smad4 global knockout mice developed AVMs in the brain, 
intestine, nose, and retinas, while adults formed AVMs in 
the gastrointestinal tract and skin following wounding [184]. 
Postnatal endothelial cell-selective Smad4 deletion led to 
AVM formation in retinal vessels [166, 183]. Taken together, 
these data suggest that vascular AVMs are a hallmark of 
several BMP pathway manipulations in endothelial cells of 
mice and fish, including Alk1, Eng, and Smad4, all genes that 
are linked to AVMs in humans.

Chapter 2.3: BMP signaling 
and the transition to vascular homeostasis

Once vessels mature, angiogenic sprouting is inhibited 
and homeostasis is actively maintained to sustain barrier 
function and preserve arteriovenous identity and vessel 
caliber [197, 198]. Dysregulation of vascular homeostasis 
is primary to numerous conditions, such as atherosclerosis 
and aortic aneurysms, and it is also secondary in diseases 
such as cancer, where blood vessels exhibit excessive and 
unregulated growth to feed tumors and bypass normal vas-
cular beds. Tumor vessels possess abnormal physiology, 
and are often tortuous, leaky, and have ambiguous arterio-
venous identity [199]. Here we focus on how BMP signal-
ing functions as blood vessels transition from active growth 
and remodeling to a homeostatic or quiescent state. We are 
beginning to understand the inputs that affect this transition, 
although an understanding of how canonical BMP signaling 
is interpreted by endothelial cells to produce proangiogenic 
vs. homeostatic signals remains unclear.

Blood flow‑induced responses

The transition from active vessel sprouting to homeostasis 
is largely initiated by the onset of blood flow through new 

conduits formed via anastomosis and lumenogenesis [200, 
201]. Movement of blood through lumenized vessels pro-
duces distinct physical forces on the endothelial cell lining 
[202]. Specifically, endothelial cell behaviors in response 
to fluid shear stress have been extensively examined, and 
a large body of published work in vitro and in vivo high-
lights the effects of fluid shear stress on endothelial cell 
morphology, gene expression and signaling. Endothelial 
cells receive, interpret, and respond to mechanical flow 
forces through various mechanosensory complexes. These 
mechanosensory complexes allow endothelial cells to trans-
late mechanical signals into biochemical outputs that alter 
cell behavior, cell shape, and gene expression [203]. One 
well-characterized complex is composed of VE-cadherin, 
PECAM and VEGFR2 at the cell membrane, while another 
direct sensor is thought to be Notch1 [204–206]. Excellent 
recent reviews document the effects of mechanical forces on 
endothelial cells and describe different mechanotransduc-
tion mechanisms (see [207, 208]). Here we focus on how 
BMP signaling, likely downstream of the initial mechanical 
to biochemical signal transition, modulates endothelial cell 
responses to laminar shear stress signals to promote vascular 
homeostasis.

Vascular BMP signaling is crucial for blood vessel home-
ostasis downstream of mechanical forces. Fluid shear stress 
significantly affects the expression of several BMP signal-
ing components including ALK1, SMAD1/5, SMAD6 and 
SMAD7 [110, 195, 209, 210]. Laminar flow-mediated BMP 
signaling also requires SMAD4 and leads to elevated levels 
of phosphorylated R-SMAD1/5 in the nucleus and regula-
tion of several BMP target genes [211]. In vitro, endothelial 
cell responsiveness to BMP9 was increased by laminar flow, 
and both ALK1 and ENG were required for this flow-medi-
ated change in sensitivity, while BMP9-mediated signaling 
absent flow required ALK1, but not ENG [167]. Further 
in vitro studies found that SMAD1/5/9 is phosphorylated in 
a BMP9-dependent manner in endothelial cells under lami-
nar flow [212]. Endothelial cells also respond to different 
levels of shear stress, and BMP signaling is involved in these 
differential responses [213]. For example, the lower shear 
stress associated with veins allows primary cilia to persist, 
and these structures may sensitize endothelial cells to BMP9 
signaling [214].

While it is not well understood how and where BMP 
signaling receives the initial signals from the primary 
mechanotransduction pathways, there are several candi-
dates for integration points. For example, Notch is thought 
to be a direct mechanosensor, and Notch and BMP signal-
ing intersect in the nucleus, where complexes of NICD and 
SMAD4 bind target gene promoters and affect gene expres-
sion [211, 215]. Notch and BMP signaling also integrate 
via SMAD6, a negative effector of BMP signaling. Notch 
upregulated SMAD6 expression, Notch signaling reduced 
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BMP6-stimulated canonical BMP signaling in a SMAD6-
dependent manner, and SMAD6 rescued the blunted flow 
alignment of endothelial cells under laminar flow due to 
loss of Notch signaling [109, 110]. These findings indicate 
that Notch transduces mechanosensory signals in part via 
interactions with BMP pathway components.

Downstream of initial endothelial cell responses to flow, 
laminar flow-induced SMAD1/5 activation is implicated in 
regulating aspects of the endothelial cell cycle. Oscillatory 
shear stress in human endothelial cells led to sustained phos-
phorylation and activation of SMAD1/5 and continued cell 
cycle progression independent of BMP2 or BMP4 [209]. 
Conversely, endothelial cells slowed the cell cycle as they 
became quiescent in response to laminar shear stress [110, 
216]. These findings indicate that the type of flow-induced 
stimulus influences the ultimate endothelial cell response to 
canonical BMP signaling changes.

Maintenance of vessel caliber

Flow-induced forces are coordinated with alterations of ves-
sel diameter, or caliber, to ensure that overall forces remain 
homeostatic. BMP signaling influences blood vessel size 
through regulation of both endothelial cell proliferation and 
cell shape changes. For example, SMAD4 is crucial for regu-
lating vessel diameter during vascular development, since 
postnatal endothelial cell-selective Smad4 deletion increased 
endothelial cell proliferation and increased both artery and 
vein diameters in retinal vessels [183]. Embryonic Smad4 
deletion at E10.5 in coronary vasculature caused dilated 
coronary arteries through increased endothelial cell size 
and proliferation [217]. Interestingly, the latter phenotype 
was not seen when Smad4 was deleted at E15.5 using the 
same driver, suggesting that BMP signaling regulates ves-
sel caliber during development in a stage-specific manner.

Global loss of Alk1 caused hyper-dilation of large vessels 
at E9.5 in mouse embryos [218] and when Alk1 was glob-
ally deleted in adulthood using a ubiquitous inducible Cre 
driver [184, 219]. Zebrafish embryos with loss-of-function 
mutation for alk1 had increased endothelial cell numbers in 
cranial vessels, leading to enlargement of high-flow mid- 
and hindbrain vessels [193]. Zebrafish embryos and adults 
with a loss-of-function mutation for eng had enlarged blood 
vessel diameters with increased blood vessel pruning but 
increased cell size, and in some cases increased cell num-
bers accompanied the increase in size [220]. Taken together, 
these studies indicate that BMP signaling through ALK1 
and ENG regulate vessel caliber, and they suggest that flow 
responses mediated through this arm of BMP signaling are 
important in this regulation.

Endothelial cell barrier function

Although endothelial cell adherens junctions must be acti-
vated to initiate sprouting angiogenesis and remodeling, 
their stabilization is critical once a new conduit has formed, 
and blood vessels establish a barrier that regulates the move-
ment of fluid and small molecules into tissues and prevents 
leak. Several lines of evidence indicate that BMP signaling 
is crucial for maintenance of barrier function. The Type II 
receptor BMPR2 is required for barrier function of pulmo-
nary endothelial cells in vitro, as reducing BMPR2 levels 
via knockdown increased albumin leak in a permeability 
assay [173]. Supporting these data, siRNA knockdown of 
BMPR2 in primary endothelial cells promoted inflammation 
as measured by a monocyte adhesion assay; this finding was 
supported in vivo, as Bmpr2±;ApoE−/− mice had increased 
expression of inflammatory markers ICAM-1 and VCAM-1 
in arterial endothelium [221]. BMP9-mediated signaling 
through Type I receptor ALK1 stabilized endothelial cell 
barrier function by preventing VE-cadherin phosphorylation 
and internalization, and by inducing expression of occlu-
din, a tight junction protein, in a hyperglycemic environment 
[222]. BMPR2 and ALK2 were shown to physically inter-
act with VE-cadherin in endothelial cells using a proximity 
ligation assay and immunoprecipitation [86]. Additionally, 
VE-cadherin also co-immunoprecipitated with ALK1 and 
ENG, providing further support for the intertwined activ-
ity of BMP signaling and adherens junction function [223].

Paradoxically, while some positive effectors of BMP 
signaling contribute to junction stabilization and vessel 
homeostasis, suppression of BMP signaling through vari-
ous negative regulators also stabilizes endothelial cell adhe-
rens junctions. SMAD6 stabilizes endothelial cell adherens 
junctions and blocks leak, as reduced SMAD6 expression 
increased VE-cadherin turnover, disrupted junction pattern-
ing, and reduced barrier function in vitro [110, 145]. Addi-
tionally, suppression of BMP signaling via BMPER restored 
endothelial cell barrier function perturbed by addition of 
BMP4 in HUVEC transwell assays [124]. Heterozygous 
Bmper± mice had increased vascular leak as demonstrated 
by increased dye egress in the lungs [124]. Transcriptional 
co-activators YAP and TAZ, best known as effectors of the 
Hippo signaling pathway, strongly inhibited BMP signaling 
both in vitro and in vivo to regulate adherens junction mor-
phology and stability [224]. Reduced expression of YAP/
TAZ in endothelial cells increased monolayer permeability 
to dextran, while loss-of-function mice exhibited increased 
dye leak in early postnatal brains [225]. The ability of both 
positive and negative BMP signaling to promote endothelial 
barrier function emphasizes the complexity of this pathway, 
and the importance of considering context in interpreting the 
effects of BMP pathway manipulations.
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Hemorrhage

Hemorrhage occurs when blood vessels lose integrity or are 
not connected in their proper hierarchical pattern, leading to 
loss of blood to the interstitial space. Hemorrhage is a com-
mon outcome of loss-of-function mutations in BMP pathway 
components in endothelial cells in vivo, and hemorrhage 
is often observed in multiple tissues across different time 
points. For example, excision of Alk3 in endothelial cells 
using an Flk1-Cre driver caused severe abdominal hemor-
rhage in embryos at E10.5 [226]. Neonatal mice lacking 
Alk1 exhibited pulmonary hemorrhage while adults had 
cecal hemorrhage [166, 168, 227]. Global deletion of Smad4 
in neonates or adults led to bleeding in the gastrointestinal 
tract [184]. Compound endothelial cell-selective loss of both 
Smad1 and Smad5 caused severe generalized hemorrhage 
[228]. Similarly, global deletion of Smad6 also led to embry-
onic hemorrhage [145]. The cause of hemorrhage in these 
mutants has not been extensively analyzed, and there may 
be different upstream perturbations that result in the broad 
characterization of “hemorrhage”. However, Smad6 mutant 
embryos had evidence of destabilized adherens junctions, 
which is associated with vascular fragility [145]. Further 
work characterizing effects of other BMP pathway manipu-
lations on adherens junctions should further our understand-
ing of this complex relationship.

Chapter 3: BMP and blood vessels: key 
questions remaining

BMP signaling influences endothelial cell behaviors to 
regulate blood vessel formation and vascular homeosta-
sis, and BMP signaling dysregulation directly leads to 
or is found downstream of significant vascular diseases. 
Despite a substantial body of cutting-edge research over 
the last decade, our understanding of how BMP signaling 
regulates endothelial cell behaviors involved in vascular 
function is incomplete, and numerous important questions 
remain. Many open questions derive from the context-
dependence of the outcomes of BMP signaling in endothe-
lial cells. This context-dependence can be simplified to 
a proangiogenic signaling arm and an anti-angiogenic or 
homeostatic signaling arm for BMP signaling in endothe-
lial cells, although there is likely much more complexity to 
these processes, and these complex inter-pathway interac-
tions are an area of active investigation.

One important question centers around how endothelial 
cells “read” BMP signaling and translate this signaling 
into cellular behaviors. Canonical BMP signaling results 
in phosphorylation of R-SMADs and their transloca-
tion to the nucleus, chaperoned by SMAD4, where they 

affect gene transcription, and both signaling arms stimu-
late nuclear translocation of pSMAD1/5/9. Target genes, 
such as Id1, Smad6, and Apelin, seem similarly regulated 
by both pro- and anti-angiogenic BMP ligands [211], 
although a recent paper examining transcriptional changes 
upon expression of constitutively active Type I receptors 
in endothelial cells revealed both shared and unique tran-
scriptional targets, supporting the idea that BMP Type I 
receptors regulate different phenotypic responses [229]. 
Despite the relative similarity of downstream expres-
sion changes that have been interrogated, endothelial cell 
responses not only differ downstream of activation of Alk1 
(homeostatic) vs. Alk2/3 (proangiogenic) receptor com-
plexes, but in some cases, the resulting phenotypes are 
polar opposites. Thus, one or more aspects of BMP signal-
ing must be differentially experienced by endothelial cells 
to provide context to the different types of signals. Based 
on evidence from other signaling pathways and from 
computational modeling of the BMP pathway, endothe-
lial cells may respond to different signal amplitudes, sig-
nal durations, signaling location within the endothelial 
cell, different co-signaling contexts, or other aspects of 
signaling output. Modeling based on outputs in other cell 
types [230] suggests that some signals are sampled over 
a short time span to provide an “analog” output based on 
amplitude, while other signals are temporally sampled and 
the outputs integrated over time to provide the signal. It 
will be interesting to perform signaling experiments that 
address analog vs. integrated outputs in endothelial cells 
to determine cell type-specific BMP signal attributes. 
However, even this approach has limitations because the 
anti-angiogenic (homeostatic) arm of BMP signaling is 
flow-responsive, so further careful signaling experiments 
will be needed under different flow conditions to clearly 
delineate how endothelial cells distinguish BMP signaling 
inputs and respond with proangiogenic vs. homeostatic 
endothelial cell behaviors.

A second related question with strong ramifications for 
treating vascular diseases with a BMP component is—how 
do the two arms of BMP signaling integrate and balance 
each other in endothelial cells to produce the requisite 
behaviors? In a previous review, we described a simple 
model suggesting that homeostatic signaling is dominant 
over proangiogenic signaling once vessels establish blood 
flow relatively early in development [231]. In this concep-
tion, endothelial cell behaviors respond to the dominant 
signaling axis that uses BMP9/10 to signal through receptor 
complexes containing ALK1 and ENG, and proangiogenic 
signaling via other BMP ligands, such as BMP2/4/6 and 
receptor complexes containing ALK2 or ALK3, become 
irrelevant for endothelial cell behaviors. However, several 
lines of evidence suggest that this model is over-simplified. 
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First, removal of components of the homeostatic arm, such 
as ALK1 or ENG, does not uncover a proangiogenic phe-
notype in most cases, as predicted by the model, but rather 
results in complex behavioral changes leading to hemor-
rhage and AVMs. Second, a loss-of-function mutation for 
Smad4, which is common to both pathways, phenocopies 
loss of the homeostatic arm via ALK1 or ENG but does not 
reveal a SMAD4-dependent proangiogenic phenotype that is 
also compromised. Finally, a negative regulator of proangio-
genic BMP signaling, SMAD6, is functionally required for 
endothelial cell flow alignment [110], a finding that does not 
easily fit a model where proangiogenic signaling is irrelevant 
for homeostatic BMP signaling.

A third question centers around how BMP signaling is 
transduced mechanistically within endothelial cells to give 
rise to the relevant cellular behaviors. While there is some 
evidence that BMP receptor complexes may physically 
associate with endothelial cell junction components down-
stream of ligand engagement, how these interactions lead 
to changes in cell–cell junctions is not well-elucidated. 
Moreover, many BMP signaling effects on endothelial cell 
behaviors, such as proliferation, migration, and junction 
stability, are mediated via SMAD-dependent canonical 
BMP signaling that goes through the nucleus to affect gene 
transcription, and how canonical BMP-induced transcrip-
tional changes lead to changes in cell behaviors is not well 
understood. A better understanding of these relationships 
will likely be helped by the recent surge in transcriptomic 
data, and especially from single-cell RNA seq data that 
generate endothelial cell transcriptomes derived from ani-
mal tissues and organs. This in vivo endothelial cell profil-
ing is predicted to show effects of BMP manipulations in 
a relevant micro-environmental context. Additional ques-
tions center around indirect effects of BMP signaling on 
endothelial cell behaviors. For example, BMP signaling 
affects arteriovenous identity in complex ways that are 
poorly understood, so perhaps endothelial cell behaviors 
associated with these identities, such as cell cycle progres-
sion, are altered by BMP manipulations downstream of 
initial identity. In that regard, reduced levels of SMAD6 
that blunt morphological responses to laminar flow also 
prevented flow-mediated quiescence and kept endothelial 
cells in the cell cycle [110].

Finally, it will be exciting to determine how the unique 
features of BMP signaling that affect endothelial cell 
behaviors can be harnessed to develop interventions that 
help in diseases caused by perturbations in vascular BMP 
signaling, such as HHT, PAH, and in diseases in which 
perturbed BMP signaling may be downstream of the ini-
tial lesion, such as CCM (cerebral cavernous malforma-
tions). For example, FK506 is a compound that prevents 
FKBP12 inhibition of BMPR2 signaling in blood vessels, 
and the restoration of BMP signaling afforded by the drug 

ameliorates symptoms in mouse models of PAH [83]. As 
our knowledge of the complex and fascinating roles of 
BMP signaling on endothelial cell behaviors and blood 
vessel formation and function are further understood, other 
therapeutic targets will likely be identified.
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