
REVIEW
published: 22 November 2019

doi: 10.3389/fendo.2019.00811

Frontiers in Endocrinology | www.frontiersin.org 1 November 2019 | Volume 10 | Article 811

Edited by:

Osamu Hiraike,

Tokyo University of Science, Japan

Reviewed by:

Claudio Acuña-Castillo,

Universidad de Santiago de

Chile, Chile

Marie-Hélène Verlhac,

Centre National de la Recherche

Scientifique (CNRS), France

*Correspondence:

Toshio Hamatani

toshiohamatani@keio.jp

Specialty section:

This article was submitted to

Endocrinology of Aging,

a section of the journal

Frontiers in Endocrinology

Received: 16 June 2019

Accepted: 06 November 2019

Published: 22 November 2019

Citation:

Sasaki H, Hamatani T, Kamijo S,

Iwai M, Kobanawa M, Ogawa S,

Miyado K and Tanaka M (2019)

Impact of Oxidative Stress on

Age-Associated Decline in Oocyte

Developmental Competence.

Front. Endocrinol. 10:811.

doi: 10.3389/fendo.2019.00811

Impact of Oxidative Stress on
Age-Associated Decline in Oocyte
Developmental Competence
Hiroyuki Sasaki 1, Toshio Hamatani 1*, Shintaro Kamijo 1, Maki Iwai 1, Masato Kobanawa 1,

Seiji Ogawa 1, Kenji Miyado 2 and Mamoru Tanaka 1

1Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan, 2National Center for Child

Health and Development (NCCHD), Tokyo, Japan

Reproductive capacity in women starts to decline beyond their mid-30s and pregnancies

in older women result in higher rates of miscarriage with aneuploidy. Age-related

decline in fertility is strongly attributed to ovarian aging, diminished ovarian reserves,

and decreased developmental competence of oocytes. In this review, we discuss

the underlying mechanisms of age-related decline in oocyte quality, focusing on

oxidative stress (OS) in oocytes. The primary cause is the accumulation of spontaneous

damage to the mitochondria arising from increased reactive oxygen species (ROS) in

oocytes, generated by the mitochondria themselves during daily biological metabolism.

Mitochondrial dysfunction reduces ATP synthesis and influences the meiotic spindle

assembly responsible for chromosomal segregation. Moreover, reproductively aged

oocytes produce a decline in the fidelity of the protective mechanisms against

ROS, namely the ROS-scavenging metabolism, repair of ROS-damaged DNA, and

the proteasome and autophagy system for ROS-damaged proteins. Accordingly,

increased ROS and increased vulnerability of oocytes to ROS lead to spindle

instability, chromosomal abnormalities, telomere shortening, and reduced developmental

competence of aged oocytes.
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INTRODUCTION

In reproductive health, a decrease in pregnancy rate and an increase in miscarriage rate are
observed in women aged 35 and older.While the rate of live baby born per oocyte is 26% for women
under age 35, it deteriorates at an accelerating pace and finally drops to 1% for those over age 42
(1). There has been extensive discussion about reduced quality of oocytes during aging, which is
considered to cause chromosomal aberration in embryos and reduced embryonic developmental
competence. The aging phenomena can be attributed to accumulated oxidative damage in somatic
cells (2, 3), as mammalian oocytes also show increased ROS levels with age (4–6). The relationship
between oxidative stress and oocyte deterioration has been well-investigated (7–10). Moreover,
antioxidants such as melatonin and coenzyme Q10 have anti-aging effects on mouse oocytes by
regulating mitochondrial functions and ROS levels in oocytes during reproductive aging (11–13).
In this review, using the latest literature, we discuss the pathophysiology in which oocytes are more
exposed and vulnerable to OS as they age, and the mechanisms by which oocyte quality is degraded.
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Age-Related Mitochondrial Dysfunction
and Decreased Energy Production in
Oocytes
Mitochondria are important organelles that act as sites of energy
production in aerobic respiration. Mitochondria produce ATP
during energy metabolism utilizing the redox reaction in the
respiratory chain complex located on the inner membrane. At
the same time, most of the superoxides produced in vivo are
generated in mitochondria (14). ROS are constantly generated in
the mitochondria of aerobic organisms, but are also eliminated
by antioxidant enzymes in the mitochondria thus maintaining
redox balance and homeostasis. However, when ROS are
excessively generated or the antioxidant ability is reduced
because of aging or disease, the redox balance is lost and
ROS are accumulated. The increase in OS is closely related to
mitochondrial dysfunction (15–17).

Mitochondrial dysfunction is indeed correlated with aging
in somatic cells. For example, mammalian aging has been
correlated with the accumulation of mtDNA deletions/mutations
and reduced mitochondrial respiratory chain function (18,
19). mtDNA is vulnerable and easily mutated owing to its
proximity to the respiratory chain producing ROS, its lack of
protective histones, and deficiency of efficient repair mechanisms
(20). Mitochondrial gene mutations in turn lead to reduced
mitochondrial function, i.e., disturbance of the redox balance
and OS. A mouse model called “mtDNA mutator mouse,” which
harbors a D257A mutation in the exonuclease “proofreading”
domain of DNA polymerase-γ (Polg) gene, exhibits a progeroid
phenotype. Accelerated accumulation of mtDNA mutations and
mitochondrial dysfunction lead to a systemic premature aging
phenotype including reduced fertility (17, 21). Likewise, in
oocytes, mitochondria are closely related to the decline of oocyte
quality with age (22). Point mutations and deletions in the
mtDNA in oocytes are also found with maternal aging (23–
25). Moreover, embryos obtained from elderly women have an
abnormally high copy number of mtDNA and such embryos
do not implant (26–28). It can be presumed that a vicarious
increase in mtDNA copy number via mitochondrial biogenesis
may effectively compensate for heteroplasmic mtDNAmutations
and mitochondrial dysfunction (15). However, considering the
qualitative aspect, the relationship between mtDNA integrity in
oocytes and ovarian aging is controversial. The accumulation of
the 4977-bp deletion is related to age due to OS in somatic cells
(29). Although the 4977-bp deletion also tends to increase with
age in oocytes, the frequency of the mitochondrial mutation and
IVF failure are not significantly correlated (30).

Morphological and ultrastructural changes of oocytes with
age are also observed. They include increase of irregular
mitochondria with changed matrix density, ooplasmic fraction
of vacuoles and dilated smooth endoplasmic reticulum (ER)
and Golgi complex (31, 32). In vitro matured eggs from aged
mice did not have a cortical distribution of active mitochondria
shown in those from young mice (33). Mitochondrial fusion and
fission, adapting the size and shape, also play a critical role in
maintaining the function in response to changes in the metabolic
milieu. Mitofusin 1 and 2 mediate mitochondrial fusion. Oocyte-
specific targeted deletion of either gene results in severely reduced

oocyte quality with elevated ROS levels (34, 35). Moreover,
mitochondrial fission maintains the competency of oocytes via
multi-organelle rearrangement. A study on Dynamin-related
protein 1 (Drp1) known as an oocyte-specific mitochondrial
fission factor showed that mitochondria are highly aggregated
with other organelles (e.g., ER and secretory vesicles) in oocytes
from Drp1-deficient mice, resulting in impaired Ca2+ signaling
and meiotic resumption. Oocytes from aged mice also showed a
decrease in Drp1-dependent mitochondrial fission and defective
organelle morphogenesis, which is similarly observed in Drp1
KO oocytes (36). Since Drp1 is also recruited by OS and plays
a protective role (37), the decline in oocyte quality with age may
be associated with a decrease in Drp1 responsiveness to OS (38).

Mitochondrial dysfunction, which is caused by or causes
OS, induces chromosomal non-disjunction, fertilization failure,
and decrease in embryo competence (16, 39, 40). Since a
large amount of ATP is consumed in the process of meiosis
completion, fertilization, and embryonic development, it is
possible that the decrease in ATP production due to deterioration
of mitochondrial function results in a decrease in oocyte quality
(41, 42). A study has shown that ATP contents ≧ 2 pmol/oocyte
are necessary for oocytes to support normal embryo development
(43). The reduced ATP production in oocyte may lead to
a dysfunction of the spindle assembly checkpoint (SAC). A
predominant mechanism of SAC silencing is dynein-mediated
transport of certain kinetochore proteins along microtubules.
ATP reduction prevents the release of dynein and its cargoes from
the spindle poles and the redistribution of the core SAC proteins
from attached kinetochores to spindle poles in metaphase-
arrested cells, at a time when the SAC should be satisfied and
silenced (44). The fidelity of SAC is compromised in aged oocytes,
suggesting that SAC failure is a likely contributor to the increased
incidence of chromosome abnormalities documented in oocytes
and embryos of older women (45).

Increased Vulnerability of Oocytes to
Oxidative Stress
The efficacy of DNA double-strand break (DSB) repair
mechanisms is attenuated in aged oocytes. Moreover, oocytes
are acutely susceptible to accumulated DNA damage by reason
of their extended prophase arrest. Increased oxidative damage
brought about by mutations in mtDNA and the oxidative DNA
repair enzyme OGG1 leads to accelerated aging phenotypes
including spindle and chromosomal abnormalities in senescence-
accelerated mice (46). An increase in the expression of the
DNA DSB damage marker γH2AX in primordial follicles and
germinal vesicle oocytes from aged mice and humans correlates
with a decline in the expression of several DNA DSB repair
genes including Brca1, Mre11, Atm, and Rad51 (47). RNAi-
mediated reduction of Brca1 in oocytes results in abnormal
spindle formation, chromosome misalignment, and a significant
increase in hyperploid oocytes (48).

A global gene expression analysis of aged oocytes in mice
revealed the decrease in mRNA expression of mitochondrial
antioxidant genes, peroxiredoxin 3 (Prdx3) and thioredoxin 2
(Txn2), as well as cytosolic antioxidant genes, glutaredoxin 1
(Glrx1), glutathione S-transferase mu 2 (Gstm2), and superoxide
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dismutase 1 (Sod1) (49, 50). Prdx3, abundantly distributed in
mitochondria, plays a key role as a regulator of mitochondrial
H2O2 concentration and apoptosis (51). Another analysis has
also reported reduced expression of Sod1 and Txn family
members in MII oocytes from aged mice (48). SOD1 is
highly expressed in human oocytes (52) and the addition
of Sod1 protein improves preimplantation development in
mice (53). Embryos from SOD1-deficient mouse oocytes have
significantly higher levels of superoxide than wild-type embryos
and their preimplantation development is halted at the 2-cell
stage under atmospheric oxygen. Instead of any treatments
with antioxidants, only hypoxic culture with 1% O2 negated
the 2-cell arrest (54). Interestingly, knockdown of either the
cytoplasmic or mitochondrial SOD in Drosophila significantly
increases the percentage of oocytes showing arm cohesion defects
and provokes segregation errors (55). Chemical inhibition of
SOD activity in porcine oocytes elicits a reduction in meiotic
progression, decreased GSH levels, and diminished rates of
cleavage and blastocyst formation (56). The depletion of GSH
is also associated with altered spindle morphology, disturbed
microtubule function, and chromosome clumping in hamster
and bovine MII oocytes (57, 58). Furthermore, thioredoxins are
also involved in the reduction and protection against oxidative
stress-induced apoptosis, and the targeted mutation of Txn1
causes embryonic lethality shortly after implantation (59). The
decline in the fidelity of these protective mechanisms against OS
collectively renders aged oocytes vulnerable to OS.

OS Induces ER Stress and Dysfunction of
Proteasome and Autophagy in Oocytes
OS is involved in the effect of aging on reproductive function
by causing ER stress (60, 61). Acting as a major site for
the biosynthesis of proteins, lipids and secretory proteins,
the ER plays a key role in meeting the oocyte’s increased
demand for new proteins during oocyte maturation and
embryo development. Therefore, ER stress and homeostasis
play an important role in determining oocyte quality. OS can
induce ER stress and an adaptive signaling cascade known
as the unfolded protein response (UPR) by impeding correct
protein folding and calcium homeostasis (62, 63). If the
UPR-mediated response fails in correcting the protein-folding
defect, apoptosis is activated. Interestingly, lycium barbarum
polysaccharide (LBP), extracted from the traditional Chinese
herbal medicine goji berry, has antioxidant and cryoprotective
properties, and improves the developmental competence of
mouse oocytes that were vitrified/warned at the germinal
vesicle stage with cumulus cells (64). LBP may reduce ER
stress, activate both PI3K/AKT and MAPK3/1, and prevent
cell death (64).

There is also a theory that proteasome dysfunction due
to accumulation of oxidatively induced damage of functional
proteins is also involved in the deterioration of oocyte quality
with age. An age-related decline in proteasome activity has
been demonstrated in a multitude of mammalian tissues and
cells (60–68). In fact, a comprehensive analysis revealed that
in oocytes, many proteasome-related genes are expressed

less with increasing age (50). Decreased proteasome activity
in naturally aged mouse oocytes are positively correlated
with increased protein modification by 4-hydroxynonenal
(4-HNE), which is elevated by the lipid peroxidation chain
reaction in conditions involving oxidative stress (65). An
exposure of germinal vesicle oocytes to either H2O2 or 4-
HNE contributes to decreased meiotic completion, increased
spindle abnormalities, chromosome misalignments and
aneuploidy (66).

Autophagy is an evolutionarily conserved phenomenon
by which unwanted intracellular proteins and organelles are
sequestered within autophagosomes and delivered to lysosomes
for degradation. Autophagy was found as a cell survival
mechanism in starving cells, and also has a role in cell death.
It is generally accepted that autophagy induces ROS, but also
reduces oxidative damage (69). Autophagy has an important
role in removing damaged mitochondria by mitophagy and
in reducing ER stress. Autophagy has been observed in
mouse, rat, and porcine oocytes. In rat ovaries, all phases
of the estrous cycle contain oocytes that simultaneously
express proteins involved both in apoptosis and autophagy
(67). Autophagy-defective oocytes, obtained from oocyte-specific
Atg5 knockout mice, could not develop beyond the four-
and eight-cell stages after fertilization with Atg5-null sperm,
suggesting a critical role of autophagy in pre-implantation
mammalian development (68). In bovine embryos, a transient
increase in autophagy also leads to decreased ER stress,
which has a positive influence on in vitro preimplantation
development (70). The consequences of autophagy modulation,
including those that are mediated by OS during aging,
may either promote cell survival or be associated with cell
death (71). Decreased autophagy may provide a cellular
environment allowing for the accumulation of dysfunctional
mitochondria (72).

Possible Role of the Sirtuin Family Against
OS in Oocytes
The sirtuin family is involved in regulating the energy
metabolism and stress resistance of mammalian cells (73).
Recently, SIRT1 and SIRT3 have been revealed to have an
important role as sensors and protectors of the redox balance
in oocytes, granulosa cells, and early embryos (74). SIRT1 and
SIRT2 have been found in both the nucleus and cytosol, while
SIRT3, SIRT4, and SIRT5 have been detected exclusively in
mitochondria; SIRT6 and SIRT7 have been localized only in
the nuclear compartment (75–77). The antioxidant response,
the “FoxO3a-MnSod axis” orchestrated by SIRT1, is attenuated
with age in oocytes (78). Several studies have investigated
anti-aging treatment with resveratrol or calorie restriction
focusing on SIRT1 (69, 79). SIRT3 also acts in a protective
role against stress conditions in preimplantation embryos (80).
Decreased expression of SIRT3 correlates with lower embryonic
developmental competence (81). Melatonin, which enhances
SIRT1 and SIRT3 activity, is considered effective as a treatment
for aging oocytes (81, 82).
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FIGURE 1 | Possible mechanism of aged oocyte deterioration with accumulating oxidative stress. External ROS, AGEs, and accumulation of internal ROS from

mitochondria are burdening oocytes as oxidative stress (OS). Then, OS induces deterioration of mitochondria, telomere shortening, spindle formation error, DNA

damage, and protein degradation. ROS, reactive oxygen species. AGEs, glycation end-products. RAGE, receptor for advanced glycation end-products. 4-HNE,

4-hydroxynonenal.

Adverse Effects of OS on Telomeres in
Oocytes
OS and telomere shortening are correlated exponentially

with aging of somatic cells (83). The ROS generated by

compromised mitochondria could potentially oxidize proteins
necessary for telomere maintenance (84). Telomeres lack

protective proteins and sit in the nuclear membrane, where

they are susceptible to lipid peroxidation (85). Intrinsically,
their sequences are rich in guanine, which is quite susceptible
to oxidation. Telomere shortening is also involved in failure
of spindle formation, arrest of embryonic development, and
fragmentation in oocytes (86). In an experiment administering
a cigarette smoke condensate (CSC) to mouse 1-cell zygotes,
OS induced chromosomal aberrations in mouse embryos
via telomere shortening and loss, but the antioxidant N-
acetyl-L-cysteine (NAC) prevented the defects induced by
CSC (8). Fertilized mouse eggs treated with FCCP, which
uncouples the mitochondrial electron transport pathway, also
show significantly increased ROS and decreased developmental
competence with telomere shortening and chromosomal fusion
compared to control embryos (84). In reproductively aged
mouse oocytes, Q-PCR and quantitative fluorescence in situ

hybridization analyses show significant increase of OS and
shortening of telomere lengths (6, 87). Human oocytes with
shorter telomeres develop into more fragmented and more
aneuploid preimplantation embryos with lower implantation
rates (88, 89), whereas relative telomere length was comparable
in aneuploid and euploid first polar bodies and blastomeres
(90). Further, SIRT6, associated with oxidative homeostasis, has
been identified as an important modulator of telomeres in age-
related deterioration of mouse oocytes (91, 92). Overexpression
of SIRT6 in oocytes from aged mice promotes telomere
elongation in 2-cell embryos and lowers the incidence of
apoptotic blastomeres (91). Further studies on the age-
related alteration of telomere length in mammalian oocytes
seem necessary.

CONCLUSION

In recent years, social progress of women has resulted
in delayed reproduction. Reproductive medicine faces
serious challenges because aging causes oocyte quality to
deteriorate. This deterioration of oocyte quality is influenced
by OS. OS damages many cellular components, including
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mitochondria, lipids, proteins, enzymes, and DNA, leading
to ATP shortage, DNA break, chromosomal segregation
error, dysregulation of autophagy and proteasome system
(Figure 1). In particular, mitochondria are the most significant
targets of OS as they are pivotal in controlling cell survival
and death. Moreover, a theory showing DNA methylation
and epigenetic errors as influencing OS on germ cells has
also been proposed (50, 93, 94). However, direct evidence
for a participation of OS in the aging process of human
oocytes and mechanisms of protection against OS is still to
be gathered.
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